
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Transformer-Based Deep Survival Analysis

Hu, S.; Fridgeirsson, E.A.; van Wingen, G.; Welling, M.

Publication date
2021
Document Version
Final published version
Published in
Proceedings of Machine Learning Research
License
Other

Link to publication

Citation for published version (APA):
Hu, S., Fridgeirsson, E. A., van Wingen, G., & Welling, M. (2021). Transformer-Based Deep
Survival Analysis. Proceedings of Machine Learning Research, 146, 132-148.
https://proceedings.mlr.press/v146/hu21a.html

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:02 Dec 2023

https://dare.uva.nl/personal/pure/en/publications/transformerbased-deep-survival-analysis(8e6187ad-f600-4b38-a8f6-7352821b04ca).html
https://proceedings.mlr.press/v146/hu21a.html


Proceedings of Machine Learning Research 1:1–17, 2021 AAAI Spring Symposium 2021 (SP-ACA)

Transformer-Based Deep Survival Analysis

Shi Hu s.hu@uva.nl
University of Amsterdam

Egill A. Fridgeirsson e.axfjord@amsterdamumc.nl
Amsterdam UMC

Guido van Wingen g.a.vanwingen@amsterdamumc.nl
Amsterdam UMC

Max Welling m.welling@uva.nl

University of Amsterdam

Abstract

In this work, we propose a new Transformer-based survival model which estimates the
patient-specific survival distribution. Our contributions are twofold. First, to the best of
our knowledge, existing deep survival models use either fully connected or recurrent net-
works, and we are the first to apply the Transformer in survival analysis. In addition, we
use ordinal regression to optimize the survival probabilities over time, and penalize random-
ized discordant pairs. Second, many survival models are evaluated using only the ranking
metrics such as the concordance index. We propose to also use the absolute error metric
that evaluates the precise duration predictions on observed subjects. We demonstrate our
model on two publicly available real-world datasets, and show that our mean absolute er-
ror results are significantly better than the current models, meanwhile, it is challenging to
determine the best model under the concordance index.

Keywords: survival analysis, Transformers, deep learning.

1. Introduction

Survival analysis is an important branch in statistics, which estimates the expected duration
of time until an event happens. It is used in a wide range of domains, such as medicine,
engineering and economics. For example, a hospital can use survival analysis techniques
to estimate how long a COVID-19 patient will stay in the intensive care unit (ICU), a
factory can use these techniques to estimate the time until a machine breaks down, and a
government can estimate the duration of an economic recession.

Earlier survival models, such as the Cox model (Cox, 1972), are linear models. Re-
cently, a number of deep survival models, such as (Giunchiglia et al., 2018; Lee et al., 2018;
Ren et al., 2019), have been proposed. These models can estimate the patient-specific sur-
vival probabilities over time, but use either fully connected or recurrent neural networks.
Meanwhile, the Transformer (Vaswani et al., 2017) is an accurate and efficient model which
handles sequential data, and has applications in several domains; however, to the best of
our knowledge, it has not been used in survival analysis. Hence, in this work, we propose
a new Transformer-based deep survival model as well as a new training objective. Further,
in survival analysis, there are often censored subjects whose durations are not observed,
e.g., in a clinical study, some subjects can be still alive when the study ends or were not
followed after a certain time. For these subjects, we cannot evaluate the precise duration
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predictions. We can only compare them with the observed (and smaller) durations and
evaluate the pairwise orderings. As a result, many survival models are evaluated using only
the ranking metrics, such as the concordance index (C-index) (Harrell et al., 1982; Antolini
et al., 2005). On the other hand, it is highly valuable if a model can accurately estimate the
precise survival duration per subject. For example, in the current COVID-19 pandemic,
if a hospital can predict how long each patient will stay in the ICU, as opposed to merely
who leaves the ICU first, it can prioritize the medical resources and treat the patients more
effectively. Thus, we propose to use both the C-index and the mean absolute error (MAE)
metrics to evaluate the results. The former evaluates the pairwise orderings of the dura-
tion predictions on observed and censored subjects, while the latter evaluates the precise
duration predictions on observed subjects.

