Novel roles for phospholipase C in plant stress signalling and development

Zhang, Q.
Chapter 4

Role for Arabidopsis PLC7 in stomatal closure, mucilage adherence, and leaf serration

Qianqian Zhang,1,2 Ringo van Wijk,1,2 Mart Lamers,1,* Francisca Reyes Maarquez,3 Aisha Guardia,4 Denise Scuffi,4 Carlos Garcia-Mata,4 Wilco Ligterink,3 Michel A. Haring,1 Ana M. Laxalt,4 & Teun Munnik1,2

1Section Plant Physiology or 2Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands, 3Lab. of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands, 4Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
ABSTRACT

Phospholipase C (PLC) signaling in plants is likely different from the well-established animal paradigm as the prime targets for IP_3 and DAG are absent, and plants contain very small amounts of the putative PLC substrate, phosphatidylinositol 4,5-bisphosphate (PIP_2). Nonetheless, the genome of Arabidopsis thaliana encodes 9 PLC genes. To increase our understanding of PLC signaling in plants, we have started to analyze various knock-out (KO), knock-down (KD) and overexpression lines of Arabidopsis. Here, we functionally characterized Arabidopsis PLC7. Promoter-GUS analyses revealed that PLC7 is specifically expressed in the phloem of roots, leaves and flowers and also in trichomes and hydathodes. Two T-DNA insertion mutants were obtained, with plc7-3 being a KO- and plc7-4 a KD line. In contrast to earlier-characterized phloem-expressed PLC mutants, plc3 and plc5, plc7 mutants revealed no defects in primary- or lateral root development. Nonetheless, like plc3 mutants, plc7 mutants were found to exhibit a reduced sensitivity to ABA during stomatal closure. Double-knockout plc3 plc7 lines were found to be lethal, whereas plc5 plc7 (plc5/7) mutants were viable, and revealed several new phenotypes, not observed earlier in the single mutants. These include a defect in seed mucilage, enhanced leaf serration, and an increased tolerance to drought. PLC7 overexpression lines showed an enhanced drought tolerance, similar to what was found for PLC3 and PLC5 overexpression lines. In vivo ^32P_i-labeling of seedlings treated with sorbitol, to mimic drought stress, revealed increased PIP_2 responses in both drought tolerant plc5/7 and PLC7-OE mutants. Together, these results reveal several novel functions for PLCs in plant stress and development. Potential mechanisms for this are discussed.

Key words: PLC; seed mucilage; leaf serration; ABA sensitivity; drought tolerance.
INTRODUCTION

Phospholipase C (PLC) plays a key role in mammalian signal transduction. Its intracellular activation through transmembrane receptor occupation leads to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP₂) to produce two second messengers, inositol 1,4,5-trisphosphate (IP₃) and diacylglycerol (DAG). IP₃ triggers the release of Ca²⁺ from an intracellular store via ligand-gated Ca²⁺ channel, while DAG recruits and activates protein kinase C (PKC) and stimulates TRP- (transient receptor potential-) channels. The subsequent increase in Ca²⁺ and change in phosphorylation status of numerous targets regulates multiple cellular processes that orchestrate the cell's response to the initial stimulus (Irvine, 2006; Michell, 2008; Balla, 2013).

The PLC signaling pathway in plants is still enigmatic (Munnik, 2014). While higher plant genomes encode all genes required for the metabolism of this pathway, they all lack the prime targets for IP₃ and DAG, i.e. the IP₃ receptor, PKC and TRP channels (Wheeler and Brownlee, 2008; Munnik and Testerink, 2009; Munnik and Vermeer, 2010; Munnik and Nielsen, 2011; Munnik, 2014; Heilmann, 2016). Instead, plants seem to phosphorylate IP₃ and DAG into inositolpolyphosphates (IPPs) and phosphatidic acid (PA), respectively, which are believed to function as second messengers (Gillaspy, 2013; Munnik, 2014; Heilmann, 2016). IP₃ was initially thought to release Ca²⁺ from intracellular stores when microinjected (Gilroy et al., 1990; Blatt et al., 1990; Allen and Sanders, 1994; Hunt and Gray, 2001), but later it was shown that this IP₃ is phosphorylated to IP₆ within seconds, and that the latter compound was 10-100 fold more effective in releasing Ca²⁺ (Lemtiri-Chlieh et al., 2000, 2003).

Meanwhile, various other signaling functions for IP₆ and other IPPs have been emerging, including the pyro-phosphorylated IP₇ and IP₈. In yeast and mammalian cells, these IPP molecules play important roles in various nuclear processes, including gene transcription, chromatin remodeling, mRNA export and DNA repair, and are involved in a wide range of cellular processes, including osmoregulation, phosphate homeostasis, vesicular trafficking, apoptosis, insulin- and immune signaling, cell cycle regulation, and ribosome synthesis (Monserrate and York, 2010; Thota and Bhandari, 2015; Williams et al., 2015). In plants, besides releasing Ca²⁺ in guard cells, IP₆ has also been shown to bind the auxin receptor, TIR1 (Tan et al., 2007), which is proposed to functionally regulate the SCF⁸⁶TIR1 ubiquitin-ligase complex to control downstream auxin mediated-gene expression (Chapter 2; Chapter 3; Zhang et al., 2017). Similarly, COI1, the receptor for jasmonate signaling was found to bind IP₅ (Sheard et al., 2010), with functional significance for plant immunity (Mosblech et al., 2008, 2011; Murphy et al., 2008), even though it could be that the pyrophosphorylated form of IP₅, i.e. PP-IP₅ (= IP₇), is biologically responsible for this (Laha et al., 2015, 2016). GLE1, an mRNA export factor, was recently identified as an important IP₆ target in Arabidopsis involved in P₃ homeostasis (Lee et al., 2015). SPX domain-containing proteins have recently been identified to bind IPPs, including IP₆ and many of these proteins are involved in P₃ signaling (Kuo et al., 2014; Puga et al., 2014; Wild et al., 2016). For PA, several plant targets have been identified over the years, including protein kinases, proteins...
phosphatases, small G-proteins, RBOH (NADPH oxidase), GAPDH, ion channels and actin-binding proteins (Wang et al., 2006; Mosblech et al., 2011), and PA has been implicated to regulate many cellular processes, including vesicular trafficking, cytoskeleton dynamics, and ion-channel regulation (Li et al., 2009, 2012, Pleskot et al., 2010, 2017; Testeink and Munnik, 2011; Thomas and Staiger, 2014). Note that PA is not only generated via PLC and DAG kinase (DGK), it can also be indirectly formed via other DAG-generating enzymes, like non-specific PLCs (NPC; Munnik, 2014), or directly, through phospholipase D (PLD) hydrolysis of structural phospholipids (Wang et al., 2006; Li et al., 2009; Liu et al., 2013).

