Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants

Abbott, R.; LIGO Scientific Collaboration; Virgo Collaboration

DOI
10.1103/PhysRevD.105.082005

Publication date
2022

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants

R. Abbott et al.*
(LIGO Scientific Collaboration and Virgo Collaboration)

(Received 30 November 2021; accepted 21 March 2022; published 28 April 2022)

We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the WEAVE semicoherent method, which sums matched-filter detection-statistic values over many time segments spanning the observation period. No gravitational wave signal is detected in the search band of 20–976 Hz for assumed source ages greater than 300 years for Cas A and greater than 700 years for Vela Jr. Estimates from simulated continuous wave signals indicate we achieve the most sensitive results to date across the explored parameter space volume, probing to strain magnitudes as low as \(\sim 6.3 \times 10^{-26} \) for Cas A and \(\sim 5.6 \times 10^{-26} \) for Vela Jr. at frequencies near 166 Hz at 95% efficiency.

DOI: 10.1103/PhysRevD.105.082005

I. INTRODUCTION

We report the results of the deepest search to date for continuous gravitational waves from the neutron stars at the centers of the Cassiopeia A (Cas A, G111.7 – 2.1) [1] and Vela Jr. (G266.2 – 1.2) [2] supernova remnants. Cas A is just over 300 years old [3,4], and Vela Jr. may be as young as 700 years old [2]. These extremely young objects have been the target of multiple searches for continuous gravitational waves since 2010 [5–11] because they may retain high rotation frequencies and may possess appreciable nonaxisymmetries from their recent births [12–20]. Continuous emission due to unstable \(r \)-mode s is also possible in such young stars [21–25].

In this search, we analyze the first six months of data from the third observing run (O3a period) of the Advanced Laser Interferometer Gravitational wave Observatory (Advanced LIGO [26,27]). We achieve significantly improved sensitivity for Vela Jr. with respect to a recent O3a search using a different method [11] and dramatically improved sensitivity for Cas A with respect to previous searches of O1, O2 and O3a LIGO and Virgo data [5–11]. The improvement with respect to similar, previous analyses of O1 data [8,9] comes largely from the improved detector noise due to a variety of instrument upgrades [28], including a (\(\sim 3 \) db) improvement achieved with quantum squeezing [29].

Given the immense pressure on its nuclear matter, one expects a neutron star to assume a highly spherical shape in the limit of no rotation and, with rotation, to form an axisymmetric oblate spheroid. A number of physical processes can disrupt the symmetry, however, to produce quadrupolar gravitational waves from the stellar rotation. Those processes include crustal distortions from cooling or accretion, buried magnetic field energy and excitation of \(r \)-modes. Comprehensive reviews of continuous gravitational wave emission mechanisms from neutron stars can be found in [30,31].

Central compact objects (CCOs) at the cores of supernova remnants present interesting potential sources, especially those in remnants inferred from their sizes and expansion rates to be young. Both the Cas A and Vela Jr. remnants contain such objects, thought to be young neutron stars. One can derive an estimated age-based upper limit\(^1\) on a CCO’s continuous-wave strain amplitude by assuming the star’s current rotation frequency is much lower than its rotation frequency at birth and that the star’s spin-down since birth has been dominated by gravitational wave energy loss (‘gravitar’ emission) [32]:

\[
h_{\text{age}} = (2.3 \times 10^{-24}) \left(\frac{1 \text{ kpc}}{r} \right) \sqrt{\left(\frac{1000 \text{ yr}}{\tau} \right) \left(\frac{I_{zz}}{I_0} \right)},
\]

where \(r \) is the distance to the source, \(\tau \) is its age and \(I_{zz} \) is the star’s moment of inertia about its spin axis, with a fiducial value of \(I_0 = 10^{38} \text{ kg} \cdot \text{m}^2 \).

Cas A is perhaps the most promising example of a potential gravitational wave CCO source in a supernova

\(^*\)Deceased.

\(^1\)This strain estimate gives a rough benchmark upper limit on what is possible in an optimistic scenario; its assumption that current rotation frequency is small relative to the star’s birth frequency becomes less plausible for the highest frequencies searched in this analysis.
remnant. Its birth aftermath may have been observed by Flamsteed [3] ~340 years ago in 1680, and the expansion of the visible shell is consistent with that date [4]. Hence Cas A, which is visible in x-rays [33,34] but shows no pulsations [35], is almost certainly a very young neutron star at a distance of about 3.3 kpc [36,37]. From Eq. (1), one finds an age-based strain limit of $\sim 1.2 \times 10^{-24}$, which is readily accessible to LIGO and Virgo detectors in their most sensitive band.

The Vela Jr. CCO is observed in x-rays [38] and is potentially quite close (~ 0.2 kpc) and young (690 yr) [2], for which one finds a quite high age-based strain limit of $\sim 1.4 \times 10^{-23}$. Some prior continuous gravitational wave searches have also conservatively assumed a more pessimistic distance (~ 1 kpc) and age (5100 yr), based on other measurements [39], for which the age-based strain limit is $\sim 1.0 \times 10^{-24}$, still comparable to that of Cas A. As in the case of Cas A, no pulsations have been detected from Vela Jr. [40,41].

The remainder of this article is organized as follows: Section II describes the data set used. Section III briefly describes the WEAVE search program [42] which uses semicoherent summing of a matched-filter detection statistic known as the F-statistic [43]. Section IV presents the results of the search. Section V discusses the method used to determine 95% sensitivity as an approximation to rigorous upper limits for bands in which all initial search outliers have been followed up with more sensitive but computationally costly methods and dismissed as not credible signals. Section VI concludes with a discussion of the results and prospects for future searches.

II. DATASETS USED

Advanced LIGO consists of two detectors, one in Hanford, Washington (designated H1), and the other in Livingston, Louisiana (designated L1), separated by a ~3000-km baseline [26]. Each site hosts one, 4-km-long interferometer inside a vacuum envelope with the primary interferometer optics suspended by a cascaded, quadruple suspension system, affixed beneath an in-series pair of suspended optical tables, in order to isolate them from external disturbances. The interferometer mirrors act as test masses, and the passage of a gravitational wave induces a differential-arm length change which is proportional to the gravitational-wave strain amplitude.

The third Advanced LIGO and Virgo data run (O3) began April 1, 2019 and ended March 27, 2020. The first six months (April 1, 2019 to October 1, 2019), prior to a 1-month commissioning break, is designated as the O3a period. The analysis presented here uses only the O3a dataset from the LIGO interferometers. The Virgo data has not been used in this analysis because of an unfavorable tradeoff in computational cost for sensitivity gain, given the interferometer’s higher noise level during the O3 run. The systematic error in the amplitude calibration is estimated to be lower than 7% (68% confidence interval) for both LIGO detectors over all frequencies throughout O3a [44].

Prior to searching the O3a data for continuous wave (CW) signals, the quality of the data was assessed and steps taken to mitigate the effects of instrumental artifacts. As in previous Advanced LIGO observing runs [45], instrumental “lines” (sharp peaks in fine-resolution, run-averaged H1 and L1 spectra) are marked, and where possible, their instrumental or environmental sources identified [46]. The resulting database of artifacts proved helpful in eliminating spurious signal candidates emerging from the search; no bands were vetoed a priori, however. In general, the number of H1 lines in the O3a data was similar to that observed in the O2 run, while the number of lines for L1 O3a data was substantially reduced.

As discussed in [47], another type of artifact observed in the O3a data for both H1 and L1 were relatively frequent and loud “glitches” (short, high-amplitude instrumental transients) with most of their spectral power lying below ~500 Hz. To mitigate the effects of these glitches on O3a CW searches for signals below 475 Hz, a simple glitch-gating algorithm was applied [48,49] to excise the transients from the data.

III. ANALYSIS METHOD

This search relies upon semicoherent averaging of F-statistic [43] values computed for many short (several-day) segments spanning nearly all of the O3a run period (2019 April 1 15:00 UTC—2019 October 1 15:00 UTC). Section III A describes the signal model used in the analysis. Section III B describes the mean F-statistic detection statistic at the core of the analysis. Section III C describes the WEAVE infrastructure for summing individual F-statistic values over the observation period, including the configuration choices for the searches presented in this article. Section III D describes the procedure used to follow up on outliers found in the first stage of the hierarchical search.

