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ABSTRACT
The primary aim of this article is to provide an overview of per�uoroalkyl and poly�uoroalkyl substances (PFASs) detected in

the environment, wildlife, and humans, and recommend clear, speci�c, and descriptive terminology, names, and acronyms for
PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the
global scienti�c, regulatory, and industrial communities. A particular emphasis is placed on long-chain per�uoroalkyl acids,
substances related to the long-chain per�uoroalkyl acids, and substances intended as alternatives to the use of the long-chain
per�uoroalkyl acids or their precursors. First, we de�ne PFASs, classify them into various families, and recommend a pragmatic
set of common names and acronyms for both the families and their individual members. Terminology related to �uorinated
polymers is an important aspect of our classi�cation. Second, we provide a brief description of the 2 main production processes,
electrochemical �uorination and telomerization, used for introducing per�uoroalkyl moieties into organic compounds, and we
specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal
families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one
another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental
processes or by human metabolism, into long-chain per�uoroalkyl carboxylic or sulfonic acids, which are currently the focus of
regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds,
providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers.
Integr Environ Assess Manag 2011;7:513�541. � 2011 SETAC
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INTRODUCTION
��Fluorinated substances�� is a general, nonspeci�c name

that describes a universe of organic and inorganic substances
that contain at least 1 F atom, with vastly different physical,
chemical, and biological properties (Banks et al. 1994).
Synonyms include ���uorochemicals�� and ���uorinated chem-
icals.�� A subset of �uorinated substances is the highly
�uorinated aliphatic substances that contain 1 or more C
atoms on which all the H substituents (present in the
non�uorinated analogues from which they are notionally
derived) have been replaced by F atoms, in such a manner
that they contain the per�uoroalkyl moiety CnF2nþ1�. These
compounds are hereafter referred to as ��per�uoroalkyl and
poly�uoroalkyl substances�� and denoted by the acronym
PFASs, justi�cation for the choice of which is provided below.

Since 1950, PFASs and surfactants and polymers made with
the aid of PFASs have been widely used in numerous
industrial and commercial applications (Kissa 2001). The
C�F bond is extremely strong and stable (Smart 1994). The
chemical and thermal stability of a per�uoroalkyl moiety, in
addition to its hydrophobic and lipophobic nature, lead to
highly useful and enduring properties in surfactants and
polymers into which the per�uoroalkyl moiety is incorpo-
rated (Kissa 1994, 2001). Polymer applications include textile
stain and soil repellents and grease-proof, food-contact paper
(Rao and Baker 1994). Surfactant applications that take
advantage of the unparalleled aqueous surface tension�low-
ering properties include processing aids for �uoropolymer
manufacture, coatings, and aqueous �lm�forming foams
(AFFFs) used to extinguish �res involving highly �ammable
liquids (Kissa 1994; Taylor 1999; Kissa 2001). Numerous
additional applications have been described (3M Company
1999; Kissa 2001).

As a consequence of the widespread use of PFASs and their
resulting emissions, a broad range of these substances have
been detected in the environment, wildlife, and humans. The
global extent of such contamination was �rst demonstrated
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for per�uorooctane sulfonic acid, C8F17SO3H (PFOS) in
wildlife by Giesy and Kannan (2001). (It should be noted
that, throughout this article, we refer to all PFASs containing
an acid functionality as ��acids,�� regardless of whether or not
they are likely to be highly or completely ionized in
environmental or human matrices). At about the same time
as the study by Giesy and Kannan, Hansen et al. (2001)
discovered that PFOS, per�uorooctanoic acid (PFOA,
C7F15COOH), and other PFASs were present in numerous
samples of human blood purchased from biological supply
companies. This latter study suggested that PFASs were
responsible for a substantial fraction of the organic F detected
in human serum in earlier pioneering studies on individuals
not occupationally exposed to PFASs (e.g., Taves 1968;
Belisle 1981). The blood of a group of �uorochemical
industry workers had already been con�rmed to contain
PFOA (Ubel et al. 1980). The relative signi�cance of various
human exposure pathways for PFOS, PFOA, and related
substances, i.e., via food, food-contact materials, drinking
water, breast milk, airborne dust, air, and so forth, is a
crucially important question that has been the focus of much
research, reviewed recently by D�Hollander et al. (2010).
Another important research topic, directly related to expo-
sure of humans and wildlife, is the question of how and how
fast PFOS and PFOA, as well as their homologues and
precursors, are transported away from their emission sources
over long distances in air and/or water (Armitage et al. 2006;
Prevedouros et al. 2006; Wallington et al. 2006; Yarwood
et al. 2007; Wania 2007; Schenker et al. 2008; Armitage et al.
2009a, 2009b; Stemmler and Lammel 2010).

The global regulatory community is speci�cally interested
in ��long-chain�� per�uoroalkyl sulfonic acids (CnF2nþ1SO3H,
n � 6, PFSAs) and per�uoroalkyl carboxylic acids
(CnF2nþ1COOH, n � 7, PFCAs) and their corresponding
anions (USEPA 2009; OECD 2011), which have been shown
to be more bioaccumulative than their short-chain analogues
(Martin et al. 2003a, 2003b; Conder et al. 2008; Olsen et al.
2009). PFOS and PFOA are the 2 ��long-chain�� per�uoroalkyl
acids most often reported and discussed in the scienti�c
literature.

