Novel roles for phospholipase C in plant stress signalling and development

Zhang, Q.

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Novel roles for phospholipase C in plant stress signalling and development

Qianqian Zhang
Novel roles for phospholipase C
in plant stress signalling and development

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op donderdag 1 juni 2017, te 10:00 uur

door

Qianqian Zhang

geboren te Hebei, China
The research described in this thesis was carried out in the Plant Physiology lab of the Swammerdam Institute for Life Sciences of the Faculty of Sciences, University of Amsterdam. This work was funded in part by a scholarship from the China Scholarship Council to Qianqian Zhang.
Table of Content

Chapter 1 5
General introduction

Chapter 2 23
A role for *Arabidopsis* phospholipase C3 (*PLC3*) in seed germination, lateral root formation and stomatal closure

Chapter 3 61
Functional characterization of *PLC5* in *Arabidopsis thaliana* - knock-down affects lateral root initiation while overexpression stunts root hair growth and enhances drought tolerance

Chapter 4 91
Role for *Arabidopsis PLC7* in stomatal closure, mucilage adherence, and leaf serration

Chapter 5 119
General discussion

Summary 129
Samenvatting 131
Acknowledgements 133
List of publications 135