How, when, and whether PLC signaling is involved in generating PA and IPPs in the above events is still largely unknown and mostly based on correlations and indirect evidence. Hence, tools to genetically manipulate PLC levels will be very helpful to functionally characterize its role(s). In this way, silencing of PLC revealed its importance in plant defense in tomato and Arabidopsis (Vossen et al., 2010; D’Ambrosio et al., 2017), in cytokines- and gravity signaling in Physcomitrella (Repp et al., 2004), in ABA signaling and stomatal control in tobacco and Arabidopsis (Sanchez and Chua, 2001; Hunt et al., 2003) but also in development, where Arabidopsis PLC2 plays a key role in gametogenesis, reproduction and root development (Li et al., 2015; Laxalt et al., 2016; R. van Wijk and T. Munnik, In prep.). In petunia and tobacco, PLC regulates pollen tube-tip growth (Dowd et al., 2006; Helling et al., 2006). Alternatively, several Arabidopsis T-DNA insertion mutants have meanwhile revealed several roles for PLC3, PLC5 and PLC9 in seed germination, (lateral) root development, ABA signaling and heat stress tolerance (Chapter 2 and 3; Zheng et al., 2012; Gao et al., 2014). On the other hand, overexpression of PLC has been shown to increase drought tolerance in maize, canola, tobacco and Arabidopsis (Wang et al., 2008; Georges et al., 2009; Tripathy et al., 2011; Chapter 2 and 3). Even though it is still unknown how PLC exactly achieves all the above, it is very important that these molecular tools become available for physiological and biochemical studies.

The Arabidopsis genome encodes 9 PLC genes, which are subdivided into four clades (Hunt et al. 2004; Tasma et al., 2008; Pokotylo et al., 2014). Earlier, we found that knock-out (KO) mutants of PLC3 or a knock-down (KD) mutant of PLC5, exhibited small defects in root development, i.e. 5-10% reduced growth of the primary root and a 10-20% reduction in the number of lateral roots. Interestingly, even though these PLCs come from different subfamilies, plc3 plc5-double mutants did not intensify the phenotype, indicating other PLCs could be involved. Since PLC3 and PLC5 were specifically expressed in phloem-companion cells and revealed a segmented expression pattern in the root form which lateral roots emerged, we search for other Arabidopsis PLCs specially expressed in the phloem, and found PLC7. This gene belongs to a different subfamily than PLC3 and PLC5. Promotor-GUS analyses confirmed its expression in all vascular tissues, but also in trichomes and hydatodes, however plc7-3 KO- or plc7-4 KD mutants revealed no defects in root or shoot development. Creating double mutants revealed that the combination plc3/7 was lethal and that plc5/7 did not exhibit defects in root development either. Nonetheless, several new phenotypes appeared for the latter mutant, including non-
adherent mucilage, enhanced leaf serration and increased drought resistance. In addition, like \(PLC3 \) and \(PLC5 \), overexpression of \(PLC7 \) also leads to an increase in drought tolerance.

RESULTS

Expression of \(PLC7 \) during plant development

Histochemical assays on \(pPLC7\text{-}GUS\text{-}SYFP \) reporter lines indicated that \(PLC7 \) was mainly expressed in the vasculature throughout all developmental stages, including root, cotyledons, leaves, hypocotyl, flower (stamen, style, petal, sepal, receptacle and pedicel) and silique septum (Fig. 1a-j, n and o), which is similar to the expression pattern of \(PLC3 \) (Zhang et al, 2017; Chapter 2) and \(PLC5 \) (Chapter 3). However, there are also some differences. During seed germination \(PLC7 \) expression was mainly observed in the hypocotyl (28h after transfer to 22°C, Fig. 1a), which remained like this in 2-day old seedlings (Fig. 1b) and then spread to the vasculature throughout the plant upon further development (Fig. 1c-j). Interestingly, \(GUS \) expression was quite abundant in hydathodes, in young seedling, but also mature plants (Fig. 1b-e, l, arrows). Unlike \(PLC3 \) and \(PLC5 \), \(PLC7 \) did not display the characteristic, segmented expression in the root vasculature. Instead, expression was homogenous in both main root- and lateral root vasculature (Fig. 1f, g). The expression stopped near the transition zone of the root (Fig. 1h). Strong GUS staining was visible in trichomes (Fig. 1j, k), which is similar to that of \(PLC5 \), but stronger and different from \(PLC3 \), that is only expressed in trichome basal cells. No GUS activity was detected in guard cells, as was found for \(pPLC3\text{::}GUS\text{-}YFP \) and \(pPLC5\text{::}GUS \). These results confirm that \(PLC7 \) is expressed throughout the plant (Tasma \textit{et al.}, 2008), but the expression is mostly restricted to the vasculature.
No change in root system architecture in plc7 and plc5/7 mutants

Knock-out/down mutants of PLC3 or PLC5 were affected in their primary- and lateral root growth formation. However, a double plc3/5 mutant did not reveal a stronger effect, indicating that there might be a third PLC involved. (Zhang et al., 2017; Chapters 2, 3). To investigate the role of PLC7 we identified two homozygous T-DNA insertion lines, plc7-3 (SALK_030333) and plc7-4 (SALK_148821) (Fig. 2a). Reduction of PLC7 expression in plc7-3 and plc7-4 mutants was confirmed by Q-PCR (Fig. 2b) and revealed that the former is a KO- and the latter a KD mutant. However, the root architecture of 12 days old seedlings of these plc7 mutants did not differ from the wild-type (Fig. 2c, d).
Role for PLC7 in Arabidopsis

Figure 2. In contrast to plc3- and plc5 mutants, KO- or KD mutants of PLC7 are not affected in root development. (a) T-DNA insertion positions (triangles) in the PLC7 gene of plc3-3 and plc7-4 lines. Filled boxes and lines represent exons and introns, respectively, while open boxes represent untranslated regions. (b) PLC7 expression levels in wild-type, plc7-3 and plc7-4 measured by Q-PCR using SAND as a reference gene. Values are the means ± SD (n = 3) of a representative experiment that was independently repeated at least three times. (c) Seedling morphology of wild-type, plc7 mutants. Seeds were first germinated on ½MS with 0.5% sucrose for 4 days and then transferred to ½MS plates without sucrose. Photographs were taken 12 days after germination (DAG). (d) Primary root (PR) length and (e) lateral root (LR) number at 12 DAG. Values are means ± SE of three independent experiments (n>20). Asterisk (*) indicate significance at P<0.05 compared to wild-type, based on Student’s t test.

To analyze gene redundancy, we tried to generate plc3/5/7-triple mutants by crossing plc7-3 with the plc3/5-double mutant. However, the plc3/7 combination turned out to be lethal and only homozygous plc5/7-double mutants could be obtained (Fig. 3a). As shown in Figures 3b-d, no significant difference was found between the root system of plc5/7- and wild-type seedlings.