A. Signal model and parameter space searched

The signal templates assume a classical model of a spinning neutron star with a time-varying quadrupole moment that produces circularly polarized gravitational radiation along the rotation axis, linearly polarized radiation in the directions perpendicular to the rotation axis and elliptical polarization for the general case. The strain signal model $h(t)$ for the source, as seen by the detector, is assumed to be the following function of time t:

$$h(t) = h_0 \left(F_+ (t, \alpha_0, \delta_0, \psi) \frac{1 + \cos^2(t)}{2} \cos(\Phi(t)) + F_\times (t, \alpha_0, \delta_0, \psi) \cos(t) \sin(\Phi(t)) \right),$$

(2)
In Eq. (2), \(h_0 \) is the intrinsic strain amplitude, \(\Phi(t) \) is the signal phase, \(F_+ \) and \(F_\times \) characterize the detector responses to signals with \("+"\) and \("\times"\) quadrupolar polarizations [50], and the sky location is described by right ascension \(\alpha_0 \) and declination \(\delta_0 \). In this equation, the star’s orientation, which determines the polarization, is parametrized by the inclination angle \(i \) of its spin axis relative to the detector line-of-sight and by the angle \(\psi \) of the sky. The linear polarization case \((i = \pi/2)\) is the most unfavorable because the gravitational wave flux impinging on the detectors is smallest for an intrinsic strain amplitude \(h_0 \), possessing eight times less incident strain power than for circularly polarized waves \((i = 0, \pi)\).

In a rotating triaxial ellipsoid model for a star at distance \(r \) spinning at frequency \(f_\text{rot} \) about its (approximate) symmetry axis \((z)\), the amplitude \(h_0 \) can be expressed as

\[
\frac{h_0}{r} = \frac{4\pi^2 GeI_{zz}f^2}{c^4r} = \left[1.1 \times 10^{-24}\right] \frac{e}{10^{-6}} \left[I_{zz}/I_0\right] \left[\frac{f}{1 \text{ kHz}}\right]^2 \left[\frac{1 \text{ kpc}}{r}\right].
\]

(4)

for which the gravitational radiation is emitted at frequency \(f = 2f_\text{rot} \). The equatorial ellipticity \(e \) is a useful, dimensionless measure of stellar nonaxisymmetry:

\[
e = \frac{|I_{xx} - I_{zz}|}{I_{zz}}.
\]

(5)

Unstable \(r \)-mode emission [21–25] at gravitational wave frequency \(f \) (which for this model is \(\sim (4/3)f_\text{rot} \)) can be approximated by a dimensionless amplitude \(\alpha \) governing the strain amplitude [51]:

\[
\frac{h_0}{r} = \left[3.6 \times 10^{-23}\right] \frac{\alpha}{0.001} \left[I_{zz}/I_0\right] \left[\frac{f}{1 \text{ kHz}}\right]^3 \left[\frac{1 \text{ kpc}}{r}\right].
\]

(6)

The phase evolution of the signal is given in the reference frame of the Solar System barycenter (SSB) by the third-order approximation:

\[
\Phi(t) = 2\pi(f \cdot (t - t_0) + \frac{1}{2} \dot{f} \cdot (t - t_0)^2 + \frac{1}{6} \ddot{f} \cdot (t - t_0)^3)) + \phi_0,
\]

(7)

where \(f \) is the SSB source frequency, \(\dot{f} \) is the first frequency derivative (which, when negative, is termed the spin-down), \(\ddot{f} \) is the second frequency derivative, \(t \) is the SSB time, and the initial phase \(\phi_0 \) is computed relative to reference time \(t_0 \) (taken here to be the approximate midpoint of the O3a period: 2019 June 30 15:07:45 UTC-GPS 1245942483). When expressed as a function of the local time of ground-based detectors, Eq. (7) acquires sky-position-dependent Doppler shift terms [43].

In this analysis, we search a band of gravitational wave signal \(f \) from 20 to 976 Hz and a frequency derivative \(\dot{f} \) range governed by assumed minimum ages \(\tau \) of each source. Detector noise deteriorates badly below 20 Hz because of ground motion, and in the band around 1000 Hz because of resonant mechanical disturbances. Similar previous searches [5–7] have assumed a power law spin-down: \(\dot{f} \propto -f^n \) with braking index \(n \), with \(n \) taking on values of 3 for magnetic dipole emission, 5 for GW quadrupole emission (gravitar) and 7 for \(r \)-mode emission. For a source that begins at a high frequency and spins down to a much lower present-day frequency with a constant braking index, one expects \(\dot{f} \approx \frac{1}{n\tau} (\dot{f}/\tau) \). Allowing for \(n \) to range between 2 and 7 because of multiple potential spin-down contributions leads to the search range:

\[
-\frac{f}{\tau} \leq \dot{f} \leq -\frac{f}{6\tau},
\]

(8)

which has been assumed in several previous searches [5–7]. Here we take a slightly more conservative approach, allowing the upper limit on \(\dot{f} \) to reach zero, at modest additional computational cost, while allowing for some time-dependent braking indices and uncertainties in the source’s effective age. The range in second frequency derivative \(\ddot{f} \) is determined for any frequency \(f \) and first derivative \(\dot{f} \) by the same relation used in previous searches (governed by the braking index range considered):

\[
2\frac{\ddot{f}^2}{\dot{f}} \leq \ddot{f} \leq 7\frac{\ddot{f}^2}{f}.
\]

(9)

Table I lists the maximum absolute values of \(\ddot{f} \) and \(\dot{f} \) at the lowest and highest search frequencies, along with the right ascensions and declinations used in the Cas A and Vela Jr. searches.

In searching this parameter space, we do not enforce a relation among \((f, \dot{f}, \ddot{f})\), which means that for an arbitrary combination, the implied current braking index \(n_c \), defined by \(n_c \equiv f \ddot{f}/(\dot{f})^2 \), may take on arbitrarily large (unphysical) values. For a true power-law behavior over the observation

<table>
<thead>
<tr>
<th>Source</th>
<th>Cassiopeia A [52]</th>
<th>Vela Jr. [53]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right ascension</td>
<td>23h 23m 27.85s 8h 52m 1.4s</td>
<td>+58° 48’ 42.8”–46° 17’ 53”</td>
</tr>
<tr>
<td>Declination</td>
<td>+58° 48’ 42.8”–46° 17’ 53”</td>
<td>+58° 48’ 42.8”–46° 17’ 53”</td>
</tr>
<tr>
<td>Maximum (</td>
<td>f</td>
<td>(Hz/s)) @20 Hz</td>
</tr>
<tr>
<td>Maximum (</td>
<td>\dot{f}</td>
<td>(Hz/s)) @976 Hz</td>
</tr>
<tr>
<td>Maximum (</td>
<td>\ddot{f}</td>
<td>(Hz/s^2)) @20 Hz</td>
</tr>
<tr>
<td>Maximum (</td>
<td>\ddot{f}</td>
<td>(Hz/s^2)) @976 Hz</td>
</tr>
</tbody>
</table>

TABLE I. Sky locations and maximum \(|\ddot{f}|, |\dot{f}| \) values used in the Cas A and Vela Jr. searches at the lowest and highest frequencies.
period, the implied third frequency derivative can be written \(\dddot{f} = n_x (2n_x - 1) (\dot{f})^2 / f^3 \). In the initial search and first two stages of outlier follow-up, the third derivative is taken to be zero, which is a good approximation for braking indices below 7 for both sources.

