Sensitivity of the Cherenkov Telescope Array to emission from the gamma-ray counterparts of neutrino events

Sergijenko, O.; Brown, A.M.; Fiorillo, D.; Rosales de León, A.; Satalecka, K.; Tung, C.F.; Reimann, R.; Glauch, T.; Taboada, I.; CTA Consortium; FIRESONG Team Collaboration

DOI
10.22323/1.395.0975

Publication date
2022

Document Version
Final published version

Published in
Proceedings of Science

License
CC BY-NC-ND

Citation for published version (APA):
Sensitivity of the Cherenkov Telescope Array to emission from the gamma-ray counterparts of neutrino events

Olga Sergijenko,a,\,* Anthony M. Brown,b Damiano Fiorillo,c Alberto Rosales de León,b Konstancja Satalecka,d Chun Fai Tung,e René Reimann,f Theo Glauchg and Ignacio Taboadah on behalf of the CTA Consortium and the FIRESONG Team Collaboration

aAstronomical Observatory, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
bCentre for Advanced Instrumentation (CfAI), Department of Physics, University of Durham, Durham, UK
cUniversita degli Studi di Napoli “Federico II” and INFN - Sezione di Napoli, Napoli, Italy
dDESY, 15738 Zeuthen, Germany
eCenter for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
fInstitut of Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
gTechnische Universität München, Physik-Department, D-85748 Garching bei München, Germany

E-mail: olga.sergijenko.astro@gmail.com, anthony.brown@durham.ac.uk, damianofg@gmail.com, alberto.rosales-de-leon@durham.ac.uk, konstancja.satalecka@desy.de, ctung6@gatech.edu, nerreimann@uni-mainz.de, theo.glauch@tum.de, itaboada@gatech.edu

We investigate the possibility of detection of the VHE gamma-ray counterparts to the neutrino astrophysical sources within the Neutrino Target of Opportunity (NToO) program of CTA using the populations simulated by the FIRESONG software to resemble the diffuse astrophysical neutrino flux measured by IceCube. We derive the detection probability for different zenith angles and geomagnetic field configurations. The difference in detectability of sources between CTA-North and CTA-South for the average geomagnetic field is not substantial. We investigate the effect of a higher night-sky background and the preliminary CTA Alpha layout on the detection probability.

\,*Presenter
1. Introduction

The Cherenkov Telescope Array will be the next generation ground-based imaging atmospheric Cherenkov telescope (IACT) array. Building upon the strengths of the current generation of telescopes, such as H.E.S.S., MAGIC and VERITAS, CTA will detect gamma rays from the energy of 20 GeV to above 300 TeV, with an order of magnitude improvement in sensitivity, as well as improved angular and energy resolution compared to the current generation IACTs. To achieve this improved performance CTA will consist of three telescope sizes, small, medium and large (SST, MST and LST respectively), with each one optimised for a specific energy range. CTA will consist of two arrays, one in each hemisphere, with the northern array (CTA-N) consisting of 13 telescopes spread over 0.5 km² in La Palma, Spain, and the southern array (CTA-S) consisting of 51 telescopes spread over 4 km² near Paranal, Chile.

In the context of the origin of transient astrophysical messengers, like neutrinos, CTA has several important performance characteristics. Firstly, CTA telescopes are designed to rapidly reposition to any location in the sky. As a point of reference, the LSTs can re-position to anywhere in the sky above 30° in just 20 seconds, thus minimising the time between receiving alerts from other observatories, such as IceCube, and starting observations. Secondly, the field-of-view (FoV) for LSTs will be ~ 4°, for MSTs ~ 8° and for SSTs ~ 10°.

Astrophysical sources capable of hadronic acceleration to relativistic energies have long been believed to be sources of astrophysical neutrinos, with the neutrinos originating from the decay of charged mesons created by the relativistic hadrons interacting with ambient gas and/or ambient radiation within the astrophysical source. The decay of these mesons results in the emission of neutrinos and gamma rays. As such, assuming that the photon opacity of the emission region is low enough to allow gamma rays to escape, searching for spatially and temporally correlated gamma-ray and neutrino emission allows us to constrain the origin of the astrophysical neutrinos observed by the IceCube Neutrino Observatory.