Figure 3. A plc5/plc7 double mutant is viable and is not affected in root architecture. (a) PLC5 (left) and PLC7 (right) expression in wild-type and plc5/7-double mutant. Relative expression is based on the expression of SAND measured by Q-PCR. Values are means ± SD (n = 3) of a representative experiment that was repeated at least three times. (b) Seedling morphology of wild-type and plc5/7. Seeds were germinated on ½MS with 0.5% sucrose for 4 days and then transferred to ½MS plates without sucrose. Photographs were taken 12 days after germination (DAG). (c) Primary root (PR) length and (d) lateral root (LR) number at 12 DAG. Values are means ± SE of three independent experiments (n>20). Asterisk (*) indicate significance at P<0.05 compared to wild-type, based on Student’s t test.

plc5/7 mutant displays loose seed coat mucilage and reduced cellulose rays

While imbibing seeds for stratification, we noticed that the volume of the seed pellet of plc5/7 seeds was always smaller than wild type after overnight incubation (Fig. 4a). Upon imbibition, the seed coat-epidermal cells normally extrude a mucilage that forms two transparent layers (adherent and non-
adherent layers) around the seed. To examine whether the smaller volume of the plc5/7 mutant was caused by a mucilage defect, we stained imbibed seeds with Ruthenium red (Fig. 4b), which stains pectins, the main component of mucilage (Western et al., 2000; Macquet et al., 2007). Compared to wild-type, the adherent and non-adherent layers were more expanded in the plc5/7 mutant (Fig. 4b, top panel) and when seeds were mildly shaken to remove the non-adherent layer, or treated with EDTA, plc5/7 seeds lost the adherent layer completely (Fig. 4b, middle and lower panel, respectively).

Increased solubility of the pectins has been linked to perturbation of cellulose deposition (Harpaz-Saad et al., 2011; Mendu et al., 2011; Sullivan et al., 2011; Yu et al., 2014; Ben-Tov et al., 2015; Basu et al., 2016; Hu, Li, Wang, et al., 2016; Hu, Li, Yang, et al., 2016). To test this, wild-type and plc5/7 seeds were stained with Calcofluor White (CFW, for cellulose and other β-glucans staining; (Fig. 4c, left panel) and Pontamine S4B (cellulose-specific dye; (Fig. 4c, right panel) (Willats et al., 2001; Anderson et al., 2010; Wallace and Anderson, 2012). In wild-type seeds, the primary cell wall remnants, and rays extending from the columella were stained by both dyes (Fig. 4c). The plc5/7 seeds showed a similar staining pattern, but the CFW intensity was lower and the rays were clearly reduced compared to wild-type. These results point to a role for PLC5 and PLC7 in cellulose ray formation, which is a completely novel function for PLC.

Figure 4. Seeds of plc5/7 double mutant exhibit mucilage phenotype. (a) Seeds of plc5/7 swell less during imbibition. Equal amounts of dry seeds of wild type and mutant were immersed in water overnight and photographed the next day. (b) Ruthenium red staining of wild type- and plc5/7 seeds, without shaking (top), with shaking (middle) and EDTA treatment. With shaking shows adherent mucilage layer; without shaking displays both adherent and non-adherent mucilage layers. (c) Cellulose staining by Calcofluor white (left panel) or Pontamine B (right panel) in wild type- and plc5/7 seeds. Confocal images of whole seeds, cross section, and close-up views (top, middle and bottom, respectively) are shown. Bars represent 2 mm (a), 0.1mm (b), 0.1mm (top and middle rows) or 0.025 mm (bottom row) (c).

PLC5 and PLC7 expression in developing seed

To further investigate the expression pattern of PLC5 and PLC7 during seed development, pPLC5::GUS and pPLC7::GUS-SYFP lines were used for additional histochemical analyzes (Fig. 5). At 4 day after pollination (DAP), some GUS activity was found in pPLC5::GUS (Fig. 5a, left panel)
while a strong staining in the seed coat and chalazal area of \textit{pPLC7::GUS-SYFP} was observed (Fig. 5b). Later in development (at 8 and 10 DAP), GUS activity became stronger, with \textit{PLC5} expression appearing in the seed coat and funiculus (Fig. 5a) and \textit{PLC7} staining became stronger in seed coat and chalazal (Fig. 5b).

Figure 5. \textit{PLC5} and \textit{PLC7} expression during seed development. (a) GUS activity analysis in \textit{pPLC5::GUS} developing seeds. Expression was found in the funiculus at 8 days after pollination (DAP) and seed coat at 10 DAP. (b) GUS activity analysis in \textit{pPLC7::GUS} developing seeds. Staining was found in the chalazal and in the seed coat. Bar = 0.1 mm

Analysis of PIP1- and PA levels in developing and germinating seeds

To analyze the levels of the potential PLC substrates (i.e. PIP and PIP$_2$) and product (PA conversion of PLC-generated DAG), 32P$_4$-labelling (24h) of wild-type- and \textit{plc5/7} mutant seeds at 10 DAP were compared with germinating, mature seeds. As shown in Figure 6, wild-type and \textit{plc5/7} seeds were found to contain similar amounts of PIP$_2$, PIP and PA in both stages. Interestingly, PIP- and PA levels were much higher in developing seeds while PIP$_2$ levels were similar in both stages.

Figure 6. PIP- and PA levels in developing- and germinating (mature) seeds of wild type and \textit{plc5/7}. (a) Developing seeds, ~200 seeds at 10 DAP of wild type and \textit{plc5/7} were labelled with 32PO$_4$3- for 24 h and their lipids extracted, separated by TLC and quantified by Phosphoimaging. (b) Mature seeds (~200) of wild type and \textit{plc5/7} were pre-germinated on ½MS with 0.5% sucrose plates until testa ruptured, then labelled with 32PO$_4$3 for 24 h. Lipids were then extracted, separated and quantified as above. 32P-levels of PIP$_2$, PIP and PA are expressed as percentage of total 32P-phospholipids. Three independent experiments were performed; data shown are means ± SD (n=3) from one representative experiment.
Leaves of *plc5/7* plants display enhanced level of leaf serration

Growing *plc5/7* mutants on soil for longer periods of time revealed a novel phenotype in leaf-edge patterning (serration). Overall, the level of serration in successive rosette leaves was significantly increased in *plc5/7* mutant, which appeared to be stronger in the proximal part of the blade than in the distal part (Fig. 7a, b). To quantify this in more detail, we measured various parameters of the 8th leaf (Fig. 7c-e) of 4-weeks old rosettes of both genotypes. No changes in blade length were observed between wild-type and *plc5/7*, but the blade width, -perimeter and -area were slightly, although not significantly, bigger in *plc5/7* (Fig 7d). The serration number was not changed in the *plc5/7* mutant, but the serration level (indicated by the ratio between the distance from midvein to tip and the distance from midvein to sinus, see Fig. 7c) was significantly higher in three successive teeth (Fig. 7f).