We demonstrate our model on two real-world datasets with these two metrics. We show
that our MAE results are significantly better than the current models, meanwhile, it is
challenging to determine the best model under the C-index.

2. Notation

We denote the probability by P, time by t, T or τ , features by X, event density by f(t),
hazard function by λ(t), cumulative hazard by Λ(t), and survival probability by S(t). The
estimates are marked with the caret symbol, e.g., Ŝ(t) is an estimate of S(t).

For continuous survival models, the hazard function represents the instantaneous failure
rate, and the survival probability is S(t) = exp(−Λ(t)). For discrete models, the hazard
function represents the conditional probability that the patient dies at time t, given he/she
was alive before t, and the survival probability is S(t) =

∏t
τ=0 1− λ(τ).

3. Related Work

Proportional hazards models are a popular class of survival models, where the hazard func-
tion λ(t | X) is the product of two parts: the base hazard function λ0(t) and the effect of the
features g(X). λ0(t) is predefined and depends only on time t, whereas g(X) is learned dur-
ing training. Since λ0(t) is not trained, these models are semi-parametric. The Cox model
is a widely used example, where g(X) = exp(θ>X). Subsequent works, such as (Faraggi
and Simon, 1995; Luck et al., 2017; Katzman et al., 2018), extend this idea using more
advanced models to compute g(X), and more sophisticated training losses. Furthermore,
the effect can be time-dependent, e.g. (Fernández et al., 2016) uses Gaussian processes to
model the joint effect of the features and time.

Fully parametric models have also been used in survival analysis. For example, (Ran-
ganath et al., 2016) and (Martinsson, 2017) assume the survival distribution of each patient
is Weibull, and predict the event times using a deep hierarchical generative model and
an RNN respectively. (Yang et al., 2017) and (Avati et al., 2019) assume each survival
distribution is log-normal, and use RNNs to predict the event times with the MLE and
Survival-CRPS training objectives. In sum, both semi-parametric and fully parametric
models need to make assumptions about the survival distribution, and the predictions are
accurate when these assumptions hold.
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The Kaplan-Meier (Kaplan and Meier, 1958) and Nelson-Aalen estimators (Nelson, 1969,
1972; Aalen, 1978) are widely used non-parametric models. They estimate the survival
distribution of the entire population using the times of observed and censored patients.
However, they cannot estimate the patient-specific survival distribution since they do not use
the features, while other non-parametric models can, e.g., random survival forests (Ishwaran
et al., 2008).

A number of deep survival models have recently been proposed to estimate the patient-
specific survival distribution. For example, DeepHit (Lee et al., 2018) combines fully con-
nected networks to learn the joint probability distribution of the first hitting time and the
competing risk, and RNN-SURV (Giunchiglia et al., 2018) and DRSA (Ren et al., 2019)
use recurrent models to estimate the survival probabilities over time.

Temporal point processes (TPPs) are related to survival analysis, which estimate the
time of the next occurrence of an event given its previous occurrences. TPPs have been
modeled using recurrent neural networks (Du et al., 2016; Mei and Eisner, 2017) and the
Transformer (Zhang et al., 2020). In survival analysis, however, we usually do not have the
history of the event (e.g. death), as it occurs only once; in addition, we need to handle
censored subjects.

Lastly, the absolute error evaluation metrics have been used in previous works, such as
(Yu et al., 2011) and (Yang et al., 2017), though neither uses the ranking metrics. In this
work, we use both metrics as they complement each other.