B. The mean \(\mathcal{F} \)-statistic

This search is based on a semicoherent average of \(\mathcal{F} \)-statistic values over many individual intervals of the 6-month observing period. Within each segment of coherence time duration \(T_{\text{coh}} \), the \(\mathcal{F} \)-statistic [43] is computed as in previous searches, as a detection statistic proportional to the signal amplitude \(h_0^2 \), maximized over \(h_0 \), the unknown orientation angles \(\phi \) and \(\psi \), and the phase constant \(\phi_0 \). In Gaussian noise with no signal present, the value of \(2\mathcal{F} \) follows a \(\chi^2 \) distribution with four degrees of freedom and has an expectation value of four. The presence of a signal leads to a non central \(\chi^2 \) distribution with a noncentrality parameter proportional to \(h_0^2 T_{\text{coh}} \) and inversely proportional to the average power spectral density of the detector noise. The noncentrality parameter also depends on the source’s orientation and sky location, and on the orientations and locations of the LIGO interferometers [43].

We compute a semicoherent mean \(\mathcal{F} \)-statistic we call \(2\mathcal{F} \) from the average value of \(2\mathcal{F} \) over the \(N_{\text{seg}} \) segments into which the observing period is divided:

\[
2\mathcal{F} = \frac{1}{N_{\text{seg}}} \sum_{i=1}^{N_{\text{seg}}} 2\mathcal{F}_i. \tag{10}
\]

In the absence of signal, this detection statistic too has an expectation value of four, but has the underlying shape of a \(\chi^2 \) distribution with \(4N_{\text{seg}} \) degrees of freedom with a (rescaled) standard deviation of \(\sqrt{8/N_{\text{seg}}} \). The presence of a signal leads to an offset in the mean that is approximately the same as the noncentrality parameter above, for a fixed \(T_{\text{coh}} \).

C. The WEA VE infrastructure

The WEA VE software infrastructure provides a systematic approach to covering the parameter space volume in a templated search to ensure acceptable loss of signal-to-noise ratio (SNR) for true signals lying between template points [42]. The WEA VE program combines together recent developments in template placement to use an optimal parameter-space metric [54,55] and optimal template lattices [56]. The package is versatile enough to be used in all-sky searches for unknown sources. Here we use a simpler configuration applicable to well localized sources, such as Cas A and Vela Jr.

In brief, a template grid in the parameter space is created for each time segment, a grid that is appropriate to computing the \(\mathcal{F} \)-statistic\(^2\) for a coherence time \(T_{\text{coh}} \) equal to the total observation period \(T_{\text{obs}} \) divided by \(N_{\text{seg}} \). The spacing of the grid points in \((f, \dot{f}, \dddot{f}) \) is set according to a metric [54,55] that ensures a worst-case maximum mismatch \(m_{\text{coh}} \) defined by the fractional loss in \(2\mathcal{F} \) value due to a true signal not coinciding with a search template.

Separately, a much finer grid is defined for the full observation period with respect to the midpoint of the observation period, one with its own mismatch parameter \(m_{\text{semi-coh}} \), analogous to \(m_{\text{coh}} \), but defined to be the average of the coherent mismatch values over all segments [55]. Its choice is set empirically in a tradeoff between sensitivity and computational cost. The WEA VE package creates at initialization a mapping between each point in the semicoherent template grid and a nearest corresponding point in each of the separate, coarser segment grids, accounting for frequency evolution. The semicoherent detection statistic \(2\mathcal{F} \) is constructed for each semicoherent template from this mapping [42].

For the Cas A and Vela Jr. searches presented here, a simulation study was carried out to evaluate tradeoffs in achievable sensitivity for a small but diverse set of segment length choices \((T_{\text{coh}}) \) and mismatch parameters \(m_{\text{coh}} \) and \(m_{\text{semi-coh}} \), with a goal of staying within a maximum computational cost of \(3 \times 10^6 \) CPU core hours for the two searches combined, including for outlier follow-up (~10%). Searching over only \(f \) and \(\dot{f} \) was also explored, but yielded poorer sensitivity. In the end, we chose the WEA VE configuration parameters shown in Table II.

Search jobs are carried out in 0.1-Hz bands of \(f \), with further divisions in \(\dot{f} \), as needed, to keep each job’s computational duration between approximately 6 and 12 hours, for practical reasons. Tables III and IV show the number of \(f \) divisions vs. frequency band for the two searches.

D. Outlier follow-up

Each individual job returns the \((f, \dot{f}, \dddot{f})\) values of the 1000 templates (“top-list”) with the largest (“loudest”) \(2\mathcal{F} \) values. For 0.1-Hz bands with \(N_f \) divisions in the \(\dot{f} \) range, there are \(N_f \times 1000 \) values returned. Outlier templates to be followed up are those in these top-lists exceeding a frequency-dependent threshold \(2\mathcal{F}_{\text{thresh}}(f) \) which rises slowly with \(f \) as the number of distinct templates searched grows, thereby increasing the statistical trials factor. A nominal threshold is set based on the signal-free \(\chi^2 \) distribution with four degrees of freedom per segment such that the expectation value of outliers is one per 1-Hz

\(^2\)To understand better the effects of instrumental line artifacts, in this initial exploration of the O3 data with the WEA VE method, a “pure” \(\mathcal{F} \)-statistic was used rather than the Bayesian-motivated \(\mathcal{F}^+ \text{-veto} \)-statistic [57,58], in which the \(\mathcal{F} \)-statistic is suppressed by the presence of line artifacts in one detector, but not in the other.
In some cases strong outlier counts in particular bands contaminated by instrumental line sources (Sec. II). In some cases as “saturated” since potentially interesting templates may be suppressed by the top-list cap. Each of those cases is examined manually to assess instrumental contamination. Where such contamination is confirmed, those bands are marked and excluded from those in which we quote strain sensitivities. The Appendix lists these 0.1-Hz bands.

For nonsaturated subranges of individual 0.1-Hz bands, outliers exceeding the threshold $2\tilde{F}_{\text{thresh}}(f)$ are followed up in a sequential procedure where at each step, the coherence time T_{coh} is doubled (and hence the number of segments N_{seg} is halved). Because the noncentrality parameter for the mean $2\tilde{F}$ detection statistic scales approximately linearly with T_{coh}, one expects a nominal doubling of the excess mean $2\tilde{F}$ defined by $2\tilde{F} - 4$.

To be conservative and guided by simulations, we require outliers passing a follow-up stage to display an increase of 60%–70% in excess mean $2\tilde{F}$ with respect to the previous stage, depending on source and follow-up stage. Table VI lists the required increases, which are lower for Cas A than for Vela Jr. in the first follow-up stages because its younger age leads to higher possible 3rd frequency derivatives which are not searched over in those stages. The simulated signals used to guide these choices are nominally detectable but not loud, having strain sensitivities. The Appendix lists these 0.1-Hz bands.

In practice, non-Gaussian artifacts lead to much higher outlier counts in particular bands contaminated by instrumental line sources (Sec. II). In some cases strong instrumental lines can lead to more than 1000 templates from a single job that exceed the threshold for a particular 0.1-Hz band and range of \tilde{f} searched. We refer to those cases as “saturated” since potentially interesting templates may be suppressed by the top-list cap. Each of those cases is examined manually to assess instrumental contamination. Where such contamination is confirmed, those bands are marked and excluded from those in which we quote strain sensitivities. The Appendix lists these 0.1-Hz bands.

For nonsaturated subranges of individual 0.1-Hz bands, outliers exceeding the threshold $2\tilde{F}_{\text{thresh}}(f)$ are followed up in a sequential procedure where at each step, the coherence time T_{coh} is doubled (and hence the number of segments N_{seg} is halved). Because the noncentrality parameter for the mean $2\tilde{F}$ detection statistic scales approximately linearly with T_{coh}, one expects a nominal doubling of the excess mean $2\tilde{F}$ defined by $2\tilde{F} - 4$.

To be conservative and guided by simulations, we require outliers passing a follow-up stage to display an increase of 60%–70% in excess mean $2\tilde{F}$ with respect to the previous stage, depending on source and follow-up stage. Table VI lists the required increases, which are lower for Cas A than for Vela Jr. in the first follow-up stages because its younger age leads to higher possible 3rd frequency derivatives which are not searched over in those stages. The simulated signals used to guide these choices are nominally detectable but not loud, having strain sensitivities. The Appendix lists these 0.1-Hz bands.