Recent studies have indicated that Arabidopsis leaf-margin development is controlled by a balance between *microRNA164A* (*MIR164A*) and *CUP-SHAPED COTYLEDON2* (*CUC2*) (Nikovics et al., 2006). Hence, we compared the expression of *MIR164A* and *CUC2* in wild-type and *plc5/7* leaves. As shown in Figure 7g, *plc5/7* leaves were consistently (3 independent experiments) found to contain higher levels of *CUC2* and lower levels of *MIR164A*, resulting in a significant increase in the *CUC2/MIR164A* ratio.
Figure 7. Leaves of plc5/7 plants display enhanced leaf serration
(a) Phenotype of wild type- and plc5/7 rosette. Rosettes of 4-week old plants grown in short day conditions, were cut and photographed immediately. Bar = 1 cm. (b) Leaf series of 4-week old wild type and plc5/7 plant. (c) Cartoon to demonstrate the leaf parameters measured of the 8th leaf. (d) Quantification of blade size including, length, width, perimeter and area. (e,f) Quantification of leaf serration number (e) and level (f) in wild type and plc5/7 mutant. (g) Expression of CUC2 and MIR164A and their ratio in wild type and plc5/7 mutant. Expression is relative to the expression of OTC. Three independent experiments were performed. Data in (g) represents the means ± SD (n=3) from one representative experiment that was repeated twice with similar results. Asterisk (*) indicate significance at P<0.05 compared to wt, based on Student’s t test.

The plc5/7 mutant displays enhanced tolerance to drought

When plants were left in the greenhouse without watering, we noticed that plc5/7 mutants appeared to be more drought tolerant while the single mutants behave like wt (data not shown). Performing multiple drought tolerance assays indeed confirmed this (Fig. 8a), and detached rosettes of 4-week-old plc5/7 plants were found to lose less water than wild-type (Fig. 8b).

ABA plays a key role during the response to dehydration stress and is known to induce stomatal closure to reduce the loss of water (Sean et al., 2010). Hence, we checked the stomatal-closure of plc5/7 and wild-type in response to ABA. As shown in Figure 8c, plc5/7 has less-opened stomata compared to
wild-type without ABA, but when ABA was applied, stomata closed in genotypes, although the plc5/7 mutant appeared to be less responsive.

Previously, we found that overexpression of PLC3 or PLC5 enhanced drought tolerance in Arabidopsis (Zhang et al., 2017; Chapters 2, 3), which was earlier also revealed for maize, canola and tobacco (Wang et al., 2008; Georges et al., 2009; Tripathy et al., 2011). We therefore wondered whether the increase in drought tolerance in plc5/7 was a result of the overexpression of any of the other (redundant) 7 PLCs. However, no strong overexpression of any PLC was found in plc5/7 (Fig. 8d). In fact, PLC1, PLC2 and PLC4 were found to be slightly down-regulated (Fig. 8d).

Figure 8. Soil-grown plc5/7 mutant are more tolerant to drought stress.
(a) Six-weeks old plants of wild type- or plc5/7 mutant plants, grown on soil and exposed to drought by withholding water for the last two weeks and then were photographed. (b) Water loss of detached rosette of normally watered, 4-weeks old plants. Water loss was measured at indicated time points and expressed as a percentage of the initial fresh weight. Values are means ± SD for one representative experiment (n=36). (c) Effect of ABA on the stomatal aperture in leaf strips of wild type and plc5/7 plants. Leaves from 3-weeks old plants were stripped and the peels were incubated in opening buffer with light for 3 h until stomata were fully open. Peels were then treated with different concentrations of ABA for 90 mins, after which stomata were digitized and aperture widths measured. Values are means ± SE of at least three independent experiments (n >100). Data was analyzed by 2-way ANOVA. Statistical significant differences between genotypes are indicated by letters (P<0.05, Dunn’s method). (d) PLC1- PLC9 expression level in wild type and plc5/7 mutant plants as measured by QPCR, relative to the amount of SAND. Values are means ± SD (n = 3) for one representative experiment that was repeated two times with similar results.
Overexpression of PLC7 increases drought tolerance

As mentioned above, overexpression of Arabidopsis PLC3 and PLC5, which are from different subfamilies than PLC7, resulted in enhanced drought tolerance (Zhang et al., 2017; Chapters 2 and 3). To check the effect of PLC7 overexpression, homozygous T3 plants were generated. Two lines, PLC7-OE9 and PLC7-OE12, which overexpressed PLC7 around 80- to 100-fold, respectively, were selected for further studies, (Fig. 9a). Both lines were indeed found to be more drought tolerant than wild-type (Fig. 9b), and lost slightly less water when rosettes of 4-week-old plants were detached (Fig. 9c). The stomatal aperture and their response to ABA was found to be similar to wild-type (Fig. 9d), which is different to PLC3- and PLC5-OE plants that had stomata that opened less wide than the wt.

Figure 9. Overexpression of PLC7 enhances drought tolerance. (a) PLC7 expression levels in wild type and two homozygous PLC7 overexpression lines, PLC7-OE9 and PLC7-OE12 as measured by Q-PCR and based on the expression of the SAND reference gene. Values are means ± SD (n = 3) for one representative experiment. (b) Phenotype of six week old plants from wild type and PLC7-overexpression lines, #OE9 and #OE12, after two weeks of drought stress. (c) Water loss of detached rosette of four weeks old plants. Water loss was measured at indicated time points and expressed as a percentage of the initial fresh weight. Values are means ± SD for one representative experiment (n=36). (d) Stomatal aperture in leaf peels of wild type, PLC7-OE9 (left), PLC7-OE12 (right) and the effect of ABA. Leaves from 3-weeks old plants were stripped and peels were incubated in opening buffer with light for 3 h until stomata were fully open. Peels were then treated with different concentrations of ABA for 90 mins, after which stomata were digitized and the aperture width measured. Values are means ± SE of at least three independents (n > 100). Data was analyzed by 2-way ANOVA. Statistical significant differences between genotypes are indicated by letters (P<0.05, Dunn’s method).
Phospholipid responses upon osmotic stress

To analyze the phospholipid responses in plc5/7 and the PLC-OE lines, 32P-labeling experiments (3 hrs labeling) were performed on seedlings, and the effect of sorbitol treatment was tested to mimic osmotic stress. Both plc5/7 and wild-type showed similar levels of PPI- and PA in absence of sorbitol (Figs. 10a, b). Upon sorbitol treatment, a stronger PIP$_2$ response was typically observed in the plc5/7 lines though numbers appear not to be statistically different. While PIP$_2$ levels increased by \sim4 times in wild-type, plc5/7 seedlings typically exhibited a 6-times increase. No difference in PA- or PIP response was observed (Fig. 10b).