In April 2016, IceCube initiated a Realtime alert program in which neutrinos with high probability of being of astrophysical origin are reported in realtime via the Gamma-ray-burst Coordinate Network (GCN) [1]. The program reports ν_μ candidate events, which have the advantage of well-localized angular positions, typically $\Delta \psi \sim 0.5^{\circ}$. Starting on June 17, 2019, a new version of the realtime program became operational [2]. In this updated system, two streams of neutrinos are provided. The Gold stream delivers ~10 events per year with an average astrophysical signal purity of 50%. The Bronze stream has an average purity of 30% for an additional ~20 alerts per year.

In the Key Science Project proposed in the CTA Science Book [3] a total of 5 hours per site, per year, has been allocated to high-energy neutrino events observations, during the first 10 years of CTA operation. In these proceedings, we outline the ongoing work to quantify the efficiency with which CTA will observe gamma-ray emission from IceCube ‘Gold’ ν_μ alerts and all-sky ‘hot-spots’ (i.e. highest significance positions). The structure of the proceedings is as follows: in Section 2 we outline the simulation tool set we used to simulate IceCube alerts, in Section 3 we outline our conversion from the neutrino flux to the expected gamma-ray flux. Section 4 describes our simulations of CTA response to the expected gamma-ray flux, while in Section 5 we state our results.
2. **FIRESONG**

The sources of astrophysical high-energy neutrinos have not been unequivocally identified. Observations of TXS 0506+056 provide evidence that blazars or a sub-population of blazars are possibly responsible for a fraction of the neutrino flux [4, 5]. Nevertheless, evidence has only been claimed for one blazar/neutrino correlation therefore one has to be careful while extending its properties to describe the whole population of neutrino sources. The population of potential neutrino sources responsible for this flux can be parametrized in terms of local density (local density rate) vs. neutrino luminosity (flare energy) for steady (flaring) sources [6].

FIRESONG [7] is an open-source software that simulates neutrino source populations for a given local density and neutrino luminosity, by making additional assumptions on the source density evolution and their luminosity functions. In these proceedings we explore a source population which does not evolve with redshift (which is a simplified way to describe blazars) and one that follows the star formation rate (SFR) evolution. In both populations, sources are described as standard candles, i.e., all sources share the same neutrino luminosity. We also assume that the specific simulated class is responsible for 100% of the astrophysical neutrino flux [8]. FIRESONG is able to describe alerts with the same characteristics as those reported by IceCube. It should be noted that the rate of alert and its declination dependence depend on the IceCube response, notably the effective area. However, the redshift distribution of the sources of alerts depends on the cosmology model and the properties of the assumed population. For this work we have used the ΛCDM cosmological model with the parameters derived from the Planck-2015 data [9]: $\Omega_M = 0.308$, $\Omega_\Lambda = 0.692$ and $h = 0.678$.

2.1 **TXS-like flaring sources**

The first simulated scenario is modeled after the neutrino flare of TXS 0506+056 (TXS) in the season 2014-2015. We follow the model suggested by [10] in which only a fraction of blazars, including TXS, are responsible for the astrophysical neutrino flux. We will call this population *TXS-like sources*. The local burst density rate can be related to the local density of blazars as:

$$\dot{\rho} = F \times \rho_{BL}.$$ \hspace{1cm} (1)

where F is a fraction of the total number of blazars. As described before, we assume these sources are neutrino standard candles and display no evolution in the density rate. We also assume all TXS-like sources have the same flare duration in their local reference frame. Correcting the 110 days flare of TXS [4] for redshift, this corresponds to 82 days. Saturating the astrophysical neutrino flux with these flares results in a uniquely defined burst energy as a function of F.

2.2 **Steady sources**

The second simulated scenario is that the diffuse neutrino flux is due to steady neutrino sources. Although IceCube has not yet resolved a point source above 5σ significance, there are sources that have exceeded the IceCube sensitivity (Note that sensitivity in IceCube has a different definition than for IACTs; see Ref. [11]). These sources will be of interest for the NToO program of CTA. Assuming the neutrino sources are i) standard candles, ii) follow the star formation evolution from
[12] or a flat redshift evolution, and iii) saturate the astrophysical neutrino flux [8], we can simulate the whole-sky source population with different local density conditions. Then, the flux from each neutrino source is compared with IceCube sensitivity [11]. The sources that exceed IceCube sensitivity are used as seeds for the NToO for CTA.