As explained, for example, by Paul et al. (2009) and
Prevedouros et al. (2006), the presence of PFOS, PFOA, and
similar substances in the environment originates from the
industrial use and environmental release of these substances,
from use and disposal of consumer products that may contain
them as an impurity, and from the abiotic or biotic
degradation of larger functional derivatives and polymers that
contain a per�uoroalkyl moiety and degrade in the environ-
ment to form PFOS, PFOA, and similar substances. These
precursor substances are more commonly used commercially
and may be released to the environment from industrial raw
materials and products and from consumer products and
articles.

Concerns about the potential environmental and toxico-
logical impact of long-chain PFSAs and PFCAs have led to: 1)
the phase-out of production of PFOS and related compounds
and PFOA by their major global manufacturer in 2000 to
2002 (3M Company 2000a; USEPA 2000); 2) the conclusion
of a stewardship agreement between the US Environmental
Protection Agency (USEPA) and 8 leading global companies
to reduce emissions and product content of PFOA and related
chemicals by 95% by 2010 and to work toward their
elimination by 2015 (USEPA 2006b); 3) a similar agreement

between the Canadian environmental and health authorities
and 5 companies to restrict PFCAs in products (Environment
Canada 2010); 4) a European Union Marketing and Use
Directive restricting the use of ��per�uorooctane sulfonates��
in the European Union (European Parliament 2006b); 5) the
inclusion of PFOS in the Stockholm Convention on Persistent
Organic Pollutants as an Annex B substance, i.e., restricted in
its use (UNEP 2009); and 6) other regulatory and voluntary
initiatives intended to reduce environmental emissions of this
family of compounds.

The concern over potential environmental and human
health impacts of PFASs has led to the launching of several
large research programs to elucidate their environmental
origin, fate, and impact, funded by various authorities in, for
example, the European Union (de Voogt et al. 2006; de
Voogt 2009), the United States (USEPA 2010), and Canada
(INAC 2009). Moreover, alternative PFASs intended to be
replacements for the long-chain PFSAs and PFCAs have been
developed and implemented in certain cases (Visca et al.
2003; Higuchi et al. 2005; Hintzer et al. 2005; Brothers et al.
2008; Ishikawa et al. 2008; Peschka et al. 2008; Gordon
2011).

Since the �rst reports revealing the widespread global
occurrence of PFOS in wildlife (Giesy and Kannan 2001)
and the frequent detection of PFASs in human blood (Hansen
et al. 2001) were published a decade ago, the scienti�c
literature on the environmental and toxicological aspects of
PFASs has burgeoned rapidly, and the rate of publication
currently exceeds 400 articles per year. In the existing body
of literature, including governmental reports, authors have
created terminology, names, and acronyms to describe
these substances. Unfortunately, inconsistencies have inevi-
tably arisen between various groups of authors. In the absence
of any concerted effort between scientists to agree on a
common terminology to designate the substances, a given
compound has often been denoted by a variety of different
names and acronyms, or a given acronym has been used to
represent different substances. In addition, names to
describe broad groups of substances have proliferated that
in some instances mistakenly portray substances that are very
different from one another as being the same. As a result, the
scienti�c literature for these substances has at times become
confusing. There is a need for harmonized terminology,
names, and acronyms that clearly and speci�cally describe
PFASs.

OBJECTIVES
The primary aim of this article is to recommend clear,

speci�c, and descriptive terminology, names, and acronyms
for PFASs, so as to promote a sound, uni�ed understanding
among all players in the PFAS industry, the environmental
science related to it, and the bodies responsible for the
regulation of chemicals, hence facilitating meaningful com-
munication among all concerned.

A particular emphasis is placed on the long-chain
per�uoroalkyl acids, substances related to the long-chain
per�uoroalkyl acids, and substances intended as alternatives
to the use of the long-chain per�uoroalkyl acids or their
precursors. We trust that the terminology, names, and
acronyms suggested will be broadly adopted by the ��per-
�uoroalkyl and poly�uoroalkyl substances community�� at
large, leading to harmonized usage and the avoidance of

514 Integr Environ Assess Manag 7, 2011�RC Buck et al.



misnomers. We have nevertheless refrained from creating an
all new nomenclature but have retained�as far as possible�
the most popular terms and acronyms used by authors to
date. In other words, our proposals result from a pragmatic
compromise among textbook and/or International Union for
Pure and Applied Chemistry (IUPAC) chemical nomencla-
ture, universal consistency, and frequently adopted ��legacy��
usage.

It is important to note that the substance terminology,
names and acronyms proposed in this article are in no way
intended to compete with or supplant IUPAC or Chemical
Abstracts Service (CAS) nomenclature. The latter names are
the designations of choice when a speci�c substance needs to
be unequivocally identi�ed, e.g., in of�cial regulatory docu-
ments. Our intention is to provide terminology, names, and
acronyms for pragmatic everyday use within the scienti�c
community. Thus, for example, the IUPAC name for
the substance C8F17SO2N(C2H5)CH2CH2OH is ��N-ethyl-
1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadeca�uoro-N-(2-
hydroxyethyl)octane-1-sulfonamide,�� but it is more conven-
ient to use the less rigorous but shorter designation ��N-ethyl
per�uorooctane sulfonamidoethanol�� (or the corresponding
acronym EtFOSE) for use in publications aimed at specialist
readers. Rigor can always be ensured by appending the
appropriate CAS Registry Number when each compound is
�rst mentioned in a publication. We encourage this practice
and provide CAS numbers for many commonly discussed
compounds in the Supplemental Data.