PLC7-OE lines revealed no difference in PPI or PA levels compared to wild-type in control conditions (Fig. 10c, d). However, with sorbitol, again a stronger PIP$_2$ response was observed in PLC7-OE lines, \sim6-times vs \sim4-times for wild-type, while PA- and PIP responses were similar (Fig. 10c, d). These results suggest that both plc5/7 and PLC7-OE plants boost more PIP$_2$ in response to osmotic stress than wild-type, similar to what we found earlier for PLC3- and PLC5-OE lines (Chapters 2, 3).

![Diagram](image)

Figure 10. Both plc5/7 and PLC7 over-expressers displayed stronger PIP$_2$ response upon osmotic stress. Six-day-old seedlings were 32P-labeled for 3h and then treated with buffer ± 600 mM sorbitol for another 30 min. Extracted lipids were analyzed by TLC and quantified through phosphoimaging. (a and c). Typical TLC profile with each lane representing the extract of 3 seedlings. (b, d) 32P-levels of PIP$_2$, PIP and PA of wild-type and plc5/7 (b) or PLC7-OEs (line #9 and #16) (d) with and without sorbitol. Three independent experiments were performed. Data shown are the means ± SE (n=3) from three independent experiments. Data was analyzed by 2-way ANOVA. Statistical significant differences between normal and sorbitol conditions in wild type and plc5/7 or PLC7-OEs are indicated by letters (P<0.05).
DISCUSSION

Knockout of PLC7 does not affect root architecture

Previously, we demonstrated that Arabidopsis PLC3 and PLC5 were both involved in lateral root formation and that a plc3/5-double mutant did not exhibit a more severe phenotype than single mutants (Chapters 2, 3). We therefore speculated that another PLC must be involved. Since promoter-GUS analyses revealed specific expression in phloem companion cells and a typical segmented pattern in the vascular of the primary root from which lateral roots emerged, we specifically searched for other phloem-specific PLCs. Using the eFP browser, we found two potential candidates, PLC2 and PLC7. Since T-DNA insertion mutants of PLC2 were lethal (D’Ambrosio et al., 2017; Di Fino et al., 2017; R. van Wijk and Munnik, unpublished), we focused on PLC7. Two independent homozygous T-DNA insertion mutants were obtained, with plc7-3 being a KO- and plc7-4 a KD line. Both mutants exhibited normal root architecture. In an attempt to create double- and triple mutants of the redundant PLCs, we crossed the plc3-2/plc5-1 (plc3/5; Chapter 3) with plc7-3, but this only resulted in viable plc5/7 double mutants, as the combination plc3/plc7 turned out to be lethal (not shown). The plc5/7 double mutant, however, did not reveal any significant changes in root morphology (Figs. 2, 3). While pPLC7-GUS analyses confirmed the vascular expression of PLC7, the typical segmented pattern found for PLC3 and PLC5 was not found. These results may indicate that PLC2 is the redundant PLC in root development, and preliminary results from this laboratory, using induced silencing (R. van Wijk and T. Munnik, Unpublished), confirm this. Interestingly, PLC7 was also expressed in hydathodes and in seeds, which correlates well with the two new phenotypes that were found for plc5/7-double mutants, which have never been observed before. These include a mucilage phenotype in seeds and a serration phenotype in leaves. The latter may correlate with PLC7’s expression at hydathodes. PLC7 was also strongly expressed in trichomes. PLC5 is also expressed there, although less, and PLC3 is typically expressed only in the trichome basal cells of developing leaves (Chapters 2, 3). We checked for trichome phenotypes in individual plc3, plc5 or plc7 and plc3/5- and plc5/7- mutants, but found no obvious effect (number, shape) was visible. Again, this could be due to redundancy, or PLC is involved in content of, or transport to the trichomes, which would not lead to an obvious phenotype.

Strikingly, and new to PLC loss-of-function lines, is that plc5/7 mutants were more drought tolerant, a phenotype that is typically found when PLC is overexpressed (Chapter 2 and 3; Wang et al., 2008; Georges et al., 2009; Tripathy et al., 2011). However, we found no upregulation of redundant PLCs in the plc5/7-mutant background. If anything, some down regulation of redundant PLCs in the plc5/7-mutant background. If anything, some down regulation of redundant PLC1, PLC2 and PLC4. RNASeq analyses of the plc mutant and OE lines may shed light on potential pathways that are up- or down-regulated to explain various phenotypes. Most importantly, altering expression of PLC genes results in clear phenotypes and this will further help elucidating the role of PLC in plant signaling and development.
While several new pieces of the PLC-signaling puzzle (new phenotypes) in plants have been found, it remains unclear how this is achieved at the cellular and molecular level. It is clear that plants lack the prime targets for IP₃ and DAG, and there are several indications that responses are coupled via inositolpolyphosphates (IPPs) and/or IP(4) (Wang et al., 2006; Arisz et al., 2009, 2013; Munnik and Vermeer, 2010; Munnik and Nielsen, 2011; Testerink and Munnik, 2011; Gillaspy, 2013; Munnik, 2014; Laha et al., 2015; Heilmann, 2016; Hou et al., 2016). Alternatively, since PIP or PIP₂ are emerging as second messengers themselves, PLC could function as an attenuator of signaling too. In that respect, it is interesting to notice that the increased drought-tolerant phenotype in plc5/7 and the PLC3, -5, and -7 overexpression lines correlates with a stronger PIP₂ response in seedlings osmotically stressed with sorbitol. How this would work remains unclear, but these lines could somehow be primed for an enhanced PIP₂ turnover.

Role for PLC5 and PLC7 in seed mucilage

Mucilage is a complex of polysaccharides, which is from seed coat epidermal cells when seeds are exposed to an aqueous environment (Western et al., 2000). The major component of mucilage is pectin, of which polygalacturonic acid (PGA) and rhamnogalacturonan I (RGI) are the most common compounds found in cell walls and mucilage (Carpita and Gibeaut, 1993; Cosgrove, 1997). In addition to pectin, mucilage also contains some minor monosaccharides, i.e. arabinose, galactose, glucose, xylose and mannose, which are equally important in controlling mucilage properties (Voiniciuc, et al., 2015). The extruded mucilage contains two layers, a non-adherent outer layer and an adherent inner layer. The former is easily removed from the seed (Harpaz-Saad et al., 2011; Mendu et al., 2011; Sullivan et al., 2011). The latter is hard to detach, even chemically (Macquet et al., 2007). Our result showed that inner mucilage of plc5/7 seed coats was easily lost (Fig. 4b). Many factors are involved in maintaining the adherence of the inner mucilage, with cellulose being the most important (Harpaz-Saad et al., 2011; Sullivan et al., 2011; Yu et al., 2014; Ben-Tov et al., 2015; Voiniciuc, Schmidt, et al., 2015; Hu, Li, Wang, et al., 2016; Hu, Li, Yang, et al., 2016). Staining with Calcofluor white and Pontamin S4B indicated that certain cellulose rays were missing from plc5/7 seed-coat mucilage (Fig. 4c). We checked for sugar-composition aberrations in whole seeds, but found no changes compared to wild-type (Supplemental Fig. S1). Possibly, the distribution between non-adherent and adherent mucilage layers might be different, which needs to be further determined. The adherence of mucilage by cellulose is mainly caused by its crystallization by self-association via hydrogen bonding (Sullivan et al., 2011), and several genes have been recently reported to regulate cellulose crystallization, i.e. COBRA-LIKE2, IRX14 and IRX7 etc (Ben-Tov et al., 2015; Hu, Li, Wang, et al., 2016; Hu, Li, Yang, et al., 2016).