In some cases as “saturated” since potentially interesting templates may be suppressed by the top-list cap. Each of those cases is examined manually to assess instrumental contamination. Where such contamination is confirmed, those bands are marked and excluded from those in which we quote strain sensitivities. The Appendix lists these 0.1-Hz bands.

For nonsaturated subranges of individual 0.1-Hz bands, outliers exceeding the threshold $2\tilde{F}_{\text{thresh}}(f)$ are followed up in a sequential procedure where at each step, the coherence time T_{coh} is doubled (and hence the number of segments N_{seg} is halved). Because the noncentrality parameter for the mean $2\tilde{F}$ detection statistic scales approximately linearly with T_{coh}, one expects a nominal doubling of the excess mean $2\tilde{F}$ defined by $2\tilde{F} - 4$.

To be conservative and guided by simulations, we require outliers passing a follow-up stage to display an increase of 60%–70% in excess mean $2\tilde{F}$ with respect to the previous stage, depending on source and follow-up stage. Table VI lists the required increases, which are lower for Cas A than for Vela Jr. in the first follow-up stages because its younger age leads to higher possible 3rd frequency derivatives which are not searched over in those stages. The simulated signals used to guide these choices are nominally detectable but not loud, having strain sensitivities. The Appendix lists these 0.1-Hz bands.

In some cases as “saturated” since potentially interesting templates may be suppressed by the top-list cap. Each of those cases is examined manually to assess instrumental contamination. Where such contamination is confirmed, those bands are marked and excluded from those in which we quote strain sensitivities. The Appendix lists these 0.1-Hz bands.

For nonsaturated subranges of individual 0.1-Hz bands, outliers exceeding the threshold $2\tilde{F}_{\text{thresh}}(f)$ are followed up in a sequential procedure where at each step, the coherence time T_{coh} is doubled (and hence the number of segments N_{seg} is halved). Because the noncentrality parameter for the mean $2\tilde{F}$ detection statistic scales approximately linearly with T_{coh}, one expects a nominal doubling of the excess mean $2\tilde{F}$ defined by $2\tilde{F} - 4$.

To be conservative and guided by simulations, we require outliers passing a follow-up stage to display an increase of 60%–70% in excess mean $2\tilde{F}$ with respect to the previous stage, depending on source and follow-up stage. Table VI lists the required increases, which are lower for Cas A than for Vela Jr. in the first follow-up stages because its younger age leads to higher possible 3rd frequency derivatives which are not searched over in those stages. The simulated signals used to guide these choices are nominally detectable but not loud, having strain sensitivities. The Appendix lists these 0.1-Hz bands.

In some cases as “saturated” since potentially interesting templates may be suppressed by the top-list cap. Each of those cases is examined manually to assess instrumental contamination. Where such contamination is confirmed, those bands are marked and excluded from those in which we quote strain sensitivities. The Appendix lists these 0.1-Hz bands.

For nonsaturated subranges of individual 0.1-Hz bands, outliers exceeding the threshold $2\tilde{F}_{\text{thresh}}(f)$ are followed up in a sequential procedure where at each step, the coherence time T_{coh} is doubled (and hence the number of segments N_{seg} is halved). Because the noncentrality parameter for the mean $2\tilde{F}$ detection statistic scales approximately linearly with T_{coh}, one expects a nominal doubling of the excess mean $2\tilde{F}$ defined by $2\tilde{F} - 4$.

To be conservative and guided by simulations, we require outliers passing a follow-up stage to display an increase of 60%–70% in excess mean $2\tilde{F}$ with respect to the previous stage, depending on source and follow-up stage. Table VI lists the required increases, which are lower for Cas A than for Vela Jr. in the first follow-up stages because its younger age leads to higher possible 3rd frequency derivatives which are not searched over in those stages. The simulated signals used to guide these choices are nominally detectable but not loud, having strain sensitivities. The Appendix lists these 0.1-Hz bands.

In some cases as “saturated” since potentially interesting templates may be suppressed by the top-list cap. Each of those cases is examined manually to assess instrumental contamination. Where such contamination is confirmed, those bands are marked and excluded from those in which we quote strain sensitivities. The Appendix lists these 0.1-Hz bands.

For nonsaturated subranges of individual 0.1-Hz bands, outliers exceeding the threshold $2\tilde{F}_{\text{thresh}}(f)$ are followed up in a sequential procedure where at each step, the coherence time T_{coh} is doubled (and hence the number of segments N_{seg} is halved). Because the noncentrality parameter for the mean $2\tilde{F}$ detection statistic scales approximately linearly with T_{coh}, one expects a nominal doubling of the excess mean $2\tilde{F}$ defined by $2\tilde{F} - 4$.

To be conservative and guided by simulations, we require outliers passing a follow-up stage to display an increase of 60%–70% in excess mean $2\tilde{F}$ with respect to the previous stage, depending on source and follow-up stage. Table VI lists the required increases, which are lower for Cas A than for Vela Jr. in the first follow-up stages because its younger age leads to higher possible 3rd frequency derivatives which are not searched over in those stages. The simulated signals used to guide these choices are nominally detectable but not loud, having strain sensitivities. The Appendix lists these 0.1-Hz bands.
TABLE VIII

Frequency parameters for the loudest Vela Jr. outlier in each cluster that survived round 2 follow-up. Outliers marked with asterisks were followed up with a third round.