4. Method

In survival analysis, the training data consists of the features and time pairs (Xi, Ti), where
Ti can be observed or censored (we consider only right censoring). If we fit continuous
models, we can maximize the following log-likelihood function:

Lcontinuous =
∑

i∈observed
log f(Ti | Xi) +

∑
i∈censored

logS(Ti | Xi) (1)

=
∑

i∈observed
log λ(Ti | Xi) + logS(Ti | Xi) +

∑
i∈censored

logS(Ti | Xi) (2)

=
∑

i∈observed
log λ(Ti | Xi)− Λ(Ti | Xi) +

∑
i∈censored

−Λ(Ti | Xi). (3)

However, it is easier to fit discrete models on computers. In this case, the hazard function
represents the conditional probability that the patient dies at time t, given he/she was alive
before t as follows:

λ(t | X) = PX(T = t | T > t− 1). (4)

Let q(t | X) = 1− λ(t | X), then the survival probability can be written as:
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S(t | X) =PX(T > t | T > t− 1) · PX(T > t− 1) (5)

=(1− PX(T = t | T > t− 1)) · PX(T > t− 1) (6)

=q(t | X) · S(t− 1 | X). (7)

By recursively expanding Eq. 7, we obtain the final expression of S(t | X) as follows:

S(t | X) =

t∏
τ=0

q(τ | X), (8)

where q(0 | X) = 1 − PX(T = 0). Then, for each patient, we use ordinal regression to
optimize the survival probabilities S(t | X) for t = 0, 1, 2, . . . , and use a second loss to
penalize the discordant pairs. The details of the losses will be discussed later.

The Transformer model was originally designed to solve NLP tasks, where the inputs are
sentences. In our case, for each patient, we use the encoder of the Transformer to predict
the complement of the hazard function q(t | X) for all times up to Tmax, where Tmax is a
hyperparameter. We treat each patient as a ‘sentence’, and each ‘word’ is the sum of the
feature embedding and the positional encoding of a time t, where t = 0, 1, 2, . . . , Tmax (the
inputs are not masked). Thus, each ‘word’ represents the interaction between the patient
and time t. A diagram of our model is shown in Figure 1. Compared to the recurrent
models that compute the outputs sequentially, such as (Giunchiglia et al., 2018; Ren et al.,
2019), the Transformer computes them in parallel, which is much more efficient.

Figure 1: A diagram of the Transformer-based deep survival model.

For feature embeddings, we use a simple MLP with one fully connected layer of shape
M × dmodel followed by layer normalization (Ba et al., 2016), where M is the number of
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input features and dmodel is the embedding dimension of the Transformer model. For time
embeddings, we use the same sine and cosine functions of different frequencies as in (Vaswani
et al., 2017):

TE(t, 2i) = sin
( t

100002i/dmodel

)
, (9)

TE(t, 2i+ 1) = cos
( t

100002i/dmodel

)
. (10)

The encoder output for each time t is the transformed embedding of shape 1 × dmodel,
and we use an MLP to predict the complement of the hazard function. First, we multiply
each output embedding with a fully connected layer of shape dmodel × dmodel

2 followed by
the rectified linear unit (ReLU) (Nair and Hinton, 2010) and layer normalization, then we
predict q(t | X) using a second fully connected layer of shape dmodel

2 ×1 followed by sigmoid.
Thus, for each patient, the outputs of the encoder are a vector of shape 1 × (Tmax + 1) as
follows:

ŷX =
[
q̂(0 | X), q̂(1 | X), . . . , q̂(Tmax | X)

]
. (11)

In the continuous-time survival analysis, the mean lifetime of a patient is the area under
the survival curve (using integration by parts). In the discrete-time, we can approximate it
by the sum of the survival probabilities up to Tmax as follows:

µX =

∫ ∞
0

tf(t | X)dt =

∫ ∞
0

S(t | X)dt ≈
Tmax∑
t=0

S(t | X). (12)

Further, by expanding S(t | X) using Eq. 8, the mean lifetime can be estimated as:

µ̂X =

Tmax∑
t=0

Ŝ(t | X) =

Tmax∑
t=0

t∏
τ=0

q̂(τ | X). (13)

Alternatively, we could directly predict the survival probability S(t | X) at each time t.
However, S(t | X) is a monotonically decreasing function, so all model weights need to have
the same sign to preserve monotonicity (Omi et al., 2019). In contrast, our model does not
have this constraint, since the survival probability at time t is the product of that at time
t− 1 and the complement of the hazard at t, which is between 0 and 1.