Histochemical analysis of the GUS reporter lines indicated that both PLC5 and PLC7 are expressed during seed development (Fig. 5). Until now, no mucilage deficiency has been linked to PLC, and we only observed the mucilage phenotype in the plc5/7-double mutant of all our PLC knockout
Role for PLC in Arabidopsis

Mutants. The defect in both PLC5 and PLC7 probably breaks the balance for mucilage maintenance by altering cellulose deposition and/or crystallization in the inner mucilage. How the enzyme PLC could be involved in all this will require additional research. Potentially, PLC could be required for mucilage secretion or for the localization or activity of cellulose synthases, for example. PA, PIP and PIP2 have been implicated to play essential roles in vesicular trafficking, -fusion and -fission. Even though no difference was found in PPI- or PA levels in either developing or mature seeds (Fig. 6), reduced amounts of PLC5 and lack of PLC7 might cause crucial local changes in lipid or IPP molecules.

Role for PLC in leaf serration

Leaf shape is defined by the pattern and degree of indentation at the margin area, thus distinguishing plant species (Tsukaya, 2006). The patterning involves a complex crosstalk between hormone signaling and genetic regulators (Byrne, 2005; Fleming, 2005). Leaf serration is an important patterning event and its development involves auxin maxima at the protrusion of each serrated section (Hay and Tsiantis, 2006). Based on recent genetic studies, the auxin efflux carrier PIN-FORMED 1 (PIN1) and CUP-SHAPED COTYLEDON 2 (CUC2) have been identified as two key factors required for the formation of leaf serration (Hay et al., 2006; Nikovics et al., 2006). PIN1 asymmetrically localizes on plasma membranes and directionally transports auxin, creating auxin maxima that direct the outgrowth of the serrations (Hay et al., 2006; Scarpella et al., 2006). CUC2 is a transcription factor that is post-transcriptionally downregulated in leaves by MIR164A (Nikovics et al., 2006). CUC2 expression is limited to the sinus where the serration starts, and the promotion of serration outgrowth is through cell division, not by suppression of sinus growth (Kawamura et al., 2010). CUC2 has also been indicated to regulate the polarized localization of PIN1 in convergence points at the leaf margin, playing a role in establishing, maintaining and/or enhancing auxin maxima that result in leaf serration (Kawamura et al., 2010; Bilsborough et al., 2011). In a feedback loop, auxin downregulates CUC2, both transcriptionally and post-transcriptionally through activation of MIR164A (Bilsborough et al., 2011).

The plc5/7-double mutant revealed a mildly-enhanced leaf-serration phenotype (Fig. 7). Subsequent measurement of CUC2 and MIR164A expression revealed an up-regulation of CUC2 and down-regulation MIR164A, which is consistent with the enhanced serration (Kawamura et al., 2010; Bilsborough et al., 2011). Promotor-GUS analyses showed that both PLC5 and PLC7 were expressed at leaf hydathodes, a secretory tissue that secretes water through the leaf margin that is also associated with leaf serration (Tsukaya and Uchimiya, 1997) and auxin response maxima (Scarpella et al., 2006). Hence, it is possible that PLC5 and PLC7 together contribute to the regulation of leaf serration, also because there was no such phenotype found in single mutants. We also measured PPI-and PA levels in plc5/7 rosette leaves but, like seeds and seedlings, found no changes (data not shown; Figs. 6 and 10). It is possible that differences are limited to particular cells or tissues and that most of the cells have normal levels/responses. How PLC5 and PLC7 are involved in leaf serration requires further investigation. IP₆ could play a positive role in auxin signaling through activation of TIR1 (Chapter 2).
However, increased leaf serration would then be expected to result from increased IP₆ formation, which not what we would directly expect from a plc5/7 mutant. On the other hand, PIP₂ has been suggested to play a role in the polarized localization of PIN1 (Ischebeck et al., 2013; Tejos et al., 2014), in which PLC could also play a role. As mentioned earlier, down-regulation of these two PLCs (plc5 KO is likely lethal; Chapter 3) could result in a local upregulation of another PLC, even though overall PLC expression levels (Fig. 8d) do not confirm such a model.

Both PLC7 overexpression and plc5/7 down-regulation enhance drought tolerance

Overexpression of PLC in maize, tobacco and canola improved drought tolerance (Wang et al., 2008; Georges et al., 2009; Tripathy et al., 2011). Similarly, we found that overexpression of PLC3 or PLC5 increased the drought tolerance of Arabidopsis. To investigate the effect of PLC7 overexpression, homozygous pUBQ10::PLC7 lines were generated. Meanwhile, we took plc5-1, plc7-3 and plc5/7-double mutants along to see how they would behave under drought stress. While plants appeared normal under control conditions, except for plc5/7 showing more serrated leaves, upon drought stress both plc5/7- and PLC7-OE lines performed better (Figs. 8a, 9b), and lost less water than wild type (Figs. 8b, 9c), even though the latter was not statistically significant for PLC7-OE lines (Fig. 9c).

ABA synthesis is stimulated by dehydration stress and known to induce stomatal closure to reduce the water loss (Sean et al., 2010). Previous result indicated that PLC3- and PLC5-OE lines showed a 'less-open stomata' phenotype in the absence of ABA, and that they exhibited a reduced closing response to ABA compared to wild-type (Chapters 2 and 3). Overexpression of PLC7 did not show 'less-open stomata' under control conditions, and their response to ABA was like wild type. Stomata of plc5/7 plants were less open but their response to ABA appeared normal, maybe slightly decreased, which is in contrast to plc5- and plc7-single mutants, which have a normal opening at control conditions, and plc7 is less sensitive to ABA (Supplemental Fig. S2; Chapter 3). Interestingly, PLC7 itself was not expressed in guard cells (Fig. 1), but the gene is rapidly upregulated in guard cells upon ABA treatment (Bauer et al., 2013). Hence, it could be that the drought tolerant phenotype in the plc5/7 is a consequence of a local upregulation (for instance in the guard cells) of one or more redundant PLCS, which may remain undetectable when whole seedling levels are measured (Fig. 9).