<table>
<thead>
<tr>
<th>f (Hz)</th>
<th>\dot{f} (nHz/s)</th>
<th>\ddot{f} (aHz/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0010</td>
<td>−0.19</td>
<td>−1.4</td>
<td>20.0002</td>
<td>−0.40</td>
<td>1.9</td>
<td>90.0002</td>
<td>−0.35</td>
<td>−3.0</td>
<td>612.1648</td>
<td>−3.19</td>
<td>2.9</td>
</tr>
<tr>
<td>21.2899</td>
<td>−0.10</td>
<td>−26.8</td>
<td>40.7002</td>
<td>−0.71</td>
<td>−3.2</td>
<td>96.0010</td>
<td>−1.12</td>
<td>0.7</td>
<td>614.7653</td>
<td>−3.77</td>
<td>3.7</td>
</tr>
<tr>
<td>22.2618</td>
<td>−0.19</td>
<td>−16.8</td>
<td>43.8618</td>
<td>−0.43</td>
<td>1.0</td>
<td>107.2955</td>
<td>−1.01</td>
<td>−8.8</td>
<td>629.8914</td>
<td>−18.55</td>
<td>6.2</td>
</tr>
<tr>
<td>22.6708</td>
<td>−0.53</td>
<td>1.2</td>
<td>45.0022</td>
<td>−0.35</td>
<td>−16.4</td>
<td>130.2828</td>
<td>−0.94</td>
<td>−18.8</td>
<td>651.2010</td>
<td>−27.8</td>
<td>7.6</td>
</tr>
<tr>
<td>23.6569</td>
<td>−0.57</td>
<td>−24.6</td>
<td>50.5949</td>
<td>−0.44</td>
<td>−5.9</td>
<td>299.3549</td>
<td>−11.33</td>
<td>3.0</td>
<td>652.8396</td>
<td>−1.20</td>
<td>8.6</td>
</tr>
<tr>
<td>24.6429</td>
<td>−0.59</td>
<td>0.3</td>
<td>51.1027</td>
<td>−0.53</td>
<td>6.9</td>
<td>487.2795</td>
<td>−14.83</td>
<td>26.2</td>
<td>*861.6319</td>
<td>−9.66</td>
<td>7.7</td>
</tr>
<tr>
<td>25.9183</td>
<td>−0.26</td>
<td>2.4</td>
<td>52.8106</td>
<td>−0.83</td>
<td>−1.3</td>
<td>*488.2895</td>
<td>−14.54</td>
<td>7.3</td>
<td>898.8810</td>
<td>−15.84</td>
<td>0.4</td>
</tr>
<tr>
<td>27.9117</td>
<td>−0.25</td>
<td>−3.4</td>
<td>53.8008</td>
<td>−0.95</td>
<td>−8.9</td>
<td>493.2190</td>
<td>−7.06</td>
<td>2.9</td>
<td>899.4151</td>
<td>−27.55</td>
<td>7.2</td>
</tr>
<tr>
<td>28.9086</td>
<td>−0.29</td>
<td>1.9</td>
<td>54.7814</td>
<td>−0.25</td>
<td>0.8</td>
<td>*494.6662</td>
<td>−22.17</td>
<td>5.4</td>
<td>906.9044</td>
<td>−14.44</td>
<td>5.2</td>
</tr>
<tr>
<td>29.8928</td>
<td>−0.20</td>
<td>3.3</td>
<td>57.0029</td>
<td>−0.50</td>
<td>−8.1</td>
<td>499.9158</td>
<td>−4.49</td>
<td>−21.5</td>
<td>910.0385</td>
<td>−17.82</td>
<td>12.3</td>
</tr>
<tr>
<td>35.8866</td>
<td>−0.24</td>
<td>−21.4</td>
<td>60.7141</td>
<td>−0.51</td>
<td>−6.0</td>
<td>504.0999</td>
<td>−12.64</td>
<td>7.1</td>
<td>918.7510</td>
<td>−16.75</td>
<td>4.1</td>
</tr>
<tr>
<td>37.5019</td>
<td>−0.35</td>
<td>−1.5</td>
<td>67.0034</td>
<td>−0.63</td>
<td>−0.9</td>
<td>510.9000</td>
<td>−2.30</td>
<td>13.1</td>
<td>918.8933</td>
<td>−27.56</td>
<td>3.5</td>
</tr>
<tr>
<td>38.5020</td>
<td>−0.37</td>
<td>0.2</td>
<td>68.0355</td>
<td>−0.66</td>
<td>2.6</td>
<td>519.2834</td>
<td>−14.17</td>
<td>6.2</td>
<td>945.2994</td>
<td>−7.15</td>
<td>20.0</td>
</tr>
<tr>
<td>38.8775</td>
<td>−0.38</td>
<td>0.9</td>
<td>73.4020</td>
<td>−0.13</td>
<td>5.1</td>
<td>519.2926</td>
<td>−10.62</td>
<td>6.5</td>
<td>945.3565</td>
<td>−17.64</td>
<td>1.7</td>
</tr>
<tr>
<td>38.9301</td>
<td>−0.07</td>
<td>−28.6</td>
<td>74.6306</td>
<td>−0.70</td>
<td>0.5</td>
<td>520.5149</td>
<td>−5.31</td>
<td>14.3</td>
<td>945.3565</td>
<td>−17.64</td>
<td>1.7</td>
</tr>
<tr>
<td>39.8743</td>
<td>−0.39</td>
<td>1.5</td>
<td>85.6896</td>
<td>−1.06</td>
<td>−3.7</td>
<td>521.6642</td>
<td>−18.22</td>
<td>3.0</td>
<td>945.8573</td>
<td>−13.65</td>
<td>76.8</td>
</tr>
</tbody>
</table>
amplitudes ranging from ~ 1.1–1.5 times the estimated strain amplitude $h_{95\%}^{\text{ens}}$ for which the $2\tilde{F}_{\text{thresh}}(f)$ threshold yields 95\% efficiency (see Sec. V). The required increases in $2\tilde{F}$ leads to losses in overall signal efficiency below $\sim 2\%$ for braking indices below 7. For each follow-up stage, the search space around each outlier’s values of f, \dot{f} and \ddot{f}...
was chosen to be three times (in all dimensions) the template step sizes used in the previous stage. In the third stage, the range of \(f \) searches is from zero to twice the implied value of the 2nd-round survivor, assuming a power law spindown during the observation period. All of these follow-up requirements and resulting efficiencies were evaluated by end-to-end software injections.

In the first stage of follow-up, all outliers above threshold are evaluated. In that initial stage, which more finely samples the parameter space, multiple outliers may survive the next threshold requirement. In successive stages, only the loudest survivor corresponding to the outlier being evaluated is passed to the next stage of follow-up. Pursuing only the loudest survivor per initial outlier preserves high detection efficiency for a true signal while reducing computational cost from following up multiple candidate templates contaminated by the same instrumental disturbance.

IV. SEARCH RESULTS

The search described above was carried out on the O3a data for the Cas A and Vela Jr. sources. For Cas A (Vela Jr.), there were \(\sim 2 \times 10^5 \) \(\sim 1 \times 10^5 \) outliers above threshold from the initial search in bands that were not excluded from consideration by severe instrumental artifacts. These outliers were all followed up individually with a narrowed search and a doubling of the coherence time. An outlier was considered to survive follow-up if the loudest candidate...
template from its follow-up displayed the minimum increases (60%–70%) shown in Table VI or more in excess $2\bar{F}$ with respect to the original outlier’s excess $2\bar{F}$. This criterion led to $O(2 \times 10^4)$ survivors for each source. That loudest surviving template then served as a seed for a second round of follow-up using another doubling of coherence time. Once again, survivors of the round were defined by another minimum increase in excess $2\bar{F}$ with respect to the seed template, leading to $5 \times 10^3 \approx 1 \times 10^3$ 2nd-round survivors for Cas A (Vela Jr.).

Survivors of this second round of follow-up were all clustered and the loudest template visually inspected, to assess instrumental line contamination. Clustering was carried out in frequency using simple grouping of any survivor template within 0.01 Hz of another survivor template. Tables VII and VIII list the parameters of the single loudest outlier in each cluster. In nearly every band a loud instrumental artifact was apparent. To identify these contaminations, we construct so-called “strain histograms” in which the summed power over the observation period from a simulation of the nominal signal candidate is superposed on a background estimate of the noise estimated via interpolation between neighboring frequency bands. For computational efficiency, the summed power is approximated via a histogram of rescaled integer counts from each 30-minute digital Fourier transform used in the search. Except for signal templates with high-magnitude spin-downs, the histograms typically display at least one “horn” (narrow peak) from an interval during the 6-month O3a period when the orbitally modulated frequency is relatively stationary.

We discard outliers for which the signal template’s shape either aligns with a spectral artifact known to be instrumental, or else appears much louder in one detector than the other which is inconsistent with time-averaged antenna pattern sensitivities. Figures 1 and 2 show example strain histograms for Cas A and Vela Jr. outliers that are both heavily contaminated by an H1 spectral line at 48,000 Hz. Figures 1 and 2 also show graphs of the outlier templates’ detector-frame frequencies vs. time during the O3a period, illustrating periods of relatively stationary frequency. For these templates there is an approximate cancellation between the source intrinsic spin-down and an apparent spin-up of frequency caused by the Earth’s general acceleration toward the direction of Cas A early in O3a and toward the direction of Vela Jr. after the midpoint of O3a. Since source frequencies are defined by the midpoint of the O3a run, the Cas A (Vela Jr.) template frequencies susceptible to this stationarity generally lie below (above)

![Graph](image.png)

FIG. 3. Counts vs. frequency in 1-Hz bins for the initial Cas A search outliers (blue squares), 1st-round follow-up survivors (red diamonds), and 2nd-round follow-up survivors (green triangles). The vertical gray bands denote consolidated 0.1-Hz subbands displaying saturation in the initial search. One sees high outlier counts and saturations primarily at low frequencies, near test-mass violin modes (resonant vibration modes of silica fibers around 500 Hz) and at harmonics of beam-splitter violin modes (above 300 Hz and near-integer multiples). Counts equal to zero for different stages are depicted on the vertical logarithmic scale by distinct fractions less than one.
the detector-frame frequency of the line artifact contaminating the template recovery.

A small number of outlier clusters for which a sharp line contamination is not the obvious cause were examined further. The Cas A outliers at 52.8052 Hz and 145.3899 Hz (in a saturated sub-band) are due to contamination from loud “hardware injections.” These injections are simulated signals imposed via modulated forces on interferometer mirrors during data taking. See [47, 59, 60] for more details on the hardware injections carried out during the O3a run. For these outliers, the contaminations arise from injection “Inj5” and “Inj6” (see Table IV of [47]), which both simulate CW sources near the sky location of Cas A. The Inj5 injection is loud enough to show up as a Vela Jr. outlier too.

