Supporting information

Ultra-Sensitive Water Detection Based on NaErF₄@NaYF₄ High-Level-Doping Upconversion Nanoparticles

Jing Zuo, a Wei Wang, b Dongxu Zhang, c Xikun Wang, a Yanling Ma, a Peitong Li, a Yifan Li, a Wen Sun, a Youlin Zhang, c Langping Tu, a c Yulei Chang, a c Qiqing Li, a d Hong Zhang a d

a Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, 130025, Changchun, China

b Department of Neurosurgery, The First Hospital of Jilin University, 130000, Changchun, China

c State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China

d Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

e Yinuoke Medicine Science and Technology Company, 130000, Changchun, China

* Corresponding authors: E-mail: tulangping@163.com; yuleiChang@ciomp.ac.cn; q.li@uva.nl, h.zhang@uva.nl
Figure S1 The X-ray powder diffraction of NaErF₄ bare core and NaErF₄@NaYF₄ core-shell nanoparticles. All the peaks accord with the standard hexagonal structure of NaYF₄ nanoparticles (Joint Committee on Powder Diffraction Standards file number 27-0689).

Figure S2 The upconversion emission spectra of NaErF₄ bare core and NaErF₄@NaYF₄ core-shell nanoparticles in DMF solvent (the NaYF₄ shell thickness is 2 nm, excitation is at 800 nm with a power density 5 W/cm²).
Figure S3 The TEM images of (a) NaYF$_4$: 20% Yb, 2% Er bare core nanoparticle (diameter ~18 nm) and (b) the NaYF$_4$: 20% Yb, 2% Er@NaYF$_4$: 10% Yb, 20% Nd (diameter ~22 nm) core-shell nanoparticle.

Figure S4 Luminescence decay curves of ligand-free NaYF$_4$: 20% Er@NaYF$_4$ (a-e) and NaYF$_4$: 20% Yb@NaYF$_4$ (f) nanostructures dispersed in DMF solvent containing different water contents, a) 4S$_{3/2}$ energy state, b) 4F$_{9/2}$ energy state, c) 4I$_{9/2}$ energy state, d) 4I$_{11/2}$ energy state, e) 4I$_{13/2}$ energy state, f) 2F$_{5/2}$ energy state. The excitation and emission wavelengths are marked in the figure. All these two samples were constructed with a 20 nm core and 2 nm thick shell.
Figure S5 The testing results of core size-dependent LOD results (the NaErF4 core diameters are marked in the figure. All the competitors have the same amount of Er³⁺ ions, i.e., 0.02 mmol/mL NaErF4 inner core, and the NaYF4 shell thickness is fixed to 2 nm, the 800 nm excitation power density is 5 W/cm²). Theoretically, for ultra-sensitive detection, increasing the core size will bring in two positive effects: (1) decreased σ value, (2) increased adsorbed water molecules at each particle surface, and one negative effect (longer energy migration distance to connect the inner Er³⁺ and adsorbed water molecules). Our results indicate that within our testing range, with the increase of core size, the LOD value will first decrease and then increase. Therefore, the optimized core size is determined to 18 nm.
Figure S6 The TEM images of (a) the NaErF₄ bare core (∼18 nm) and NaErF₄@NaYF₄ core-shell nanoparticles with different shell thicknesses: (b) 2 nm, (c) 4 nm, and (d) 5.5 nm.

Figure S7 Water content dependence of the red UC emission intensity for NaErF₄@NaYF₄ core-shell nanoparticles, a) shell-thickness of 0.5 nm, b) shell-thickness of 1.0 nm. The emission intensity is the integration area from 580 to 700 nm. Excitation is at 800 nm with a power density of 5 W/cm².
Figure S8 Water dependence of the red UC emission intensity for NaYF₄: 20% Yb, 2% Er@NaYF₄: 10% Yb, 20% Nd structure (excitation is at 800 nm with a power density 5 W/cm², σ ≈ 0.048, K ≈ -0.07, LOD = 0.0085%).

Table S1 Luminescence decay lifetimes of {⁴S₃/₂, ⁴F₉/₂, ⁴I₉/₂, ⁴I₁₁/₂ and ⁴I₁₃/₂ energy states of Er³⁺ in the NaErF₄@NaYF₄ nanostructure.
Table S2 The measured water impurities from two purchased DMF solvents (I/I_0^* is measured from 100 μL original solvent mixed with 900 μL anhydrous DMF).

<table>
<thead>
<tr>
<th>DMF</th>
<th>Bought from</th>
<th>From factory's instruction (vol%)</th>
<th>Experimental I/I_0^*</th>
<th>Calculated H_2O vol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>Fuyu Fine Chemical Co., Ltdj</td>
<td><0.1</td>
<td>0.75907</td>
<td>0.05</td>
</tr>
<tr>
<td>Sample 2</td>
<td>Tiantai Chemical Co., Ltdj</td>
<td><0.1</td>
<td>0.71479</td>
<td>0.08</td>
</tr>
</tbody>
</table>