Osmotic stress-induced phospholipid signaling responses have been reported in many studies (Munnik and Vermeer, 2010; Meijer et al., 2017). We measured PPI- and PA levels in response to sorbitol to mimic drought stress in plc5/7, PLC7-OE and wild-type seedlings using ³²P-labeling. Under control conditions, no difference in PPI- and PA levels were found among the genotypes (Fig. 10). However, in response to osmotic stress, the PIP₂ response in both plc5/7 and PLC7-OE lines were stronger than wild-type (Fig. 10b and 10d). Apart from second messenger precursor, PIP₂ could also play a role as signaling molecule itself, for example in the reorganization of the cytoskeleton, in endo- and exocytosis, or ion channel regulation (Stevenson et al., 2000; Martin, 2001; van Leeuwen et al., 2007; Heilmann, 2016). Identification and characterization of some of PIP₂’s main targets will be
essential to start unraveling the molecular mechanisms involved. Whether the above response in plc5/7 is a consequence of enhanced, local expression of another PLC, or a consequence of differential gene expression and hence drought tolerant response, requires further studies.

MATERIALS AND METHODS

Plant material
Arabidopsis thaliana (Col-0) was used throughout. T-DNA insertion mutants plc7-3 (SALK_030333) and plc7-4 (SALK_148821) were obtained from the SALK collection (signal.salk.edu). Homozygous plants were identified by PCR in F2 generation using gene-specific primers. For the identification of plc7-3, we used forward primer 5’- GATTTGGGTGATAAAGAAGTTTGG -3’; reverse primer 5’- CTCCACACAAATCTCAGCATTAC-3’) and left border primer LBb1.3 (5’-ATT TTGCGATTTCCGAAC-3’, in combination with the forward primer). For plc7-4 identification, forward primer 5’- TCCTTCCTGTATCCATGACG -3’; reverse primer 5’- TTGAAGAAAGCATCAAGGTGG -3’) and left border primer LBb1.3 (5’-ATT TTGCGATTTCCGAAC-3’, in combination with the reverse primer) were used. To generate double mutant plc5/7, plc5-1 and plc7-3 were used for crossing.

Root growth
Seeds were surface sterilized in a desiccator using 20 ml thin bleach and 1ml 37% HCl for 3 hours, and then sowed on square petri dishes containing 30 ml of ½ strength of Murashige and Skoog (½MS) medium (pH 5.8), 0.5% sucrose, and 1.2 % Daishin agar (Duchefa Biochemie). Plates were stratified at 4 °C in the dark for two days, and then transferred to long day conditions (22 °C, 16 h of light and 8h of dark) in a vertical position, under an angle of 70°. Four-day-old seedlings of comparable size were then transferred to ½MS agar plates without sucrose and allowed to grow further for another 6-8 days. Plates were then scanned with an Epson Perfection V700 scanner and primary root length, lateral root number and average lateral root length from each genotype quantified through ImageJ software (National Institutes of Health).
Cloning and plant transformation

To generate pPLC7::GUS-SYFP reporter line, the PLC7 promoter was amplified from genomic DNA using the following primers: PLC7proH3fw (5’-CCCAAGCTTGATCCTATCAATATTCCTAATTCAGC-3’) and PLC7proNheIrev (5’-CTAGCTAGCTTGAACAATTCCCTCAAGTG-3’). The PCR product was cloned into pGEM-T easy and sequenced. A HindIII-pPLC7-NheI fragment was then ligated into pJV-GUS-SYFP, cut with HindIII and NheI. A pPLC7::GUS-SYFP1 fragment, cut with NolI and transferred to pGreenII-0229.

The MultiSite Gateway Three-Fragment Vector Construction Kit (www.lifetechnologies.com) was used to generate PLC7 overexpression lines driven by the UBQ10 promoter (pUBQ10::PLC7).

RNA extraction and Q-PCR

The primer pairs to check for PLC1- to PLC9-expression levels were obtained from Tasma et al. (2008). Similarly, identification of CUC2- and MIR164A-expression levels were performed as described by Bilsborough et al. (2011). Total RNA was extracted with Trizol reagent (Invitrogen, Carlsbad, CA) as described by Pieterse (1998). Total RNA (1.5 µg) from 10-day-old seedlings, or 4-week old rosette leaves, were converted to cDNA using oligo-dT18 primers, dNTPs and SuperSccript III Reverse Transcriptase (Invitrogen), according to the manufacturer’s instructions. Q-PCR was performed with ABI 7500 Real-Time PCR System (Applied Biosystem). The relative gene expression was determined by comparative threshold cycle value. Transcript levels were normalized by the level of SAND (At2g28390; forward primer: 5’-AACTCTATGCAGCATTTGATCCACT-3’, reverse primer: 5’-TGAAGGGGACAAAGGTTGTGTATGTT-3’), or OTC (At1g75330; forward primer: 5’-TGAAGGGCAAAAGGTTGTGTATGTT-3’, reverse primer: 5’-CGCAGACAAAGGTTGTGTATGTT-3’) (Bilsborough et al., 2011; Han et al., 2013). Three biological- and two technical replicates were performed to obtain the values for means and standard deviations (Han et al., 2013).
Histochemical analyses for GUS activity

GUS staining was performed as described previously (Chapter 2; Zhang et al., 2017). Briefly, transgenic plants carrying \textit{pPLC7::GUS-SYFP} were grown for indicated times, after which specific tissues were taken and incubated in an X-Gluc reaction solution containing 1mg/ml 5-bromo-4-chloro-3-indolyl-\(\beta\)-D-glucuronic acid (X-gluc), 50 mM phosphate buffer (pH 7.0), and 0.1% TX-100. Material was incubated overnight at 37\(^\circ\)C and the next day, cleared by 70% ethanol, and kept in that solution. GUS staining was visualized under a stereo microscope (Leica MZFLIII) and digitalized with a ThorLabs, CCD camera.

Seed staining and microscopy

To visualize seed coat mucilage, mature dry seeds were stained as described in Macquet et al. (2007). Seeds were directly incubated in 0.03% (w/v) Ruthenium red, or after imbibition in 0.5 M EDTA, pH 8.0, for 90 min. For the latter, seeds were washed with water to remove the EDTA and then stained for 20 min with Ruthenium red. Stained seeds were routinely observed with a light microscope (Aristoplan; Leitz). To visualize the seed surface and the adherent mucilage (AM) layer by confocal microscopy, Calcofluor white (0.01%) and Pontamine S4B were used as staining solutions (Western et al., 2000; Saez-Aguayo et al., 2014). Optical sections were obtained with an Olympus LX81 spectral confocal laser-scanning microscope. A 405 nm diode laser line was used to excite Calcofluor white and the fluorescence emission was detected between 412 and 490 nm. For Pontamine S4B a 561 nm diode laser line was used and the detection was done between 570 and 650 nm. For comparisons of the signal intensity within one experiment, the laser gain values were fixed. Three different batches of seeds were analyzed and all of them showed the same phenotype. LUT green fire blue filter and LUT fire filter (Image J) were applied to the Calcofluor white and Pontamine S4B images, respectively.

Determination of sugar composition by HPAEC-PAD

Sugar composition of wild-type and mutant seeds were measured as described previously (Saez-Aguayo et al., 2017). 20 mg of seeds were ground in liquid nitrogen and extracted twice in 80% ethanol with agitation for 1 h at room temperature followed by removal of lipids by washing twice with methanol:chloroform (1:1) and twice with acetone. The final AIR was dried overnight at RT and two mg was hydrolyzed for 1 h with 450 \(\mu\)L 2 M trifluoroacetic acid (TFA) at 121 \(^\circ\)C, using inositol as an internal control. TFA was evaporated at 60 \(^\circ\)C with nitrogen, samples washed two times with 250 \(\mu\)L of 100% isopropanol, and dried in a speed-vac. Samples were dissolved in 200 \(\mu\)L Ultrapure water, clarified with a syringe filter (0.45 \(\mu\)m) and transferred to a new tube for analysis by High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD).
The sugar quantification was done as described by Sáez-Aguayo et al. (2017). A Dionex ICS3000 ion-chromatography system, equipped with a PAD detector, a CarboPac PA1 (4mm x 250mm) analytical column, and a CarboPac PA1 (4mm x 50mm) guard column were used. The separation of neutral sugars was performed at 40ºC with a flow rate of 1 mL/min using an isocratic gradient of 20 mM NaOH for 20 min followed by a wash with 200 mM NaOH for 10 min. After every run, the column was re-equilibrated in 20 mM NaOH for 10 min. Separation of acidic sugars was performed by using 150 mM NaOAc and 100 mM NaOH for 10 min at a flow rate of 1 mL/min at 40ºC. Standard curves of neutral sugars (D-Fuc, L-Rha, L-Ara, D-Gal, D-Glc, D-Xyl, and D-Man) or acidic sugars (D-GalA and D-GlcA) were used for quantitation.

Leaf-shape analysis

Rosettes from 4-week old plants grown under long day condition were detached and photographed immediately. Leaves were removed from the rosette and adhered to white paper and then scanned (Epson Perfection V700 scanner). The 8th leaf was used for calculation. Blade length, width, perimeter, area, serration number and serration levels were calculated from silhouettes using ImageJ software. Leaf-serration levels are expressed as the distance from tip-to-midvein divided by the distance from sinus-to-midvein, for indicated tooth (2nd-4th) (Kawamura et al., 2010).

Stomatal aperture

The stomatal aperture measurement was performed according to Distéfano et al., (2012) with minor modifications. The stomatal aperture treatments were performed on epidermal strips excised from the abaxial side of fully expanded Arabidopsis leaves. Epidermal peels from leaves of 3-week-old plants, grown at 22°C under 16 h of light and 8h of dark, were stripped and immediately floated in opening buffer (5 mM MES-KOH (pH 6.1), 50 mM KCl) for 3 h. The strips were subsequently maintained in the same opening buffer and exposed to different ABA concentration. After 90 min, stomata were digitized using a Nikon DS-Fi 1 camera, coupled to a Nikon Eclipse Ti microscope. The stomatal-aperture width was measured using ImageJ software (National Institute of Health).

32Pi-phospholipid labelling, extraction and analysis

Developing seeds at 10 DAP were carefully removed from silique. Mature seeds were sterilized and stratified on ½MS (pH 5.8) as described and germinated under long day conditions for around 20 h when testa ruptured. Both developing and germinating seeds were then transferred to 200 µl labeling buffer (2.5 mM MES, pH 5.8, 1 mM KCl) containing 5-10 µCi 32PO$_4$³⁻ (32P) (carrier free; Perklin-Elmer) in a 2 ml Eppendorf, Safelock microcentrifuge tube for 24 h.

Five-day-old seedlings were labeled similarly, except for 3 h labeling time. Samples were treated by adding 200 µl labeling buffer with or without 600 mM sorbitol for 30 mins.
Labeling an subsequent treatments were stopped by adding perchloric acid (final concentration, 5% by vol.) for 5-10 min, after which lipids were extracted and the phosphoinositides and PA separated from the rest of the phospholipids by thin-layer chromatography (TLC) as described in detail by Munnik & Zarza (2013). Radioactive phospholipids were visualized by autoradiography and quantified by phosphoimaging (Molecular Dynamics, Sunnyvale, CA, USA). Individual phospholipid levels are expressed as the percentage of the total 32P-lipid fraction.

Drought tolerance assays

Drought assay were performed as described previously (Hua *et al.*, 2012; Osakabe *et al.*, 2013) with some changes. Seeds were stratified at 4°C in the dark and sowed in soil pots (4.5 cm x 4.5 cm x 7.5 cm) containing equal amounts (80 g) of soil. Nine plants per pot were grown under short-day conditions (22 °C with 12 h light/12 h dark) for 4 weeks, and then subjected to dehydration by withholding them for water for 2 weeks, while control plants were normally watered. At this point, plants were photographed. Each experiment used 36 plants per genotype and experiments were repeated at least 3 times.

To assay water-loss, rosettes from 4-week-old plants were detached and FW determined every hour by weighing. Water content was calculated as the percentage from the initial FW. Twenty plants were used for each experiment, which was repeated at least 3 times.

ACKNOWLEDGEMENTS

This work was financially supported by the China Scholarship Council (CSC File No. 201206300058 to Q.Z) and by the Netherlands Organization for Scientific Research (NWO; 867.15.020 to T.M.).

REFERENCES

Chapter 4

SUPPLEMENTAL DATA

Supplemental Figure S1. Sugar composition of wild type- and plc5/7-mutant seeds. Sugars were extracted from dry seeds and quantified by HPAEC-PAD. Quantities were corrected through internal standards, and transformed into mg of sugar per gram of dry material. Values represent the means of triplicates ± SE of three independent experiments.

Supplemental Figure S2. Decreased ABA sensitivity of plc7 mutants in stomatal closure. Leaves from 3-weeks old plants were stripped and peels were incubated in opening buffer with light for 3 h until stomata were fully open. Peels were then treated with different concentrations of ABA for 90 mins, after which stomata were digitized and the aperture width measured for wild type and plc7-3 (left) or plc7-4 (right). Values are means ± SE of at least three independents (n >100). Data was analyzed by 2-way ANOVA. Statistical significant differences between genotypes are indicated by letters (P<0.05, Dunn’s method).