The 11 Cas A outliers in Table VII and 3 Vela Jr. outliers in Table VIII that are marked with asterisks occur in spectral bands in which instrumental lines are plentiful, but for which no clear cut artifact allows immediate discarding of the outliers. For these outliers, a third round of follow-up was carried out, with a third increase in coherence time: from 20 to 45 days (from 9 to 4 segments) for Cas A and from 30 to 60 days (from 6 to 3 segments) for Vela Jr. Because of the lengths of these coherently analyzed segments, these follow-ups included a search over the third frequency derivative \(\dot{\ddot{f}} \). Simulations indicate that a 70% increase in excess \(\bar{F} \) is a conservative requirement, including for unphysically large braking indices, given that preceding follow-up stages do not allow for a nonzero \(\dot{\ddot{f}} \). None of these outliers satisfies this 70% requirement, and none has a braking index in the range 1–7.
FIG. 6. Top panel: estimated gravitational wave strain amplitude sensitivities (95% efficiency) in each 0.1-Hz sub-band for the Cas A (red band) and Vela Jr. (cyan band) searches. Conservative uncertainty bands of ±7% are indicated, to account for statistical and systematic uncertainties in estimating sensitivity depths, including calibration uncertainties. Black triangles (upright—Cas A, inverted—Vela Jr.) denote 0.1-Hz bands for which rigorous upper limits are used to determine estimated sensitivity vs. frequency. Sensitivities are estimated for only subbands with no saturation of the candidate top-list (see Figs. 3 and 4). Sensitivities are based on the absence of any outlier exceeding the frequency-dependent threshold and surviving all stages of follow-up, using the sensitivity depths (see Fig. 5) estimated in sample bands and rescaled according to the run-average amplitude spectral noise density [H1 and L1 data combined, see Eq. (12)]. Additional results from prior searches for Cas A and Vela Jr. are also shown: O1 Einstein@Home 90% C.L. upper limits for Cas A (magenta curve) and for Vela Jr. (green curve) [8]; O3a Cas A and Vela Jr. 95% C.L. upper limits using a model-robust Viterbi method (orange curve) [11]; O3a Vela Jr. 95% C.L. upper limits using the Band-Sampled-Data directed Frequency Hough method (black curve) [11]. The solid red horizontal line indicates the age-based upper limit on Cas A strain amplitude. The dashed (dotted) horizontal blue lines indicate the optimistic (pessimistic) age-based upper limit on Vela Jr. strain amplitude, assuming an age and distance of 700 yr and 0.2 kpc (5100 yr and 1.0 kpc). Bottom panel: magnification of the sensitivity bands from this analysis over most of the search band (~40–976 Hz), with 1-σ statistical uncertainties shown for the individual sparsely sampled upper limits used to estimate the depth.
Figures 3 and 4 show the Cas A and Vela Jr. outlier and survivor counts in 1-Hz bands for the multiple stages of analysis, starting with outliers exceeding the threshold \(2\mathcal{F}_{\text{thresh}}(f)\) and proceeding to those surviving the successive requirements that the excess \(2\mathcal{F}\) increase sufficiently in each round of follow-up. Saturated subbands listed in the Appendix are shaded.

We conclude that there is no significant evidence in this analysis for a continuous wave signal from the compact objects at the centers of the Cas A or Vela Jr. supernova remnants.

V. ESTIMATING SEARCH SENSITIVITY

Given the absence of a detection, we quote 95%-efficiency amplitude sensitivities \(h_{\text{sens}}^{95\%}\) for every band in which there were no outliers above the initial \(2\mathcal{F}\) threshold or for which every outlier was followed up and found not to be a credible signal. Those bands (listed in the Appendix) with at least one \(f\) interval exhibiting a saturated candidate top-list are excluded from the sensitivities presented here.

We quote \(h_{\text{sens}}^{95\%}\) values rather than rigorous 95% confidence level upper limits, in order to reduce computational cost. To determine the sensitivity estimates, we use simulated signal injections to perform rigorous upper limit determination for a sampling of 0.1-Hz frequency bands (1000 injections per 0.1-Hz band) distributed over the search range; 84 bands were sampled for Cas A, 71 for Vela Jr. Each upper limit is derived from a signal amplitude \(h_{\text{sens}}^{95\%}\) that gives 95% detection efficiency for a loudest \(2\mathcal{F}\) value equal to \(2\mathcal{F}_{\text{thresh}}(f)\) (given that all outliers above this threshold have been followed up and eliminated). The sampled upper limits are used to determine an approximate scale factor between nominal detector sensitivity and upper limit sensitivity for a given 0.1-Hz band, known as sensitivity depth \(D\) [61]:

\[
D(f) = \frac{\sqrt{S_h(f)}}{h_{\text{sens}}^{95\%}},
\]

where \(\sqrt{S_h(f)}\) is an estimate of the effective strain amplitude spectral noise density. For nonstationary detector noise, we use an inverse-noise weighted estimate for each frequency bin \(j\) from the two interferometers:

\[
\bar{S}_h(f_j) = \frac{\sum_i w_{ij} S_h(f_j)}{\sum_i w_{ij}},
\]

where \(i\) ranges over Fourier transforms of 30-minute segments of the H1 and L1 data, and \(w_{ij}\) is a weight equal to the average inverse power spectral density for 50 neighboring frequency bins \(j' \neq j\) in the same Fourier transform \(i\):

\[
w_{ij} = \frac{1}{50} \sum_j \frac{1}{S_h(f_j)}
\]

for \(|j' - j| \leq 25\) and \(j' \neq j\). This weighting deemphasizes noisy segments of data, similarly to the weighting used to define the \(F\)-statistic. Figure 5 shows the full distributions in the resulting sensitivity depths for Cas A and Vela Jr. over the span of the search space, including significant spread from a slow decline in depth with increasing frequency due to the higher threshold \(2\mathcal{F}_{\text{thresh}}(f)\). From simple linear fits to depth vs. frequency, we determine frequency-dependent scale factors which have values at 500 Hz of \(D_{\text{Cas A}} = 72.4\ \text{Hz}^{-1}\) and \(D_{\text{Vela Jr}} = 81.2\ \text{Hz}^{-1}\) with slopes of \(-4.8 \times 10^{-3}\ \text{Hz}^{-1}\) and \(-5.6 \times 10^{-3}\ \text{Hz}^{-1}\), respectively. The ratio of depths \(D_{\text{Vela Jr}}/D_{\text{Cas A}} = 1.12 \pm 0.01\) at 500 Hz is consistent with the approximate expected ratio of \([(7.5\ \text{days})/(5.0\ \text{days})]^{1/4} = 1.11\) for these semi-coherent searches.

VI. CONCLUSIONS

We have performed the deepest search to date for continuous gravitational waves from compact stars in the centers of the Cassiopeia A and Vela Jr. supernova remnants. Our search yielded no detections.

The achieved 95%-efficiency sensitivities are well below the age-based strain amplitude limits for these stars over virtually the entire search band of 20–976 Hz. These sensitivities are shown in Fig. 6 for both sources and reach as low as \(\sim 6.3 \times 10^{-26}\) for Cas A and \(\sim 5.6 \times 10^{-26}\) for Vela Jr. at frequencies near 166 Hz at 95% efficiency. Conservative uncertainty bands of \(\pm 7\%\) are indicated, to account for uncertainties in strain calibration and potential errors in frequency-dependent sensitivity depths. We have achieved the best sensitivities to date for these sources, reaching 2-3 times below the most sensitive previous results from the O1 data for Cas A. For Vela Jr. we reach \(\sim 30\%\) below the most sensitive previous results from the O3 data for frequencies below 600 Hz and more than 2 times below the most sensitive previous results from the O1 data for Vela Jr. up to 976 Hz.

These sensitivities are translated from strain to equatorial ellipticity \(\epsilon\) using Eq. (5), assuming a source distance of 3.3 kpc for Cas A, along with both 1.0 kpc and 0.2 kpc for Vela Jr., as shown in Fig. 7. Under a \(r\)-mode s emission assumption, the strain sensitivities can similarly be translated to \(r\)-mode amplitude \(a\), shown in Fig. 8.