Next, for the observed case, we let T denote the event time, and minimize the following
ordinal regression loss:

LobsX = −
T−1∑
t=0

log Ŝ(t | X)−
Tmax∑
t=T

log
[
1− Ŝ(t | X)

]
. (14)
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In other words, we maximize the survival probabilities Ŝ(t | X) for t < T , and minimize
them for t ≥ T . For the right-censored case, T denotes the censoring time, and we minimize
the following truncated ordinal regression loss:

LcenX = −
T∑
t=0

log Ŝ(t | X), (15)

which means we maximize the survival probabilities Ŝ(t | X) for t ≤ T . In sum, for the
observed case, the ordinal regression loss optimizes all survival probabilities up to Tmax, and
for the censored case, it optimizes up to T . This is different from the previous approaches,
such as DeepHit, which use the softmax classifier to predict the survival distribution. Our
approach can achieve better results since ordinal regression is known to perform better than
softmax on ordinal data (Cheng et al., 2008).

We found the following loss, which penalizes the randomized discordant pairs, further
improves the performance. Denote Ti and Tj as the times for patients i and j, where Ti is
observed and Ti < Tj . The predicted survival durations T̂i and T̂j (by Eq. 13) are discordant
if T̂i > T̂j , and we want to reduce the number of discordant pairs. In theory, we could
penalize all of them during training. However, for a training set of size N , enumerating all
discordant pairs takes O(N2) time, which is highly inefficient even for a moderate size, say
N = 1000. Instead, we propose the following randomized algorithm with an O(N) runtime:
for each observed patient i in the training set, we randomly sample another patient j where
Tj > Ti (in the experiments, j is sampled with replacement). Since Tj can be censored,
the true survival duration for j cannot be smaller than Tj . Thus, the difference between T̂j
and T̂i should be at least Tj − Ti. Furthermore, since the true duration Ti is observed, the
predicted duration T̂i should be close to Ti, and we use the MAE loss |Ti − T̂i| to penalize
their difference. In sum, the loss that penalizes the discordant pairs is:

LdiscXi
= max

[
0, (Tj − Ti)− (T̂j − T̂i)

]
+ |Ti − T̂i|. (16)

If T̂i and T̂j are concordant and separated by at least Tj −Ti, then LdiscXi
becomes the MAE

loss.
The total loss is the combination of the above three losses as follows:

L =
∑

i∈observed

[
LobsXi

+ αLdiscXi

]
+

∑
i∈censored

LcenXi
, (17)

where α is a hyperparameter.

5. Experiments

5.1. Datasets

We use two publicly available real-world datasets1: the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) (Curtis et al., 2012) and Study to Under-

1. They can be found on Github at: https://github.com/jaredleekatzman/DeepSurv/tree/master/

experiments/data.
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stand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT) (Knaus et al.,
1995). We use the same data pre-processing steps as (Katzman et al., 2018) but merge their
training and test sets. The data descriptions are shown below.

• METABRIC. The pre-processed dataset contains the records of 1904 breast cancer
patients. It has 9 features, which include 4 gene indicators: MKI67, EGFR, PGR and
ERBB2, and 5 clinical features: hormone treatment indicator, radiotherapy indicator,
chemotherapy indicator, ER-positive indicator and age at diagnosis.

• SUPPORT. The pre-processed dataset contains the records of 8873 seriously ill hos-
pitalized adults. It has 14 features, which are age, sex, race, number of comorbidities,
presence of diabetes, presence of dementia, presence of cancer, mean arterial blood
pressure, heart rate, respiration rate, temperature, white blood cell count, serum’s
sodium and serum’s creatinine.

We predict the survival duration of each patient (month is used as the unit of time).
The results are evaluated using cross-validation, where we randomly split each dataset 4
times into a training, validation and test set with ratio 7/1/2. For each split, we train the
model on the training set, select the best model on the validation set, and evaluate the
results on the test set. For ease of comparison, we do not perform input normalization or
exclude any test subject. Table 1 shows the datasets details.

Table 1: Details of the METABRIC and SUPPORT datasets.