3. VHE gamma-ray emission accompanying the neutrino emission

In order to calculate the gamma-ray flux emitted together with neutrinos we assume that they are produced in proton interactions with the surrounding photon field (pγ interactions) as usually postulated for Active Galactic Nuclei (AGN), and do not consider any additional absorption or cascading of γ rays inside the source. The secondary pions and other particles decay to neutrinos or gamma rays and in the simplest case the relation between the gamma-ray and neutrino production rates is:

$$\frac{1}{3} \sum_{\alpha} E_\gamma^2 A_{\nu_\alpha}(E_\nu) = \frac{K_\pi}{4} E_\gamma^2 A_\gamma(E_\gamma)$$

where $E_\gamma = 2E_\nu$ and $K_\pi = 1$ is a factor which accounts for the ratio of charged to neutral pions for $p\gamma$ interactions (for full derivation see e.g. [13]).

In the case of TXS-like sources we adapt the phenomenological model of [10]. The emerging gamma-ray flux is given by:

$$\frac{dn_\gamma}{dE} = A_\nu E^{-2} e^{(-E_L/E - E/E_H)}$$

where E_L and E_H are low- and high-energy cutoffs, and A_ν is proportional to the simulated neutrino flux normalization. In a case of TXS 0506+056 located at redshift $z = 0.335$, the $E_L = 0.1$ TeV and $E_H = 20$ TeV (see [10]). For the sources located at different redshifts, we scale those values accordingly.

4. CTA simulations

To simulate the CTA follow-up observations of the neutrino alerts we use the ctools package with gamma11b [14]. We employed the prod3b-v2 CTA instrument response functions (IRFs) for the standard IRF set for the preliminary Omega Configuration, and the prod3b CTA IRFs for the preliminary Alpha Configuration sub-array and high night sky background (NSB) conditions. When possible, 1,000 FIRESONG alerts were considered for each of our density-luminosity sample using the different IRFs configurations. We obtain the redshift, spectrum normalization and declination for the alerts from running FIRESONG, while the right ascension is assigned randomly. For all sources, we take into account extragalactic background light (EBL) absorption [15].

The first set of IRFs considered corresponds to the preliminary North and South Omega configuration: 4 LSTs and 15 MSTs for CTA-N and 4 LSTs, 25 MSTs and 70 SSTs for CTA-S [16]. The Omega IRFs set contains three zenith angle observation options at 20°, 40° and 60°; and it also accounts for the azimuth dependence coming from the magnetic field pointing direction: North, South or an average over the azimuth direction. The second IRFs set is the preliminary Alpha Configuration array, which was expected during the construction phase of CTA. A sub-array with a lower number of operational telescopes: 15 MSTs and 50 SSTs for CTA-S and 4 LSTs and 5 MSTs
for CTA-N. Note that it differs from the current official Alpha Configuration which includes 4 LSTs + 9 MSTs for CTA-N and 14 MSTs + 37 SSTs for CTA-S.

For each alert in the Omega Configuration, we simulate the photon events list for 30 min of either North or South site observations with a 5.0° ROI centered at a source (with the tool ctobsssim). We consider the following energy ranges: 0.03-200 TeV for 20°, 0.04-200 TeV for 40° and 0.110-200 TeV for 60° zenith angles (the lower and upper limits are defined by the IRFs). The energy dispersion effect was also considered in the simulated observations. We then perform a maximum likelihood fitting using the tool ctlike in an unbinned mode. The test statistic (TS) equal or higher than 25 qualifies as a source detection at the ~5σ level. For the Alpha configuration, zenith angle and azimuth pointing direction combinations were the same as in the Omega Configuration.

ctools simulations for SFR and flat evolution steady sources followed the same specifications (ROI, observation times, zenith angles).

The average Light of the Night Sky (LoNS) on La Palma site is around 1.7 × 10^{12} ph m^{-2} sr^{-1} s^{-1} on the IACTs sensitive range [17]. Measurements on both sites (CTA-N and CTA-S) showed similar NSB levels [18]. CTA observations up to 5 times the NSB level found in dark sky patches away from the Galactic Plane are anticipated when the moon is above the horizon. Simulations with our last set of IRFs tested this scenario, only 4 selected cases were at our disposal within the prod3b IRFs version: CTA-N 20° for North, South and average pointing direction in azimuth, and CTA-S 20° average in azimuth.

The ctools simulations for the TXS-like flaring sources followed the same scheme as in the steady source scenario. The previously described 3 IRFs sets were used. The IRF specifications such as energy range, ROI, zenith angles and magnetic field azimuth dependence were the same as in the steady source scenario.