As the LIGO, Virgo and KAGRA gravitational wave detectors improve their strain sensitivities in the coming decade [62], searches will probe still smaller neutron star deformations, offering improved prospects of discovery.
ACKNOWLEDGMENTS

We thank the anonymous journal referee for helpful comments, especially concerning the treatment of the third frequency derivative which led to a refinement of the analysis. This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and
Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and Innovació, the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources. This document has been assigned LIGO Laboratory document number LIGO-P2100298-v8.

APPENDIX: SATURATED SUBBANDS

As noted above, some frequency bands were so badly contaminated by instrumental lines that one or more

TABLE IX. Frequency bands with saturation in the first stage of the Cas A search (≥ 1000 outliers above threshold in a 0.1-Hz band for at least one subrange of frequency derivatives). Each pair of numbers gives the lower limit of frequency and the width of the band affected. Consecutive 0.1-Hz bands are concatenated for compactness. These bands are excluded from the Cas A sensitivity curve shown in Fig. 6.

<table>
<thead>
<tr>
<th>f_{low} (Hz)</th>
<th>Δf (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>0.1</td>
</tr>
<tr>
<td>20.7</td>
<td>0.2</td>
</tr>
<tr>
<td>21.2</td>
<td>0.1</td>
</tr>
<tr>
<td>21.4</td>
<td>0.2</td>
</tr>
<tr>
<td>21.8</td>
<td>0.1</td>
</tr>
<tr>
<td>22.3</td>
<td>0.1</td>
</tr>
<tr>
<td>22.7</td>
<td>0.1</td>
</tr>
<tr>
<td>23.5</td>
<td>0.2</td>
</tr>
<tr>
<td>23.9</td>
<td>0.1</td>
</tr>
<tr>
<td>24.1</td>
<td>0.2</td>
</tr>
<tr>
<td>24.6</td>
<td>0.1</td>
</tr>
<tr>
<td>25.6</td>
<td>0.1</td>
</tr>
<tr>
<td>25.9</td>
<td>0.3</td>
</tr>
<tr>
<td>26.3</td>
<td>0.1</td>
</tr>
<tr>
<td>26.6</td>
<td>0.1</td>
</tr>
<tr>
<td>26.9</td>
<td>0.1</td>
</tr>
<tr>
<td>27.2</td>
<td>0.8</td>
</tr>
<tr>
<td>28.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

1000, 082005 (2022)
TABLE X. Frequency bands with saturation in the first stage of the Vela Jr. search (≥ 1000 outliers above threshold in a 0.1-Hz band for at least one subrange of frequency derivatives). Each pair of numbers gives the lower limit of frequency and the width of the band affected. Consecutive 0.1-Hz bands are concatenated for compactness. These bands are excluded from the Vela Jr. sensitivity curve shown in Fig. 6.

<table>
<thead>
<tr>
<th>f_{low} (Hz)</th>
<th>Δf (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>0.1</td>
<td>27.3</td>
<td>0.6</td>
<td>36.0</td>
<td>0.1</td>
<td>43.6</td>
<td>0.2</td>
<td>56.6</td>
<td>0.1</td>
<td>79.7</td>
<td>0.1</td>
</tr>
<tr>
<td>20.5</td>
<td>0.1</td>
<td>28.0</td>
<td>0.1</td>
<td>36.3</td>
<td>0.4</td>
<td>44.0</td>
<td>0.1</td>
<td>56.9</td>
<td>0.1</td>
<td>80.0</td>
<td>0.1</td>
</tr>
<tr>
<td>20.7</td>
<td>0.1</td>
<td>28.2</td>
<td>0.6</td>
<td>36.8</td>
<td>0.1</td>
<td>44.5</td>
<td>0.2</td>
<td>57.5</td>
<td>0.1</td>
<td>83.2</td>
<td>0.3</td>
</tr>
<tr>
<td>21.4</td>
<td>0.2</td>
<td>29.0</td>
<td>0.1</td>
<td>37.0</td>
<td>0.1</td>
<td>45.5</td>
<td>0.1</td>
<td>58.0</td>
<td>0.1</td>
<td>85.7</td>
<td>0.3</td>
</tr>
<tr>
<td>21.8</td>
<td>0.2</td>
<td>29.5</td>
<td>0.1</td>
<td>37.4</td>
<td>0.1</td>
<td>46.0</td>
<td>0.2</td>
<td>59.0</td>
<td>0.1</td>
<td>87.9</td>
<td>0.2</td>
</tr>
<tr>
<td>22.3</td>
<td>0.1</td>
<td>29.9</td>
<td>0.2</td>
<td>38.3</td>
<td>0.2</td>
<td>46.5</td>
<td>0.1</td>
<td>59.4</td>
<td>0.1</td>
<td>89.9</td>
<td>0.3</td>
</tr>
<tr>
<td>22.5</td>
<td>0.1</td>
<td>30.2</td>
<td>0.2</td>
<td>38.7</td>
<td>0.1</td>
<td>48.0</td>
<td>0.1</td>
<td>59.9</td>
<td>0.2</td>
<td>91.1</td>
<td>0.1</td>
</tr>
<tr>
<td>22.7</td>
<td>0.1</td>
<td>30.5</td>
<td>0.1</td>
<td>39.7</td>
<td>0.1</td>
<td>50.0</td>
<td>0.1</td>
<td>62.4</td>
<td>0.1</td>
<td>95.8</td>
<td>0.2</td>
</tr>
<tr>
<td>23.5</td>
<td>0.1</td>
<td>30.9</td>
<td>0.1</td>
<td>40.0</td>
<td>0.1</td>
<td>50.9</td>
<td>0.2</td>
<td>62.8</td>
<td>0.1</td>
<td>99.9</td>
<td>0.2</td>
</tr>
<tr>
<td>24.0</td>
<td>0.1</td>
<td>31.2</td>
<td>0.2</td>
<td>40.3</td>
<td>0.2</td>
<td>51.6</td>
<td>0.3</td>
<td>63.6</td>
<td>0.1</td>
<td>107.1</td>
<td>0.1</td>
</tr>
<tr>
<td>24.2</td>
<td>0.1</td>
<td>31.4</td>
<td>0.2</td>
<td>40.6</td>
<td>0.1</td>
<td>52.0</td>
<td>0.1</td>
<td>64.0</td>
<td>0.1</td>
<td>119.8</td>
<td>0.1</td>
</tr>
<tr>
<td>24.5</td>
<td>0.1</td>
<td>31.7</td>
<td>0.4</td>
<td>40.8</td>
<td>0.3</td>
<td>52.3</td>
<td>0.1</td>
<td>64.2</td>
<td>0.3</td>
<td>128.5</td>
<td>0.1</td>
</tr>
<tr>
<td>25.5</td>
<td>0.2</td>
<td>32.3</td>
<td>0.1</td>
<td>41.6</td>
<td>0.1</td>
<td>52.5</td>
<td>0.2</td>
<td>66.7</td>
<td>0.1</td>
<td>140.2</td>
<td>0.1</td>
</tr>
<tr>
<td>26.0</td>
<td>0.2</td>
<td>32.5</td>
<td>1.1</td>
<td>41.8</td>
<td>0.1</td>
<td>53.3</td>
<td>0.2</td>
<td>68.3</td>
<td>0.1</td>
<td>151.7</td>
<td>0.2</td>
</tr>
<tr>
<td>26.3</td>
<td>0.1</td>
<td>33.8</td>
<td>0.5</td>
<td>42.0</td>
<td>0.1</td>
<td>53.7</td>
<td>0.1</td>
<td>69.4</td>
<td>0.1</td>
<td>199.9</td>
<td>0.2</td>
</tr>
<tr>
<td>26.5</td>
<td>0.2</td>
<td>34.4</td>
<td>0.5</td>
<td>42.4</td>
<td>0.2</td>
<td>55.6</td>
<td>0.1</td>
<td>70.1</td>
<td>0.1</td>
<td>299.3</td>
<td>0.8</td>
</tr>
<tr>
<td>26.9</td>
<td>0.2</td>
<td>35.0</td>
<td>0.8</td>
<td>42.8</td>
<td>0.3</td>
<td>56.0</td>
<td>0.1</td>
<td>72.5</td>
<td>0.2</td>
<td>302.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Candidate top-lists from \hat{f} sub-ranges are saturated (≥ 1000 candidates) in the initial search. All 0.1-Hz bands with saturation for the two sources searched are listed in a consolidated format in Tables IX and X and were visually examined to verify substantial instrumental contamination. We do not claim sensitivity to signals in these bands, which sum for Cas A (Vela Jr.) to 51.0 (40.9) Hz over the full search range of 20–976 Hz.