In addition to recommending terminology, names, and
acronyms, this article provides a brief review of certain topics
useful for understanding the occurrence of and relationships
between various families of PFASs in the environment. First,
we describe the major commercial processes for synthesizing
per�uoroalkyl moieties and the resulting compositions,
including formation of isomers and/or homologues of the
targeted main products. Second, we present the interrelation-
ships between families of PFASs that may be precursors to or
products of one another as a result of abiotic or biotic
transformations that may occur under industrial, environ-
mental, or metabolic conditions.

A large number of PFASs have been commercially
produced (OECD 2007), and not all are covered here. We
have included the main families, individual compounds, and
their degradation products that have been detected in
environmental and human samples related to long-chain
per�uoroalkyl acids, precursors to these substances, and their
short-chain �uorinated alternatives. We provide literature
references for studies that demonstrate how one family of
PFASs may be transformed into another under abiotic or
biotic conditions, and/or report the presence of the various
families in the environment or humans. Nevertheless, given
the vast number of publications on the most common PFASs,
such as the per�uoroalkyl sulfonic and carboxylic acids and
their anions and salts, the reader is referred to published
reviews and extensive surveys for comprehensive literature
compilations for these compounds (e.g., Kannan et al. 2004;
Houde et al. 2006; Lau et al. 2007; van Leeuwen and de Boer
2007; Jahnke and Berger 2009; Loos et al. 2009; Pistocchi and
Loos 2009; Rayne and Forest 2009b; Butt, Berger, et al. 2010;
de Voogt 2010; Kwok et al. 2010; Loos et al. 2010; Sturm and
Ahrens 2010; Ahrens 2011; Houde et al. 2011). Furthermore,
because an emphasis here is on how the various categories of
PFASs are interrelated, our citations on transformation

processes and environmental presence often refer to families
of substances, so the reader should consult the original
publications for details on individual substances.

It should be noted that in this article, the terms
��substance,�� ��compound,�� ��chemical,�� and ��species�� are
used interchangeably for designating a given molecular
structure, although it is recognized that in other contexts
their meanings may not be identical. For example, in the
European REACH legislation (European Parliament 2006a), a
��substance�� may include impurities and stabilizers in addition
to the main constituent.

KEY TERMINOLOGY AND USAGE ASSOCIATED
WITH PERFLUOROALKYL AND POLYFLUOROALKYL
SUBSTANCES

Per�uoroalkyl and poly�uoroalkyl substances and
per�uorocarbons de�ned

As de�ned above, PFASs are aliphatic substances contain-
ing one or more C atoms on which all the H substituents
present in the non�uorinated analogues from which they are
notionally derived have been replaced by F atoms, in such a
manner that PFASs contain the per�uoroalkyl moiety
CnF2nþ1�. More explicitly, we recommend that the family
of compounds denoted by the acronym PFAS should
encompass:

� Per�uoroalkyl substances, which are de�ned as aliphatic
substances for which all of the H atoms attached to C
atoms in the non�uorinated substance from which they are
notionally derived have been replaced by F atoms, except
those H atoms whose substitution would modify the nature
of any functional groups present. This usage is consistent
with the de�nition of ��per�uoro�� and ��per�uorinated��
provided by Banks et al. (1994, p. 2).

� Poly�uoroalkyl substances, de�ned here as aliphatic sub-
stances for which all H atoms attached to at least one (but
not all) C atoms have been replaced by F atoms, in such a
manner that they contain the per�uoroalkyl moiety
CnF2nþ1� (e.g., C8F17CH2CH2OH). Thus, whereas the
general chemical concept of ��poly�uorination�� embraces
compounds containing ��scattered�� multiple F atoms (such
as in CH2FCHFCHFCH2OH), as well as ��grouped�� ones
(such as in CF3CF2CH2COOH), we consider that only
those poly�uorinated substances having at least one
per�uoroalkyl moiety CnF2nþ1� belong to the PFAS family.

The differences between per�uoroalkyl and poly�uoroalkyl
substances are illustrated by 2 concrete examples in Table 1.

Poly�uoroalkyl substances have the potential (i.e., the
demonstrated or theoretical capability under appropriate
conditions) to be transformed abiotically or biotically into
per�uoroalkyl substances. For example, CnF2nþ1SO2
NHCH2CH2OH (a poly�uoroalkyl substance) may degrade
in the environment to CnF2nþ1SO3H (a per�uoroalkyl
substance).

The general term ��per�uoroalkyl(ated) substance,�� with
the acronym PFAS, was the �rst to be de�ned and widely used
to describe the broad class of highly �uorinated substances
observed in the environment (Hekster et al. 2002; Hekster
et al. 2003). It has been employed by the groups of scientists
who collaborated in the �nalized European Union PER-
FORCE project (de Voogt et al. 2006) and others who have
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followed their example. Soon thereafter, many authors began
using the acronym PFC and have de�ned it in many different
ways. As a result, the meaning of the acronym PFC is unclear
and not well de�ned. Moreover, we consider this choice to
have been an unfortunate and inappropriate one, given that
the acronym PFC has been used in of�cial Kyoto Protocol
documents since its adoption in 1997 to speci�cally designate
per�uorocarbons (United Nations 1998), one of the families
of greenhouse gases regulated by this important multilateral
international agreement. Clearly, a given acronym may
legitimately be used in different spheres of activity to denote
different concepts, provided these activities are suf�ciently
disconnected from each other. However, both PFCs and
PFASs belong to the overall family of �uorinated chemicals
and, hence, are too closely related to share a common
acronym. We, therefore, strongly urge the community to
adopt henceforth the use of the term PFASs (singular PFAS)
as an acronym for ��per�uoroalkyl and poly�uoroalkyl
substances�� and the term PFCs (singular PFC) exclusively
for ��per�uorocarbons.�� PFCs are notionally derived from
hydrocarbons by replacing all H atoms by F atoms, so that
they contain only the elements C and F, and functional groups
are absent. Examples of PFCs are tetra�uoromethane (CF4),
hexa�uoroethane (C2F6), octa�uorocyclobutane (c-C4F8),