5. Results

TXS-like flaring blazars. Figure 2 shows the detection probability as a function of flaring sources fraction F for 30 min observation time for CTA-N and CTA-S, assuming different
Figure 2: Detection probability as a function of flaring sources fraction F for 30 min observation time, assuming CTA-N (red) and CTA-S (blue) observations with zenith angle of 20°, and 60°. The solid, dashed and dotted lines represent 3 azimuth angle alignments: average, North and South.

zenith and azimuth angle configurations. This probability, taking into account a background event contamination of 50%, is highest for the population with 1% of flaring sources.

In this scenario, the detection probability is almost identical for CTA-N and CTA-S (difference <1%) with average azimuth direction. There’s also almost no difference for 20° and 40° zenith IRFs (again <1%), but with higher zenith angles (60°) we measure a decrease of ∼4%. The influence of magnetic field is minimal, although slightly more evident for CTA-N and for high zenith angles.

Steady sources. For the steady sources case we present the detection probability as a function of source luminosity (L) and local density (ρ). Fig. 3 shows our results for sources following the SFR evolution for 30 min observations with CTA-N and CTA-S respectively. The plots in rows from top to bottom represent results for zenith angle of 20°, 40° and 60°, while the columns separate three different azimuth angle alignments: North, average and South (from left to right).

With low to mid zenith angle observations (20°-40°) CTA-N will be able to detect all sources down to the density of $\rho=10^{-9}$ Mpc$^{-3}$. A drastic performance loss, up to 65%, is measured at high zeniths (60°). The effect of the geomagnetic field is reflected in the 10-30% difference in detection probability for North/South azimuth directions for low to high zeniths. The CTA-S array shows a similar response as CTA-N (within 10% for average azimuth). The main differences are a higher performance loss, up to 70%, at high zeniths (60°) and a smaller influence of geomagnetic field (5-15% difference in detection probability for North/South azimuth directions for low to high zeniths).

The higher NSB levels do not influence the detection probability for sources with $\rho > 10^{-10}$ Mpc$^{-3}$ and $L < 10^{55}$ erg/yr. For lower densities and higher luminosities the detection rate decreases by 10-15%. This effect is similar for both considered arrays and cosmological evolution scenarios.

In the Alpha configuration used in this study the CTA-N performance is almost the same as for the full Omega array. On the other hand, the lack of LSTs in the Alpha configuration of the CTA-S drastically diminishes its detection capability. The effect is most visible for $\rho < 10^{-9}$ and $L > 10^{55}$ erg/yr. In the most extreme cases the detection probability drops by one third for zenith angles of 20°, for 40° by half, and with 60° at most 10% of sources are detected.

We define the CTA redshift reach as the maximum redshift for 90% of the detected sources...
Figure 3: Detection probability (color scale) as a function of source luminosity (L) and local density (ρ) for sources following the SFR redshift evolution for 30 min observations with CTA-N. The plots in rows from top to bottom represent results for zenith angles of 20°, 40° and 60°, while the columns separate 3 azimuth angle alignments: North, average and South (from left to right). An abrupt drop in the detection probability from 1 to 0 occurs for L and ρ for which the FIRESONG output contained no alerts.

in the distribution for each local density (the last decile was cut due to the low number of detected sources). Figure 4 shows an example plot for the steady SFR evolution case at $\rho = 10^{-12}\text{Mpc}^{-3}$ observed with CTA-N and CTA-S. The highest redshift reach among our simulations is given by this density and is up to $z \sim 2.8$. For observations at 20° and 40° zenith angle the redshift reach is similar, however there is a big drop for 60°. This is a general behaviour for all the density range considered. For sources with the flat redshift evolution the trends are similar as those described above, but the redshift reach is lower than for the SFR evolution.

Acknowledgments

KS, AB, ARdL and OS gratefully acknowledge financial support from the agencies and organizations listed here: www.cta-observatory.org/consortium_acknowledgments. This work was performed within the CTA Transients Physics Working Group. KS acknowledge the the European Union’s Horizon 2020 Programme under the support of the European Union’s Horizon 2020 Programme under the AHEAD2020 project (grant agreement n. 871158). CFT and IT acknowledge support by NSF grant PHY-1505230. ARdL acknowledges the support of the National Council for Science and Technology from Mexico (CONACYT).

This research made use of ctools, a community-developed analysis package for Imaging Air Cherenkov Telescope data. ctools is based on GammaLib, a community-developed toolbox for the scientific analysis of astronomical gamma-ray data.

References

Figure 4: Redshift reach from CTA-N (left) and CTA-S (right) simulations for steady sources at density $\rho = 10^{-12}$ Mpc$^{-3}$ following SFR evolution. Zenith angles of 20°, 40° and 60° are considered. The solid lines represent the IRF with an average magnetic field, while the dashed (dotted) lines are for the pointing North (South) direction.