Dataset Total Observed (%) Censored (%) Features Max Month Min Month

META 1904 1103 (58%) 801 (42%) 9 355 0
SUPP 8873 6036 (68%) 2837 (32%) 14 68 0

5.2. Evaluation Metrics

We use the widely adopted C-index as the first evaluation metric. It is a ranking metric
defined as the ratio of the number of concordant pairs to the total comparable pairs, and
we compute it in a similar way to (Uno et al., 2011) as the following:

C-index =

∑
i,j 1[Ti < Tj ] · 1[T̂i < T̂j ] · δi∑

i,j 1[Ti < Tj ] · δi
, (18)

where δi = 1 if Ti is observed, and 0 otherwise. Since the C-index does not evaluate the
exact survival durations, an inaccurate model can still achieve a high score. For example,
if a model has a significant systematic error that adds 10 years to every prediction, the
C-index will be the same, but the absolute error can be arbitrarily high. Therefore, as
a complement, we propose to use MAE as the second metric, which evaluates the precise
duration predictions on observed subjects as follows:
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MAE =

∑
i |Ti − T̂i| · δi∑

i δi
. (19)

This metric is especially relevant when the majority are observed, which is the case for both
datasets in Table 1. In comparison, there are two types of pairs that the C-index cannot
evaluate: 1. both patients are censored, and 2. one patient is observed and the other
censored, and the observed time is greater than the censoring time. Hence, the C-index can
evaluate at most 1− (1− 0.58)2 ≈ 82% and 1− (1− 0.68)2 ≈ 90% of pairs. In sum, neither
metric covers all subjects. The C-index covers more than MAE, but it is a ranking metric,
and therefore less precise.

5.3. Results

We compare with four baseline models, which are the Cox model (Cox, 1972), random
survival forests (RSF) (Ishwaran et al., 2008), DeepSurv (Katzman et al., 2018) and DeepHit
(Lee et al., 2018). We cannot compare with DRSA (Ren et al., 2019), since it requires
customized input encoding. For implementations, we use lifelines2 for the Cox model,
scikit-survival3 for RSF, and pycox4 for both DeepSurv and DeepHit. Their hyperparameter
spaces and optimal values are shown in Appendix A.

For our Transformer model, we use the implementation by OpenNMT (Klein et al.,
2017). Since the two datasets in Table 1 are much smaller than the standard NLP datasets
(e.g., the WMT 2014 English-German dataset used in (Vaswani et al., 2017) contains about
4.5 million sentence pairs), we use the following hyperparameter spaces, which are also
smaller than the original:

• number of attention layers: {1, 2, 3, 4}

• number of heads: {1, 2, 4, 8}

• dmodel: {256, 512}

• dropout (Srivastava et al., 2014) rate (DR): {0.0, 0.1, 0.3, 0.5}

• Adam optimizer (Kingma and Ba, 2015) learning rate (LR): {1e-4, 5e-4, 1e-3} (for
simplicity, we use a fixed learning rate)

• batch size: {4, 8, 16, 32}

• α: {0.05, 0.1, 0.5, 1}

• Tmax for METABRIC: {400, 450}

• Tmax for SUPPORT: {80, 100}.

2. https://lifelines.readthedocs.io/en/latest/
3. https://scikit-survival.readthedocs.io/en/latest/
4. https://pypi.org/project/pycox/
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We use the mean lifetime to estimate the survival duration of each patient (we cannot
use the median, since models such as Cox and RSF predict ‘infinity’ on some test subjects).
Further, since the C-index covers more subjects than MAE, we use it as the early stopping
criterion, and select the best model that achieves the highest mean C-index over the 4
validation sets. In addition, we use MAE as the tiebreaker. Table 2 shows the optimal
hyperparameters of our model.

Table 2: The optimal hyperparameters of our model.

Dataset Layers Heads dmodel dff DR LR Batch α Epochs Tmax

META 4 4 512 2048 0.1 1e-4 16 0.1 200 400
SUPP 4 4 512 2048 0.1 1e-4 16 0.1 400 80

Next, we compute the mean result for each test set, then report their mean ± standard
deviation (SD) over the 4 test sets. We use the paired t-test to determine the statistical
significance, and the p-values can be found in Table 4 of Appendix B.

Figure 2 compares the C-index test results using SD error bars (the numeric results are
shown in Table 5 of Appendix C). For either dataset, the difference in the mean results
between the best and worst is at most 0.015 (except the Cox model in SUPPORT, which
is much worse than the rest). Further, only RSF in SUPPORT is better than ours with
statistical significance, but its mean result is worse than ours in METABRIC. Therefore, it
is difficult to determine the best model under the C-index.

Figure 2: Patient-specific C-index test results in SD error bars.

Table 3 compares the MAE test results, and ours are better than all baseline models
with statistical significance. In particular, the difference in the mean results between ours
and the second-best in each dataset is 14.6 and 8.5 months. In addition, Figure 3 compares
different mean survival curves with the Kaplan-Meier curve on a randomly chosen test set,
where only observed patients are used (in this case, the Kaplan-Meier curve is equivalent
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to the empirical survival distribution of the observed patients). The figure shows that in
both cases, our mean survival curve is the closest to the Kaplan-Meier curve.

We note that our MAE results can further improve if we reduce the LdiscXi
loss of Eq. 16

to the MAE loss |Ti− T̂i|, namely, we penalize only the inaccurate duration predictions and
not discordant pairs. However, this reduces the C-index accuracy.

Table 3: Patient-specific MAE test results (mean ± SD). Best results are in bold, and ?
means statistically significant.

Model METABRIC SUPPORT

Cox 78.61 ± 4.11 19.50 ± 0.24
RSF 84.17 ± 4.91 16.97 ± 0.31
DeepSurv 76.60 ± 4.82 18.24 ± 0.33
DeepHit 68.96 ± 6.74 17.11 ± 2.46
Ours 54.33 ± 5.91? 8.52 ± 0.73?

Figure 3: Comparisons of different mean survival curves with the Kaplan-Meier curve (for
observed patients in test).

Lastly, Appendix E shows an ablation study which aims to determine the source of
performance gain. In sum, the Transformer and fully connected models perform similarly
on the two datasets when they both use the same training objective that we propose.
However, the two datasets have only 1.9K and 8.9K patients (‘sentences’), which are much
smaller than the standard NLP datasets. Hence, it is possible that the Transformer can
achieve better results on much bigger datasets.

10



Transformer-Based Deep Survival Analysis

6. Conclusions and Future Work

In this paper, we propose a Transformer-based deep survival model that estimates the
patient-specific survival distribution. Our contributions are twofold. First, to the best
of our knowledge, we are the first to apply the Transformer model to survival analysis.
In addition, we use ordinal regression to optimize the survival probabilities over time, and
penalize randomized discordant pairs. Second, we show the C-index alone cannot adequately
evaluate the survival models, since it is a ranking metric which does not evaluate the precise
duration predictions. As a complement, we propose to evaluate MAE on observed subjects.
We demonstrate our model on two real-world datasets, and show our MAE results are
significantly better than the current models, meanwhile, it is challenging to determine the
best model under the C-index.

There are several directions for future work. First, we would like to compare the per-
formance of our Transformer model with fully connected models on bigger datasets using
the same training objective. Second, to improve prediction accuracy, we can pretrain the
model on a large NLP dataset, then fine-tune on the smaller survival dataset, as transfer
learning has been shown to be effective for the Transformer model (Devlin et al., 2019).
Third, we can use our model to handle sequential input data, such as a patient’s periodic
clinical measurements over time (in contrast, it is challenging for the fully connected models
to process this type of data). Finally, we can improve the survival distribution predictions
on censored subjects, e.g., we can penalize the duration predictions that are shorter than
the censoring times.
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Appendix A. Hyperparameters of the Baseline Models

A.1. The Cox Model

The hyperparameter spaces are:

• penalizer: {0, 0.001, 0.01, 0.1, 0.5}

• l1 ratio: {0, 0.001, 0.01, 0.1, 0.5}.

The optimal hyperparameters are as follows.
METABRIC:
penalizer=0, l1 ratio=0.01.
SUPPORT:
penalizer=0.01, l1 ratio=0.5.

A.2. Random Survival Forest

The hyperparameter spaces are:

• n trees: {100, 500, 1000, 1200, 1500, 1700, 2000}

• min samples split: {3, 5, 10, 15, 20}

• min samples leaf: {3, 5, 15, 20, 25}

• max features: sqrt.

The optimal hyperparameters are as follows.
METABRIC:
n trees=100, min samples split=3, min samples leaf=3.
SUPPORT:
n trees=1500, min samples split=20, min samples leaf=3.

A.3. DeepSurv

The hyperparameter spaces are:

• num layers: {1, 2, 4}

• node size: {64, 128, 256, 512}
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• dropout: {0, 0.1, 0.3, 0.6}

• batch size: {64, 128, 256}.

The optimal hyperparameters are as follows.
METABRIC:
num layers=4, node size=256, dropout=0.1, batch size=256.
SUPPORT:
num layers=2, node size=128, dropout=0.1, batch size=256.

A.4. DeepHit

The hyperparameter spaces are:

• num layers: {1, 2, 4}

• node size: {64, 128, 256, 512}

• dropout: {0, 0.1, 0.3, 0.6}

• batch size: {64, 128, 256}

• alpha: {0, 0.001, 0.1, 0.2, 0.5, 0.8, 0.9, 0.99, 0.999, 1}

• sigma: {0.01, 0.1, 0.25, 0.5, 1, 10, 100}

• time horizon: 1.2 × longest duration.

The optimal hyperparameters are as follows.
METABRIC:
num layers=2, node size=128, dropout=0.1, batch size=128, alpha=0.001, sigma=1.
SUPPORT:
num layers=2, node size=256, dropout=0.3, batch size=128, alpha=0.1, sigma=100.

Appendix B. Statistical Significance

The p-values are shown in Table 4.

Table 4: P-values of the paired t-tests for the C-index (left) and MAE (right) results.

Model METABRIC SUPPORT

Cox 0.636 0.003
RSF 0.809 0.004
DeepSurv 0.585 0.207
DeepHit 0.622 0.205

Model METABRIC SUPPORT

Cox 0.001 0.000
RSF 0.005 0.000
DeepSurv 0.005 0.000
DeepHit 0.006 0.000
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Table 5: Patient-specific C-index test results (mean ± SD), and ? means statistically sig-
nificant.

Model METABRIC SUPPORT

Cox 0.634 ± 0.023 0.572 ± 0.008?

RSF 0.636 ± 0.013 0.616 ± 0.012?

DeepSurv 0.645 ± 0.020 0.611 ± 0.014
DeepHit 0.636 ± 0.020 0.601 ± 0.017
Ours 0.640 ± 0.016 0.603 ± 0.007

Appendix C. Numeric C-index Test Results

The results are shown in Table 5.

Appendix D. Mean Survival Curves Using all Patients

Figure 4 compares the mean survival curves of different models with the Kaplan-Meier curve
on the same random test set, where all patients are used. Our mean survival curve does not
match well with the Kaplan-Meier in this case, which indicates that our survival probability
predictions on censored patients can be improved.

Figure 4: Comparisons of different mean survival curves with the Kaplan-Meier curve (for
all patients in test).
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Appendix E. An Ablation Study

As per a reviewer’s suggestion, we perform this ablation study to determine the source
of performance gain. We swap the Transformer model with the ‘optimal’ fully connected
model shown in Appendix A.4, and use the same training hyperparameters in Table 2, and
the same early stopping criterion to select the best models. The results are shown in Table
6. We note that if we perform an exhaustive parameter search, the results can be better or
worse than these, as they depend on how well the validation accuracy correlates with the
test accuracy.

Table 6: Comparisons of the Transformer and fully connected models using the same train-
ing objective that we propose.

METABRIC SUPPORT
Model C-Index ↑ MAE ↓ C-Index ↑ MAE ↓
Transformer 0.640 ± 0.016 54.33 ± 5.91 0.603 ± 0.007 8.52 ± 0.73
Fully Connected 0.631 ± 0.016 55.24 ± 2.52 0.583 ± 0.013 7.63 ± 0.67
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