and per�uorodecalin (C10F18). Those PFCs that contain
a CnF2nþ1� moiety are, by de�nition, members of the PFAS
family, but PFCs are chemically very stable substances, and
it is uncertain whether any of them can actually degrade in
the environment (e.g., in the upper atmosphere) to give
functionalized PFASs such as PFCAs that might ultimately be
deposited to the Earth�s surface.

��Fluorinated polymers�� and ���uoropolymers�� de�ned

We recommend using the broad generic term ���uorinated
polymers�� to encompass all polymers for which one or more
of the monomer units contains the element F, in the backbone
and/or in side chains. Fluorinated polymers may or may not
be PFASs, depending on whether they contain per�uoroalkyl
moieties.

In compliance with time-honored usage within the
industry, we recommend further that the term ���uoro-
polymers�� be applied only to a distinct subset of �uorinated
polymers, namely, those made by (co)polymerization of
ole�nic monomers, at least one of which contains F bound
to one or both of the ole�nic C atoms, to form a carbon-only
polymer backbone with F atoms directly attached to it, e.g.,
polytetra�uoroethylene.

Table 1. Examples of the correct and incorrect (or undesirable) uses of the proposed nomenclature for per�uoroalkyl and poly�uoroalkyl
substances (PFASs)

Example

Example statements

Correct Incorrect or undesirable

COOH 

F F F F F F

F

F
F F F F F F F

COOH 

F F F F F F

F

F
F H H F F F F

� Both are PFASs, within the family of
per�uoroalkyl and poly�uoroalkyl
substances

� Both are carboxylic acids

� Both are:
� Per�uoroalkyl substances, chemicals, compounds
� Per�uorinated substances, chemicals, compounds
� Poly�uoroalkyl substances
� Poly�uorinated substances
� Fluorocarbons
� Per�uorocarbons
� Fluorinated substances, chemicals, compounds
� Per�uorochemicals
� Per�uorinated chemicals
� Both contain �uorocarbons

COOH 

F F F F F F

   F

   F
F F F F F F F

� All H atoms on all C atoms in the
alkyl chain attached to the carboxylic
acid functional group are replaced
by F

� This is a: PFAS, per�uoroalkyl acid
(PFAA), per�uoroalkyl carboxylic
acid (PFCA)

� Speci�cally, this is per�uorooctanoic
acid, CAS number 335-67-1

� This is a:
� Per�uorinated substance, chemical, compound
� Fluorinated substance, chemical, compound
� Fluorocarbon
� Per�uorocarbon

COOH 

F F F F F F

F

F
F H H F F F F

� The alkyl chain attached to the
carboxylic acid functional group is
poly�uorinated

� This is a: PFAS, poly�uoroalkyl acid,
poly�uoroalkyl carboxylic acid

� Speci�cally, this is
2,2,3,3,4,4,5,5,7,7,8,8,8- trideca-
�uorooctanoic acid

� This is a:
� Poly�uorinated substance, chemical, compound
� Fluorinated substance, chemical, compound
� Per�uorinated substance, chemical, compound
� A portion of this compound is per�uorinated
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Chain length terminology

PFASs, especially the per�uoroalkyl acids and their anions,
are frequently referred to as ��long-chain�� or ��short-chain.��
To avoid any subjectivity associated with these adjectives, we
urge scientists to adopt the de�nition provided by the
Organisation for Economic Co-operation and Development
(OECD 2011), which stipulates that ��long-chain�� refers to:

� per�uoroalkyl carboxylic acids with eight carbons and
greater (i.e., with 7 or more per�uorinated carbons) and,

� per�uoroalkane sulfonates with six carbons and greater
(i.e., with 6 or more per�uorinated carbons).

The ��long-chain�� de�nitions for PFCAs and PFSAs are
different in number of C atoms because a PFSA (e.g.,
PFHxS, C6F13SO3H) with a given number of carbons (6 in
the example given) has a greater tendency to bioconcentrate
and/or bioaccumulate than a PFCA with the same number of
C atoms (e.g., PFHxA, C5F11COOH) (Martin et al. 2003a,
2003b). Although the OECD de�nition does not include
per�uoroalkyl substances other than carboxylates and sulfo-
nates, one may consider that a per�uoroalkyl chain with 7 or
more C atoms, e.g., C7F15�, is, in any case, ��long.��

Linear and branched terminology

Many PFASs exist as families of isomers due to branching
of the main C backbone (Alsmeyer et al. 1994). Linear
isomers, for which there can only be 1 congener per Cn
homologue group, are composed of carbons that are bonded
to only 1 or 2 other C atoms. Branched isomers, for which
there can be several or many congeners per Cn homologue
group, are composed of C atoms that may be bound to
more than 2 C atoms, resulting in a branching of the C
backbone. For example, PFOS is routinely present in many
environmental samples as a mixture of the linear isomer and
10 branched isomers (Riddell et al. 2009), whereas 89
congeners are theoretically possible (Rayne et al. 2008). To
address the characterization of the numerous isomers and
homologues arising during the electrochemical �uorination
process (see below), a systematic numbering system for
unequivocally identifying the linear and branched congeners
of several families of PFASs has been proposed (Rayne
et al. 2008). In the following text and in the Supplemental
Data, we will designate per�uoroalkyl moieties, in general, by
the formula CnF2nþ1�, thereby including both linear and
branched structures, even for substances that, given their
manufacturing process (see discussion below), may be
presumed to be predominantly linear, so that CnF2nþ1� is
equivalent to F(CF2)n�.

The mixture of linear and branched isomers presents
challenges in providing an accurate quanti�cation of many
PFASs in environmental matrices (Riddell et al. 2009).
Nevertheless, the study of linear and branched isomers is
useful for understanding sources of PFASs (De Silva and
Mabury 2004, 2006; De Silva et al. 2009; Benskin, De Silva,
et al. 2010; Benskin, Yeung, et al. 2010), because the
production of isomers varies by manufacturing process. The
telomerization process produces primarily or exclusively
linear PFASs, whereas the electrochemical �uorination
process produces a mixture of branched and linear isomers,
as discussed below.

Use of acronyms for acids and their anions

Many PFASs are acids and may be present as protonated or
anionic forms, or a mixture of both, depending on the pH of
the environmental matrix and the compound�s acid dissoci-
ation constant (pKa). The pKa values for many of the PFASs
(e.g., PFOA) are under review or are unknown, and for
simplicity, we will refer to all PFASs with an acid
functionality as ��acids,�� rather than as carboxylates, sulfo-
nates, and so forth, although recognizing that the dissociated
forms may well predominate in environmental and human
matrices. Furthermore, given that these acids are generally
analyzed as their anions (Larsen and Kaiser 2007), we
recommend using the same substance acronym to cover both
the protonated and ionized forms. However, an exception is
made to this general rule when it is essential to make a
distinction between the protonated acid form and the anionic
form, such as when reporting physicochemical properties or
modeling environmental fate and transport (Armitage et al.
2009b; Webster et al. 2010). In these cases, it is recom-
mended to designate PFCA anions by removing the ��A�� from
the individual substance acronym (e.g., PFO for per�uor-
ooctanoate), maintain the original abbreviation for the acid
(e.g., PFOA for per�uorooctanoic acid), and refer to both
chemical forms using a collective abbreviation involving
parentheses surrounding the ��A,�� e.g., PFO(A) for combined
per�uorooctanoate and per�uorooctanoic acid. In the case of
PFSAs, it is suggested to add the pre�x ��H-�� to the generic
substance acronym to form the abbreviation for the neutral
species. This leads, for example, to the abbreviations H-
PFOS, PFOS, and (H-)PFOS for the protonated, anionic, and
combined forms of the 8-C PFSA, respectively.

Surfactant terminology

Many PFASs are used as surfactants. Traditional surfactants
comprise a water-soluble hydrophilic portion and a water-
insoluble hydrophobic portion. Surfactants lower the surface
tension of a liquid, or the interfacial tension between 2
liquids, or between a liquid and a solid. In �uorinated
surfactants, the hydrophobic portion contains F bound to C,
often as a per�uoroalkyl moiety. The extent of �uorination
and location of the F atoms affect the surfactant properties.
PFAS surfactants, often referred to as ���uorinated surfac-
tants,�� ���uorosurfactants,�� ���uorinated tensides,�� or ���uo-
rotensides,�� are superior in their aqueous surface tension
reduction at very low concentrations and are useful as
wetting and leveling agents, emulsi�ers, foaming agents, or
dispersants (Kissa 1994; Taylor 1999; Kissa 2001). The term
��tenside�� is encountered most frequently in publications of
German origin, and the synonym ��surfactant�� is preferred
in English. Examples of �uorinated surfactants are NHþ

4
C7F15CO�

2 and Naþ C6F13CH2CH2SO�
3 .

Terminology describing direct and indirect sources of PFASs
to the environment

The sources of PFAS (e.g., PFOS or PFOA) emissions to
the environment are from their purposeful manufacture, use,
and disposal, from their being present as impurities in
substances that are emitted to the environment or from
precursor substances that degrade abiotically or biotically in
the environment. Harmonizing the terminology for describing
��sources�� is needed. We recommend that the term ��direct��
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emission sources should refer to emissions of a speci�c PFAS
as such, throughout its product life cycle from manufacture to
use and disposal, including emissions from a product in which
the PFAS is present as an impurity. On the other hand, the
term ��indirect�� emissions should apply to formation of a
speci�c PFAS by transformation of precursor substances in
the environment, wildlife, or humans, such as PFOA formed
from the biotransformation of 8:2 �uorotelomer alcohol
(FTOH), or C4F9COOH from the atmospheric degradation
of per�uorobutane sulfonamidoethanol. These de�nitions
depart somewhat from those of Prevedouros et al. (2006)
who considered emissions of impurities present in a product
to be ��indirect.�� These alternative de�nitions do not create
large differences in the emissions allocated to direct and
indirect sources in the case of PFOA, because the majority of
direct emissions are derived from manufacturing sources.

MANUFACTURING PROCESSES
For a better understanding of the environmental occur-

rence and behavior of PFASs, as well as the relationships
between families of PFASs, it is useful to describe brie�y the 2
principal manufacturing processes used to produce com-
pounds containing per�uoroalkyl chains.

Electrochemical �uorination

Electrochemical �uorination (ECF) is a technology in
which an organic raw material (e.g., octane sulfonyl �uoride
[OSF], C8H17SO2F) undergoes electrolysis in anhydrous HF,
leading to the replacement of all the H atoms by F atoms
(Alsmeyer et al. 1994). The free-radical nature of the process
leads to C chain rearrangement and breakage, resulting in a
mixture of linear and branched per�uorinated isomers and
homologues of the raw material, as well as PFCs and other
species (Alsmeyer et al. 1994). The ratio of linear to branched

per�uorinated C chains formed in the ECF process varies
depending on how the process is controlled but is roughly
70% to 80% linear and 20% to 30% branched in the case of
the synthesis of PFOS and PFOA (3M Company 1999;
Reagen et al. 2007; Lehmler 2009; Benskin, De Silva, et al.
2010). The ECF of C8H17SO2F yields 1) per�uorooctane
sulfonyl �uoride (POSF, C8F17SO2F), which is the major raw
material used to manufacture PFOS (Figure 1a); 2) a series of
functional raw materials such as sulfonamides, sulfonamido
alcohols, and sulfonamido acrylate monomers; and 3) a family
of surfactants and polymers derived therefrom (3M Company
1999; Lehmler 2005). Likewise, the ECF of octanoyl
�uoride, C7H15COF, is the major historic process used to
manufacture per�uorooctanoyl �uoride, C7F15COF, which is
further reacted to make PFOA and its salts (Figure 1b) (Kissa
1994). The major global historic manufacturer using the ECF
process produced 6-, 8-, and (to a lesser extent) 10-carbon
per�uoroalkane sulfonyl derivatives and products therefrom
(3M Company 2000c). In 2001, the company announced it
would no longer manufacture these substances or PFOA.
Others continued to use the ECF process to make these
substances and there are now new manufacturers of both
PFOS and PFOA. The major historic manufacturer is now
making alternative products using the ECF process based on
per�uorobutane, rather than per�uorooctane, sulfonyl chem-
istry (Renner 2006; Olsen et al. 2009; Ritter 2010).

Telomerization

Telomerization (Figure 2), which is a second important
process for manufacturing per�uoroalkyl substances, is a
technology in which a per�uoroalkyl iodide, CmF2mþ1I
(PFAI), most commonly penta�uoroethyl (or per�uoroethyl)
iodide, C2F5I (PFEI), is reacted with tetra�uoroethylene,
CF2��CF2 (TFE) to yield a mixture of per�uoroalkyl iodides

Figure 1. Synthesis, by electrochemical �uorination, of building blocks leading to PFOS, PFOA, and derivatives.
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with longer per�uorinated chains CmF2mþ1(CF2CF2)nI.
The starting iodide is referred to as the ��telogen�� and the
TFE as the ��taxogen.�� The product per�uoroalkyl iodide
mixture is often then reacted further, in a 2nd process step,
where ethylene is inserted, to give CmF2mþ1(CF2CF2)n
CH2CH2I. The per�uoroalkyl iodides, CmF2mþ1(CF2CF2)nI,
commonly known as Telomer A, resulting from telo-
merization, the 1st step, and the ���uorotelomer iodides,��
CmF2mþ1(CF2CF2)nCH2CH2I, commonly known as Telomer
B, formed in the 2nd step, are raw material intermediates
used to produce additional building blocks that are further
reacted to create a family of ���uorotelomer-based�� surfactant
and polymer products. This process is illustrated in Figure 2
for the synthesis of a �uorotelomer alcohol (FTOH), whereas
Figure 3 shows how a range of products can be synthesized
from the per�uoroalkyl iodide intermediate (exempli�ed for a
starting PFAI with 8 C atoms).

It should be noted that, in the ��X:Y�� designation, e.g., 8:2
�uorotelomer alcohol (C8F17CH2CH2OH, 8:2 FTOH), used
for naming �uorotelomer-based substances, X is the number
of per�uorinated C atoms and Y is the number of non-
�uorinated C atoms that originate from the commercial
synthesis. As with products derived from ECF, the major
global �uorotelomer manufacturers are making available
alternative shorter-chain products, in this case based on 6
(rather than 8) per�uoroalkyl C atoms (Renner 2006; Ritter
2010).

The most widely used commercial telomerization process
uses PFEI and TFE. When a linear telogen and taxogen are
employed in the telomerization process, the resulting
per�uoroalkyl iodides have exclusively linear per�uoroalkyl
chains. If a branched and/or odd C number telogen, e.g.,
(CF3)2CFI, is employed and reacted with TFE, the resulting
product mixture will be branched and/or will contain an odd
number of C atoms, despite the incorporation of an even
number of taxogen -CF2- units from the TFE. The extent to
which branched and/or odd C number telogens may have
been actually used in commercial practice is unclear. Such
telogens have been described in patents (e.g., Katsushima
et al. 1964; Millauer 1971; Grottenmu¤ ller et al. 2000), but

this does not necessarily mean that they have been employed
commercially. Nevertheless, in certain environmental sam-
ples, ��isopropyl branched PFCA isomers,�� i.e., ones with a
terminal (CF3)2CF- group, have been observed, albeit at low
levels compared to their linear counterparts, whereas other
branched isomers were either absent or present at much
lower levels. This is the case, inter alia, for PFCAs with 9, 11,
or 13 C atoms, i.e., per�uorononanoic, per�uoroundecanoic,
and per�uorotridecanoic acids (PFNA, PFUnDA, and
PFTrDA, respectively), which are believed to be manufac-
tured by the ozonation of a mixture of �uorotelomer ole�ns
(FTOs, CnF2nþ1CH��CH2) (Ukihashi et al. 1977; Aoyama
and Chiba 1997) and which may be formed by the environ-
mental transformation of telomer-derived precursor PFASs.
The isopropyl branched isomers of these PFCAs observed in
the environment (Furdui et al. 2008; De Silva et al. 2009;
Benskin, De Silva, et al. 2010; Zushi et al. 2010) may
therefore originate from the use of branched telogens for
manufacturing speci�c isomers of PFNA, PFUnDA, and
PFTrDA or their precursors. Nevertheless, the interpretation
of branched-to-linear isomer concentration ratios is not
straightforward, because certain environmental samples were
found to contain up to 3 other PFNA isomers (for example) in
addition to the linear and isopropyl branched forms (De Silva
and Mabury 2006; Benskin et al. 2007; De Silva et al. 2009).
Furthermore, the fact that individual isomers have different
physicochemical properties means the patterns in the
environment and biota will be transformed relative to the
pattern in the emission source.

FAMILIES OF PERFLUOROALKYL AND
POLYFLUOROALKYL SUBSTANCES

There are numerous families of PFASs (Figure 4), each
with many individual homologous members and isomers
thereof (Tables 2, 3, and 4). This section provides a
hierarchical overview of the common substance names,
acronyms, and chemical formulas of those families of
compounds and selected individual substances that have been
detected in environmental and human matrices. The dis-
cussion includes references to manufacturing processes and

Figure 2. Synthesis, by telomerization, of building blocks leading to �uorotelomer alcohols.
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uses for individual PFASs, as well as their environmental
occurrence, for a better understanding of their environ-
mental origin and how certain families and substances are
related to one another. Another key point of the discussion
is the likelihood that any or all members of PFAS groups
have the ability to transform to the long-chain per-
�uorinated acids, provided, of course, that they have a long
enough per�uoroalkyl moiety. A more comprehensive com-
pilation of individual substances is given in the Supplemental
Data, which also includes CAS registry numbers when
assigned.

First, we choose to make a fundamental distinction in
substances by dividing them into 2 primary categories:
nonpolymers and polymers (Figure 4). It is well accepted
that polymers generally have very different physical, chem-
ical, and biological properties than discrete chemical sub-
stances of low molecular weight (e.g., methyl methacrylate
versus poly[methyl methacrylate]). There are various de�-
nitions of a polymer, but the basic concept describes a
substance consisting of molecules characterized by the
sequence of one or more types of monomer unit. Precise
criteria for distinguishing polymers from nonpolymers have
been established, for instance, under the European Union
REACH legislation (ECHA 2008).

Nonpolymer per�uoroalkyl and poly�uoroalkyl substances

Per�uoroalkyl acids. Per�uoroalkyl acids (PFAAs) occupy a
prominent place in the literature on PFASs. The family of
PFAAs includes per�uoroalkyl carboxylic, sulfonic, sul�nic,
phosphonic, and phosphinic acids (Table 2). PFAAs are
important both because they are highly persistent substances
that have been directly emitted to the environment or are
formed indirectly from the environmental degradation or

metabolism of precursor substances, and because they (or
their salts) are or have been used in a wide variety of industrial
and consumer applications. Depending on their acid strength
(pKa value), PFAAs will dissociate to a greater or lesser extent
to their anions in aqueous environmental media, soils, or
sediments. The protonated and anionic forms have very
different physicochemical properties. For instance, the per-
�uorooctanoate anion is highly water-soluble and has
negligible vapor pressure, whereas per�uorooctanoic acid
has very low water solubility and suf�cient vapor pressure to
partition out of water into air (Kaiser et al. 2005; Kaiser et al.
2006; Webster and Ellis 2010; Webster et al. 2010).
However, for per�uoroalkyl carboxylic acids, there is an
ongoing debate regarding what is the environmentally
relevant pKa, with measured and estimated values varying
by several log units for PFOA (Burns et al. 2008; Goss 2008;
Cheng et al. 2009; Rayne and Forest 2010a).

Per�uoroalkyl carboxylic acids: Per�uoroalkyl carboxylic acids
(PFCAs; Table 2), also known as per�uorocarboxylic acids or
per�uoroalkanoic acids, have the general chemical
formula CnF2nþ1COOH. The most frequently discussed
PFCA is PFOA, C7F15COOH. The ammonium salt of PFOA,
ammonium per�uorooctanoate (APFO, NHþ

4 C7F15COO�)
has been used for many decades as an essential ��processing
aid�� in the manufacture of �uoropolymers such as polytetra-
�uoroethylene, by the dispersion (or emulsion) process (Kissa
1994; Fluoropolymer Manufacturing Group 2001). A chemi-
cally inert per�uorinated surfactant is chosen for this
application to avoid reaction of the growing free-radical
polymer chains with the processing aid, which would lead to a
lowering of the molecular weight of the polymer produced.
APFO and derivatives of it were also produced and marketed
for �uorosurfactant use (3M Company 2000a). Between 1947

Figure 3. Per�uoroalkyl carboxylic acids and �uorotelomer (FT) derivatives synthesized from per�uoroalkyl iodides (PFAIs), exempli�ed for a starting PFAI with
8 C atoms. N.B. Names and acronyms for substance families are indicated. Those for the speci�c compounds shown can be found in the Supplemental Data.
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and 2002, APFO was manufactured by multiple companies
around the world, probably mainly or exclusively by ECF of
octanoyl �uoride. In 2002, the major global historic APFO
manufacturer ceased its production (3M Company 2000a,
2000c). Thus, in addition to continued ECF-based APFO
production from the remaining ECF producers, a process in
which linear per�uorooctyl iodide (PFOI) synthesized by
telomerization is converted into PFOA was brought on-
stream in late 2002 to meet the need for this critical raw
material (Prevedouros et al. 2006). This new telomerization-
based process leads to only linear PFOA, whereas the ECF
process produces a mixture of linear (70%�80%) and
branched PFOA isomers.