19: Instituto de Astronomia, Geofísico, e Ciências Atmosféricas - Universidade de São Paulo, Cidade Universitária, R. do Matão, 1226, CEP 05508-090, São Paulo, SP, Brazil
20: LUTH GeP and LERMA, Observatoire de Paris, CNRS, PSL University, 5 place Jules Janssen, 92190, Meudon, France
21: INAF - Osservatorio Astrofisico e Scienze dello spazio di Bologna, Via Piero Gobetti 93/3, 40129 Bologna, Italy
22: INFN - Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 - 50125 Firenze, Italy
23: INFN Sezione di Perugia and Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
24: INFN Sezione di Napoli, Via Cintia, ed. G, 80126 Napoli, Italy
25: INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientificla 1, 00133 Rome, Italy
26: Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
27: Aix-Marseille Université, CNRS/IN2P3, CPPM, 163 Avenue de Luminy, 13288 Marseille cedex 09, France
28: INAF - Osservatorio Astronomico di Roma, Via di Frascati 33, 00040, Monte Porzio Catone, Italy
29: INFN - Osservatorio Astrofisico di Catania, Via S. Sofia, 78, 95123 Catania, Italy
30: Grupo de Electronica, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
31: National Astronomical Research Institute of Thailand, 191 Huay Kaew Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
32: Instituto de Astrofísica de Canarias y Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Tenerife, Spain
33: FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 999/2, 182 19 Prague 8, Czech Republic
34: Astronomical Institute of the Czech Academy of Sciences, Bocni II 1401 - 14100 Prague, Czech Republic
35: CCTRval, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
36: ETH Zurich, Institute for Particle Physics, Schafmattstr. 20, CH-8093 Zurich, Switzerland
37: The University of Manitoba, Dept of Physics and Astronomy, Winnipeg, Manitoba R3T 2N2, Canada
38: Department of Astronomy, University of Geneva, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland
39: Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
40: Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, RJ 22290-180, Rio de Janeiro, Brazil
41: Instituto de Fisica de Altas Energias (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain
42: University of Groningen, KVI - Center for Advanced Radiation Technology, Zernikelaan 25, 9747 AA Groningen, The Netherlands
43: School of Physics, University of New South Wales, Sydney NSW 2052, Australia
44: INAF - Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy
45: Univ. Savoe Mont Blanc, CNRS, Laboratoire d'Annecy de Physique des Particules - IN2P3, 74000 Annecy, France
46: Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44221 Dortmund, Germany
47: University of Zagreb, Faculty of electrical engineering and computing, Unska 3, 10000 Zagreb, Croatia
48: University of Namibia, Department of Physics, 340 Mbande Ndumufayo Ave., Pioneerspark, Windhoek, Namibia
49: Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland
50: Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
51: Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
52: Deutsches Elektronen-Synchrotron, Platanenallee 6, 15738 Zeuthen, Germany
53: Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
54: RIKEN, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
55: INFN Sezione di Padova e Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy
56: Escuela Politécnica Superior de Jaén, Universidad de Jaén, Campus Las Lagunillas s/N, Edif. A3, 23071 Jaén, Spain
57: Department of Physics and Electrical Engineering, Linnaeus University, 351 95 Växjö, Sweden
58: University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000 Johannesburg, South Africa
59: Institut für Theoretische Physik, Lehrstuhl IV. Plasma-Astroteilchenphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
60: Faculty of Physics and Applied Computer Science, University of Łódź, ul. Pomorska 149-153, 90-236 Łódź, Poland
61: INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano, Via A. Corti 12, 20133 Milan, Italy
62: INFN and Università degli Studi di Firenze, Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente (DSFTA), Sezione di Fisica, Via Roma 56, 53100 Siena, Italy
63: Center for Astrophysics | Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02180, USA
64: INFN Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy
65: Finnish Centre for Astronomy with ESO, University of Turku, Finland, FI-20014 University of Turku, Finland
66: Pidstryhach Institute for Applied Problems in Mechanics and Mathematics NASU, 3B Naukova Street, Lviv, 79060, Ukraine
67: Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
68: Center for Astrophysics and Cosmology, University of Nova Gorica, Vipavska 11c, 5270 Ajdovščina, Slovenia
69: Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen, Germany
70: Research School of Astronomy and Astrophysics, Australian National University, Canberra ACT 0200, Australia
71: Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
72: INFN Sezione di Bari and Politecnico di Bari, via Orabona 4, 70124 Bari, Italy