(LIGO Scientific Collaboration and Virgo Collaboration)

1LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA
2Louisiana State University, Baton Rouge, Louisiana 70803, USA
3Dipartimento di Farmacia, Università di Salerno, I-84084 Fisciano, Salerno, Italy
4INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
5OzGrav, School of Physics and Astronomy, Monash University, Clayton 3800, Victoria, Australia
6LIGO Livingston Observatory, Livingston, Louisiana 70754, USA
7University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
8OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia
9Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany
10Leibniz Universität Hannover, D-30167 Hannover, Germany
11Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
12University of Cambridge, Cambridge CB2 1TN, United Kingdom
13Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
14University of Birmingham, Birmingham B15 2TT, United Kingdom
15Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, Illinois 60208, USA
16Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil
17Gravity Exploration Institute, Cardiff University, Cardiff CF24 3AA, United Kingdom
18INFN, Sezione di Pisa, I-56127 Pisa, Italy
19International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
20INFN Sezione di Torino, I-10125 Torino, Italy
21Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
22Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
23Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, C/ Martí i Franquès 1, Barcelona, 08028, Spain
24Laboratoire d’Annecy de Physique des Particules (LAPP), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
25Gran Sasso Science Institute (GSSI), I-67100 L’aquila, Italy
26SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
27Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, I-33100 Udine, Italy
28INFN, Sezione di Trieste, I-34127 Trieste, Italy
29Embry-Riddle Aeronautical University, Prescott, Arizona 86301, USA
30Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France
31California State University Fullerton, Fullerton, California 92831, USA
32Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
33European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
34Chennai Mathematical Institute, Chennai 603103, India
35Columbia University, New York, New York 10027, USA
36Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy
37INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
38INFN, Sezione di Roma, I-00185 Roma, Italy
39Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
40Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands
41King’s College London, University of London, London WC2R 2LS, United Kingdom
42Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea
43Christopher Newport University, Newport News, Virginia 23606, USA
44University of Oregon, Eugene, Oregon 97403, USA
45Syracuse University, Syracuse, New York 13244, USA
46Université de Liège, B-4000 Liège, Belgium
47University of Minnesota, Minneapolis, Minnesota 55455, USA
48Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy
49INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy
50INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy
51LIGO Hanford Observatory, Richland, Washington 99352, USA
52Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università di Salerno, I-84081 Baronissi, Salerno, Italy
53SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
54LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
55Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
56University of Florida, Gainesville, Florida 32611, USA
57Stanford University, Stanford, California 94305, USA
58Università di Pisa, I-56127 Pisa, Italy
59INFN, Sezione di Perugia, I-06123 Perugia, Italy
60Università di Perugia, I-06123 Perugia, Italy
61Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
62INFN, Sezione di Padova, I-35131 Padova, Italy
63Montana State University, Bozeman, Montana 59717, USA
64Institute for Plasma Research, Bhat, Gandhinagar 382428, India
65Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716 Warsaw, Poland
66Dipartimento di Ingegneria, Università del Sannio, I-82100 Benevento, Italy
67OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia
68California State University, Los Angeles, 5151 State University Dr, Los Angeles, California 90032, USA
69INFN, Sezione di Genova, I-16146 Genova, Italy
70OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia
71RRCAT, Indore, Madhya Pradesh 452013, India
72GRAPPA, Anton Pannekoek Institute for Astronomy and Institute for High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
73Missouri University of Science and Technology, Rolla, Missouri 65409, USA
74Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
75Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
76INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
77SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
78Bar-Ilan University, Ramat Gan 5290002, Israel
79Artemis, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, F-06304 Nice, France
80Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, I-84084 Fisciano, Salerno, Italy
81INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
82Università di Roma “La Sapienza”, I-00185 Roma, Italy
83Univ Rennes, CNRS, Institut FOTON - UMR6082, F-35000 Rennes, France
84Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
85INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
86Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris, France
87Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
88University of Maryland, College Park, Maryland 20742, USA
89Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany
90L2IT, Laboratoire des 2 Infinis - Toulouse, Université de Toulouse, CNRS/IN2P3, UPS, F-31062 Toulouse Cedex 9, France
91School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
92IGFAE, Campus Sur, Universidade de Santiago de Compostela, Santiago de Compostela, Monago 15782, Spain
93The Chinese University of Hong Kong, Shatin, NT, Hong Kong
94Stony Brook University, Stony Brook, New York 11794, USA
95Center for Computational Astrophysics, Flatiron Institute, New York, New York 10010, USA
96NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
97Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy
SEARCH OF THE EARLY O3 LIGO DATA FOR CONTINUOUS …

PHYS. REV. D 105, 082005 (2022)

98 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princentooplein 1, 3584 CC Utrecht, Netherlands
99 RESCEU, University of Tokyo, Tokyo 113-0033, Japan.
100 OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia
101 Università degli Studi di Sassari, I-07100 Sassari, Italy
102 INFN, Laboratori Nazionali del Sud, I-95125 Catania, Italy
103 Università di Roma Tor Vergata, I-00133 Roma, Italy
104 INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
105 University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy
106 Villanova University, 800 Lancaster Ave, Villanova, Pennsylvania 19085, USA
107 Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain
108 Universität Hamburg, D-22761 Hamburg, Germany
109 Rochester Institute of Technology, Rochester, New York 14623, USA
110 National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China
111 OzGrav, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
112 CaRT, California Institute of Technology, Pasadena, California 91125, USA
113 Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, I-84084 Fisciano, Salerno, Italy
114 Université Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France
115 Seoul National University, Seoul 08826, Republic of Korea
116 Pusan National University, Busan 46241, Republic of Korea
117 INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
118 University of Arizona, Tucson, Arizona 85721, USA
119 Rutherford Appleton Laboratory, Didcot OX11 0DE, United Kingdom
120 OzGrav, Swinburne University of Technology, Hawthorn Victoria 3122, Australia
121 Université libre de Bruxelles, Avenue Franklin Roosevelt 50–1050 Bruxelles, Belgium
122 Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
123 Université Libre de Bruxelles, Brussels 1050, Belgium
124 Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain
125 Texas Tech University, Lubbock, Texas 79409, USA
126 The Pennsylvania State University, University Park, Pennsylvania 16802, USA
127 University of Rhode Island, Kingston, Rhode Island 02881, USA
128 The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
129 Bellevue College, Bellevue, Washington 98007, USA
130 Scuola Normale Superiore, Piazza dei Cavalieri, 7–56126 Pisa, Italy
131 MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest 1117, Hungary
132 Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands
133 University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
134 The University of Sheffield, Sheffield S10 2TN, United Kingdom
135 Université Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Matériaux Avancés (LMA), IP2I Lyon / IN2P3, UMR 5822, F-69622 Villeurbanne, France
136 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
137 INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
138 Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
139 University of Chicago, Chicago, Illinois 60637, USA
140 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
141 West Virginia University, Morgantown, West Virginia 26506, USA
142 Montclair State University, Montclair, New Jersey 07043, USA
143 Colorado State University, Fort Collins, Colorado 80523, USA
144 Institute for Nuclear Research, Hungarian Academy of Sciences, Bem t’er 18/c, H-4026 Debrecen, Hungary
145 Department of Physics, University of Texas, Austin, Texas 78712, USA
146 CNR-SPIN, c/o Università di Salerno, I-84084 Fisciano, Salerno, Italy
147 Scuola di Ingegneria, Università della Basilicata, I-85100 Potenza, Italy
148 Gravitational Wave Science Project, National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan