Application of pattern spectra and convolutional neural networks to the analysis of simulated Cherenkov Telescope Array data

DOI
10.22323/1.395.0697

Publication date
2022

Document Version
Final published version

Published in
Proceedings of Science

License
CC BY-NC-ND

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Application of pattern spectra and convolutional neural networks to the analysis of simulated Cherenkov Telescope Array data

J. Aschersleben, R. F. Peletier, M. Vecchi and M. H. F. Wilkinson on behalf of the CTA Consortium
(a complete list of authors can be found at the end of the proceedings)

*Kapteyn Astronomical Institute
University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence
University of Groningen, PO Box 407, NL-9700 AK Groningen, The Netherlands
E-mail: j.j.m.aschersleben@rug.nl, r.f.peletier@rug.nl, m.vecchi@rug.nl, m.h.f.wilkinson@rug.nl

The Cherenkov Telescope Array (CTA) will be the next generation gamma-ray observatory and will be the major global instrument for very-high-energy astronomy over the next decade, offering 5×10 better flux sensitivity than current generation gamma-ray telescopes. Each telescope will provide a snapshot of gamma-ray induced particle showers by capturing the induced Cherenkov emission at ground level. The simulation of such events provides images that can be used as training data for convolutional neural networks (CNNs) to determine the energy of the initial gamma rays. Compared to other state-of-the-art algorithms, analyses based on CNNs promise to further enhance the performance to be achieved by CTA.

Pattern spectra are commonly used tools for image classification and provide the distributions of the shapes and sizes of various objects comprising an image. The use of relatively shallow CNNs on pattern spectra would automatically select relevant combinations of features within an image, taking advantage of the 2D nature of pattern spectra. In this work, we generate pattern spectra from simulated gamma-ray events instead of using the raw images themselves in order to train our CNN for energy reconstruction. This is different from other relevant learning and feature selection methods that have been tried in the past. Thereby, we aim to obtain a significantly faster and less computationally intensive algorithm, with minimal loss of performance.

37th International Cosmic Ray Conference (ICRC 2021)
July 12th – 23rd, 2021
Online – Berlin, Germany
1. Introduction

The interaction of a gamma ray with the Earth atmosphere induces a particle shower, which produces a flash of Cherenkov light. Imaging atmospheric Cherenkov telescopes (IACTs) can capture the Cherenkov emission at ground level, which enables the estimation of the energy of the initial gamma ray. The Cherenkov Telescope Array (CTA)\(^1\) will host the next generation of IACTs and will offer a \(5 - 10 \times\) better flux sensitivity than current generation gamma-ray telescopes [1]. The telescopes will be located in both the northern and southern hemispheres at the Roque de los Muchachos Observatory in La Palma (CTA North) and the Atacama Desert in Chile (CTA South). The combination of telescopes of three different sizes: Small-Sized Telescopes (SSTs), Medium-Sized Telescopes (MSTs) and Large-Sized Telescope (LSTs) will provide a wide energy range between 20 GeV and 300 TeV and a precision of \(\sim 1^\prime\) on individual photons for the upper end of the CTA energy range, which is the best resolution achieved anywhere above the X-ray domain.

Convolutional neural networks (CNNs) are a subclass of artificial neural networks (ANNs) [2] and can be trained with the Cherenkov images simulated for CTA to determine the energy of the initial gamma rays. Compared to other state-of-the-art algorithms, analyses based on CNNs promise to further improve the performance to be achieved by CTA [3–6]. However, the construction of CNNs is typically very computationally expensive due to a large number of free parameters and the amount of data required. Pattern spectra [7] are commonly used tools for image classification, which provide the distributions of the shapes and sizes of various objects comprising an image and can significantly reduce the computational power needed to train a CNN. They are constructed using a technique from mathematical morphology known as granulometries [8], which can be computed with connected operators [9]. Compared to other classical approaches, connected operators have the advantage of not introducing any distortions into the image (see Ref. [10] for a detailed study of image distortion in IACT event reconstruction with neural networks). This is achieved by the merging of flat zones (regions in the image with the same colour) within the image, which prevents splitting or deforming of existing features and the implementation of unwanted new edges.

2. Dataset

The dataset consists of simulated shower images of gamma-ray events with CTA South (zenith angle of 20°, North pointing) generated with a 0.4° offset from the telescope pointing position. In this analysis only the charge information (i.e. the integrated photodetector pulse) of SST images is considered. The energy distribution of the events is shown in Figure 1 and covers an energy range between 20 GeV and 300 TeV. The energy used to simulate each individual event is referred to \(E_{\text{true}}\) in the following.

In order to achieve the best CNN performance a large number of gamma-ray events is required. Therefore, the dataset consists of \(\sim 1 \times 10^6\) gamma-ray events. Depending on the initial gamma-ray energy and the impact position and direction, a single event can be captured by several SSTs. As a first step towards the implementation of pattern spectra for the analysis of CTA images, images of the same event captured by several SSTs are combined into one single image by adding up the individual pixel values of each image.

\(^1\)www.cta-observatory.org
Application of pattern spectra and CNNs on CTA data

J. Aschersleben

3. Analysis

The pattern spectra algorithm is based on the algorithm presented in Urbach et al. (2007) [11], which creates 2-dimensional (size & shape) pattern spectra. It detects objects within the image, which are the connected components of threshold sets of the image. The size of the objects in the image is classified by the area of the object A. The shape of the objects in the image is classified by I/A^2, which is the ratio of the moment of inertia I to the square of the area A. The moment of inertia I describes the sum of squared differences to the centre of gravity of the object. For a more detailed definition of the area A and the moment of inertia I, see Urbach et al. (2007) [11]. In order to construct a pattern spectrum from a CTA image, the CTA image has to be converted into an 8-bit greyscale image in PGM format due to current software limitations. This conversion includes a loss of information, which will be discussed in more detail in the last section. An example of a pattern spectrum obtained from a ~ 1.9 TeV gamma-ray event image is shown in Figure 2. The top-left image shows the input image and the bottom-left image the corresponding pattern spectrum. The remaining three image pairs show the detected features in the input image (features highlighted in orange, subfeatures highlighted in red) corresponding to the specific pixel in the pattern spectrum (marked in red). Whereas the features detected in the second image correspond mostly to noise, the features in the third and fourth image correspond to the Cherenkov photons emitted by the particle shower, which are of particular interest for energy reconstruction.

Taking either the original CTA images, 8-bit CTA images or pattern spectra as input, the CNN provides the (reconstructed) energy as an output, which is referred to E_{rec} in the following. The 8-bit CTA image analysis operates as a reference in order to get a rough estimate for the loss of information during the 8-bit conversion. The CNN is constructed using *Tensorflow 2.3.1* [14] and *Keras 2.4.3* [15]. It consists of six convolutional layers, followed by a global average pooling and a dense layer, which results in a total of 26,729 free parameters. For training the CNN, a batch size of 32, the ADAptive Moment (ADAM) optimizer [13], a constant learning rate of 10^{-3}, the mean squared error as loss function and 50 epochs were chosen. The dataset was split into 90% training
Application of pattern spectra and CNNs on CTA data

J. Aschersleben

data (of which 10% was used for validation) and 10% test data. An illustration of our CNN is shown in Figure 3. The CNN is trained and its performance is evaluated with the original CTA images, the 8-bit CTA images, and the pattern spectra separately and the corresponding results are compared in the next section.

Figure 2: Top: 8-bit CTA images with highlighted features (in red/orange) detected by the pattern spectra software. Bottom: pattern spectra with the pixel (in red) corresponding to the detected features.

Figure 3: Sketch of the CNN architecture used for this analysis. Although the CTA images and the pattern spectra are applied separately on the CNN, the CNN architecture is the same in both cases.

4. Results

The reconstructed energy E_{rec} as a function of the true energy E_{true} is shown in Figure 4 (top-left, top-right & bottom-left). The black line corresponds to $E_{\text{rec}} = E_{\text{true}}$. In all cases, the CNN is able to reconstruct the energy of the initial gamma ray for the majority of events. The energy scattering
of the CNN with pattern spectra as input is larger compared to the results achieved with original and 8-bit CTA images. In order to quantify the results in more detail, the energy was binned logarithmically and the relative energy error was calculated for each event via

\[
\frac{\Delta E}{E_{\text{true}}} = \frac{E_{\text{rec}} - E_{\text{true}}}{E_{\text{true}}}. \quad (1)
\]

A histogram was created for each energy bin and the distribution was bias-corrected by subtracting the corresponding median value. The energy resolution \((\Delta E / E_{\text{true}})_{68}\) is defined as the 68th percentile of the histogram \(|E_{\text{rec}} - E_{\text{true}}|_{\text{corr}} / E_{\text{true}}\). The comparison of the obtained energy resolution is shown in Figure 4 (bottom-right). As already indicated in Figure 4 (top-left, top-right & bottom-left), the CNNs based on the original and 8-bit CTA images outperform the CNN based on pattern spectra for all energies. The CNN based on 8-bit CTA images results in a lower energy resolution for almost all energies compared to the original CTA images. The energy resolution stated in this analysis does not represent the actual energy resolution that is expected by the CTA Observatory at the end of the construction phase.

Figure 4: Reconstructed energy \(E_{\text{rec}}\) as a function of true energy \(E_{\text{true}}\) obtained with the original CTA images (top-left), 8-bit CTA images (bottom-left) and pattern spectra (top-right). Energy resolution comparison (bottom-right). The energy resolution stated in this analysis does not represent the actual energy resolution that is expected by the CTA Observatory at the end of the construction phase.
The maximum RAM and computing time needed at the *Peregrine HPC cluster* on an *Nvidia V100 GPU* in order to train our models is shown in Table 1. The CNN based on pattern spectra needs 65% less maximum RAM and is 41% faster compared to the CNN based on the original CTA images.

Table 1: Computational performance of the CNNs based on (a) original CTA images and (b) pattern spectra during training. The training was performed on a *Nvidia V100 GPU* at the *Peregrine HPC cluster*.

<table>
<thead>
<tr>
<th></th>
<th>CTA images</th>
<th>pattern spectra</th>
<th>1 - ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. RAM (GB)</td>
<td>30.26</td>
<td>10.60</td>
<td>65%</td>
</tr>
<tr>
<td>Time (s)</td>
<td>7176</td>
<td>4220</td>
<td>41%</td>
</tr>
</tbody>
</table>

5. Conclusions & Outlook

For the first time, the energy of gamma-ray events was reconstructed by applying pattern spectra on a CNN. The fact that the pattern spectra based analysis is currently not achieving the same accuracy as the original CTA images based analysis can partly be explained by the loss of information during the conversion of the CTA images into 8-bit images before they can be put into the pattern spectra software. Thus, the pattern spectra software currently receives only information about the size and shape of the features within the image rather than getting also information about the total Cherenkov photon emission emitted by the particle shower. Since the energy of the initial gamma ray is directly proportional to the total number of Cherenkov photons emitted by the shower, this is very crucial information. However, the fact that also the CNN based on 8-bit CTA images outperforms the pattern spectra analysis for all energies might indicate that this loss of information is not the main reason for the observed difference in energy resolution.

The significant reduction in computational power and time needed to train our CNN indicates that pattern spectra have potential in full gamma-ray event reconstruction analyses based on CTA data. In the future, we will adjust the pattern spectra software to create pattern spectra directly from the CTA images without any loss of information. We see also a lot of room for improvement in the CNN architecture that can be adjusted more specifically on the characteristics of pattern spectra. Due to the smaller size of the pattern spectra, a simpler CNN architecture might already be sufficient to achieve a similar performance. Lastly, we aim to improve the background rejection of CTA by applying pattern spectra on the particle classification between gamma rays and protons.

Acknowledgments

This work was conducted in the context of the CTA Consortium and CTA Observatory. We gratefully acknowledge financial support from the agencies and organizations listed at http://www.cta-observatory.org/consortium_acknowledgments. We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high performance computing cluster.
Application of pattern spectra and CNNs on CTA data
J. Aschersleben

References

[15] F. Chollet et al., Keras, 2015, Available at: https://github.com/fchollet/keras
Application of pattern spectra and CNNs on CTA data

J. Aschersleben
Application of pattern spectra and CNNs on CTA data

J. Aschersleben

1: Centre for Space Research, North-West University, Potchefstroom, 2520, South Africa
2: Institute for Cosmic Ray Research, University of Tokyo, 5-1-1, Kashiwa-nishi, Kashiwa, Chiba 277-8582, Japan
3: Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
4: AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, CEA Paris-Saclay, IRFU/IDAP, Bat 709, Orme des Merisiers, 91191 Gif-sur-Yvette, France
5: Centre for Advanced Instrumentation, Dept. of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
6: Port d’Informació Científica, Edifici D, Carrer de l’Albareda, 08193 Bellaterra (Cerdanyola del Vallès), Spain
7: School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
8: Laboratoire Leprince-Ringuet, École Polytechnique (UMR 7638, CNRS-IN2P3, Institut Polytechnique de Paris), 91128 Palaiseau, France
9: Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, USA
10: University of Oslo, Department of Physics, Sem Sælandsvæ 24 - PO Box 1048 Blindern, N-0316 Oslo, Norway
11: EMTEFL department and IPARCS, Universidade Complutense de Madrid, 28040 Madrid, Spain
12: Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain
13: Centre for Space Sciences (ICE-SCIS), and Institut d’Estudis Espacials de Catalunya (IEEC), and Institució Catalana de Recerca I Estudis Avançats (ICREA), Campus UAB, Carrer de Can Magrans, s/n, 08193 Cerdanyola del Vallés, Spain
14: Institut de Física Teórica UAM/CSIC and Departament de Física Teòrica, Universitat Autònoma de Madrid, c/Nicolás Cabrera I Estudis Avançats (ICREA), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Vallès, Spain
15: Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland
16: Universidad Nacional de México, Delegación Coyoacán, 04510 Ciudad de México, Mexico
17: University of Geneva - Département de physique nucléaire et corpusculaire, 24 rue du Général-Dufour, 1211 Genève 4, Switzerland
18: INFN Dipartimento di Scienze Fisiche e Chimiche - Università degli Studi dell’Aquila and Gran Sasso Science Institute, Via Vetoio 1, Viale Crespi 7, 67100 L’Aquila, Italy
19: Instituto de Astronomía, Geofísico, y Ciencias Atmosféricas - Universidade de São Paulo, Ciade Universitária, R. do Matão, 1226, CEP 05508-090, São Paulo, SP, Brazil
Application of pattern spectra and CNNs on CTA data

J. Aschersleben

20 : LUTH, GEPI and LERMA, Observatoire de Paris, CNRS, PSL University, 5 place Jules Janssen, 92190, Meudon, France
21 : INAF - Osservatorio di Astrofisica e Scienza dello spazio di Bologna, Via Piero Gobetti 93/3, 40129 Bologna, Italy
22 : INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 - 50125 Firenze, Italy
23 : INFN Sezione di Perugia and Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
24 : INFN Sezione di Napoli, Via Cintia, ed. G, 80126 Napoli, Italy
25 : INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
26 : Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
27 : Aix-Marseille Université, CNRS/IN2P3, CPPM, 163 Avenue de Luminy, 13288 Marseille cedex 09, France
28 : INAF - Osservatorio Astronomico di Roma, Via di Frascati 33, 00040, Monteporzio Catone, Italy
29 : INAF - Osservatorio Astrofisico di Catania, Via S. Sofia, 78, 95123 Catania, Italy
30 : Grupo de Electrónica, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
31 : National Astronomical Research Institute of Thailand, 191 Huay Kaew Rd., Suhep, Muang, Chiang Mai, 50200, Thailand
32 : Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Tenerife, Spain
33 : FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Pra, Czech Republic
34 : Astronomical Institute of the Czech Academy of Sciences, Boceni II 1401 - 14100 Prague, Czech Republic
35 : CCTVal, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
36 : ETH Zurich, Institute for Particle Physics, Schafmattstr. 20, CH-8093 Zurich, Switzerland
37 : The University of Manitoba, Dept of Physics and Astronomy, Winnipeg, Manitoba R3T 2N2, Canada
38 : Department of Astronomy, University of Geneva, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland
39 : Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
40 : Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, RJ 22290-180, Rio de Janeiro, Brazil
41 : Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain
42 : Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
43 : School of Physics, University of New South Wales, Sydney NSW 2052, Australia
44 : INAF - Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy
45 : Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, 74000 Annecy, France
46 : Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44221 Dortmund, Germany
47 : University of Zagreb, Faculty of electrical engineering and computing, Unska 3, 10000 Zagreb, Croatia
48 : University of Namibia, Department of Physics, 340 Mandume Ndumayo Ave., Pioneerspark, Windhoek, Namibia
49 : Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycya 18, 00-716 Warsaw, Poland
50 : Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
51 : Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
52 : Deutsches Elektronen-Synchrotron, Platanenallee 6, 15738 Zeuthen, Germany
53 : Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
54 : RIKEN, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
55 : INFN Sezione di Padova and Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy
56 : Escuela Politécnica Superior de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, Edif. Af. 1, 23071 Jaén, Spain
57 : Department of Physics and Electrical Engineering, Linnaeus University, 351 95 Vaxjo, Sweden
58 : University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000 Johannesburg, South Africa
59 : Institut für Theoretische Physik, Lehrstuhl IV, Plasma-Astroteilchenphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
60 : Faculty of Physics and Applied Computer Science, University of Łódź, ul. Pomorska 149-153, 90-236 Łódź, Poland
61 : INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano, Via A. Corti 12, 20133 Milano, Italy
62 : INFN and Università degli Studi di Siena, Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente (DSFTA), Sezione di Fisica, Via Roma 56, 53100 Siena, Italy
63 : Center for Astrophysics | Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138, USA
64 : INFN Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy
65 : Finnish Centre for Astronomy with ESO, University of Turku, FI-20014 University of Turku, Finland
66 : Podstrzych Institute for Applied Problems in Mechanics and Mathematics NASU, 3B Naukova Street, 01014 Orsay, Cedex, France
67 : INFN Sezione di Pisa, Largo Pontecorvo 3, 56217 Pisa, Italy
68 : INFN Sezione di Napoli, Via Cintia, ed. G, 80126 Napoli, Italy
69 : INFN Sezione di Perugia and Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
70 : INFN Sezione di Napoli, Via Cintia, ed. G, 80126 Napoli, Italy
71 : INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
72 : INFN Sezione di Bari and Politecnico di Bari, via Orabona 4, 70124 Bari, Italy
73 : INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
74 : INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
75 : INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
Application of pattern spectra and CNNs on CTA data

J. Aschersleben
Application of pattern spectra and CNNs on CTA data

J. Aschersleben
Application of pattern spectra and CNNs on CTA data

J. Aschersleben

178: Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
179: Graduate School of Science and Engineering, Saitama University, 255 Sano-Ohkubo, Sakura-ku, Saitama city, Saitama 338-8570, Japan
180: Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
181: Centre for Quantum Technologies, National University Singapore, Block S15, 3 Science Drive 2, Singapore 117543, Singapore
182: Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba, 305-0801, Japan
183: Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom
184: Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 3001, CEP: 09.210-580, Santo André - SP, Brazil
185: Departamento de Física e Astronomia, Sezione Astrophisca, Università di Catania, Via S. Sofia 78, 195123 Catania, Italy
186: Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
187: Texas Tech University, 2500 Broadway, Lubbock, Texas 79409-1035, USA
188: University of Zielona Góra, ul. Liceulna 9, 65-417 Zielona Góra, Poland
189: Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 boul. Tsarigradsko chaussee, 1784 Sofia, Bulgaria
190: University of Bialystok, Faculty of Physics, ul. K. Ciołkowskiego 1L, 15-254 Bialystok, Poland
191: Faculty of Physics, National and Kapodestrian University of Athens, Panepistimiopolis, 15771 Ilisia, Athens, Greece
192: Universidad de Chile, Av. Libertador Bernardo O’Higgins 1058, Santiago, Chile
193: Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
194: Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192, Japan
195: School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
196: Departamento de Astronomía, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile
197: Charles University, Institute of Particle & Nuclear Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
198: Astronomical Observatory of Ivan Franko National University of Lviv, 8 Kyryla i Mephodia street, Lviv, 79005, Ukraine
199: Kobayashi-Maskawa Institute (KMI) for the Origin of Particles and the Universe, Nagoya University, Chikusa-ku, Nagoya
200: Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
201: Space Research Centre, Polish Academy of Sciences, ul. Bartłycka 18A, 00-716 Warsaw, Poland
202: Instituto de Física - Universidade de São Paulo, Rua do Matão Travesa R Nr.187 CEP 05508-090 Cidade Universitária, São Paulo, Brazil
203: International Institute of Physics at the Federal University of Rio Grande do Norte, Campus Universitário, Lagoa Nova CEP 59078-970 Rio Grande do Norte, Brazil
204: University College Dublin, Belfield, Dublin 4, Ireland
205: Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
206: Departamento de Física, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
207: Núcleo de Formação de Professores - Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 CEP 13565-905 - SP-310 São Carlos - São Paulo, Brazil
208: Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
209: Department of Physical Sciences, Aoyama Gakuin University, Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
210: University of the Free State, Polish Academy of Sciences, ul. Bartłycka 18A, 00-716 Warsaw, Poland
211: Rudjer Boskovic Institute, Bijenička 54, 10 000 Zagreb, Croatia
212: Department of Physics, Konan University, Kobe, Hyogo, 658-8501, Japan
213: Kumamoto University, 2-39-1 Karukami, Kumamoto, 860-8555, Japan
214: Department of Physics, Konan University, Kobe, Hyogo, 658-8501, Japan
215: University College Dublin, Belfield, Dublin 4, Ireland
216: Aalto University, Otakaari 1, 00076 Aalto, Finland
217: Agenzia Spaziale Italiana (ASI), 00133 Roma, Italy
218: Observatoire de la Cote d’Azur, Boulevard de l’Observatoire CS34229, 06304 Nice Cedex 4, France