Per�uorononanoic acid, C8F17COOH (PFNA) has also
been manufactured and used (from 1975 onward) as its
ammonium salt, NHþ

4 C8F17COO� (APFN), principally for
producing �uoropolymer dispersions, especially polyvinyli-
dene �uoride (PVDF) (Prevedouros et al. 2006). It has also
been marketed for general use as a �uorinated surfactant. A
sample of commercial ��APFN,�� known as Sur�on1 S-111,
has been analyzed and shown to contain signi�cant propor-

tions of the ammonium salts of longer PFCA homologues,
especially those with 11 (PFUnDA) and 13 (PFTrDA) C
atoms, which amounted to 20 and 5 weight percent of the
mixture, respectively (Prevedouros et al. 2006; in the
supporting information). The presence of these homologues
with 2 and 4 additional C atoms, as con�rmed by an industrial
user (van der Putte et al. 2010), indicates that Sur�on1 S-111
is derived from a mixture of �uorotelomer-based precursors
and, hence, suggests that it is constituted, predominantly or
exclusively, of linear isomers. These conclusions are consis-
tent with patents that claim manufacture of PFNA from
telomer-based raw materials, namely by the oxidation of
8:2 �uorotelomer ole�n, C8F17CH��CH2 (Ukihashi et al.
1977; Aoyama and Chiba 1997) or by the carboxylation of
C8F17I (Nagasaki et al. 1988). The APFN commercial
mixture has its own CAS Registry Number: 72968-38-8.
Several publications report toxicological studies on the
blend corresponding to this number, but do not provide
information on the proportions or linearity of the homologues
present (Mundt et al. 2007; Stump et al. 2008; Mertens et al.
2010).

Figure 4. Classi�cation hierarchy of environmentally relevant per�uoroalkyl and poly�uoroalkyl substances (PFASs).
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Table 3. Hierarchical overview of the nonpolymer poly�uoroalkyl substances: compounds for which all H atoms on at least one (but not all)
C atoms have been replaced with F

Classi�cation and chemical
structure CnF2nR1R, where R U Examples Uses

Per�uoroalkane
sulfonamido
substancesa

N-Alkyl per�uoroalkane
sulfonamides (MeFASAs,

EtFASAs, BuFASAs)

-SO2NH(R0) where
R0 … CmH2mþ1 (m … 1,2,4)

N-Methyl per�uorooctane sulfonamide
(MeFOSA), C8F17SO2N(CH3)H

Major raw material for
surfactant and surface

protection products

N-Ethyl per�uorobutane sulfonamide
(EtFBSA), C4F9SO2N(C2H5)H

N-Butyl per�uorooctane sulfonamide
(BuFOSA), C8F17SO2N(C4H9)H

Per�uoroalkane sulfonami-
doethanols (FASEs) and N-alkyl

per�uoroalkane sulfonami-
doethanols (MeFASEs,

EtFASEs, BuFASEs)

-SO2N(R0)CH2CH2OH where
R0 … CmH2mþ1 (m … 0,1,2,4)

Per�uorooctane sulfonamidoethanol
(FOSE), C8F17SO2NHCH2CH2OH

Major raw material for
surfactant and surface

protection products

N-Ethyl per�uorobutane
sulfonamidoethanol
(EtFBSE), C4F9SO2N(C2H5)CH2CH2OH

N-Alkyl per�uoroalkane
sulfonamidoethyl acrylates and
methacrylates (MeFAS(M)ACs,
EtFAS(M)ACs, BuFAS(M)ACs)

-SO2N(R0)CH2CH2O-
C(O)CH … CH2 and
-SO2N(R0)CH2CH2O-

C(O)C(CH3) … CH2 where
R0 … CmH2mþ1 (m … 1,2,4)

N-Ethyl per�uorooctane
sulfonamidoethyl acrylate

(EtFOSAC), C8F17SO2N(C2H5)CH2CH2O-
C(O)CH … CH2

Major raw material for
surfactant and surface

protection products

Per�uoroalkane sulfonamido-
acetic acids (FASAAs) and N-alkyl
per�uoroalkane sulfonamido-

acetic acids (MeFASAAs,
EtFASAAs, BuFASAAs)

-SO2N(R0)CH2COOH where
R0 … CmH2mþ1 (m … 0,1,2,4)

N-Ethyl per�uorooctane
sulfonamidoacetic acid

(EtFOSAA), C8F17SO2N(C2H5)CH2CO2H

Intermediate environ-
mental transformation

product

Fluorotelomer
substancesb

Semi�uorinated n-alkanes
(SFAs) and alkenes (SFAenes)

-(CH2)mH and
-CH … CH(CH2)m-2H, with
m … 2�16 and n … 6�16

Per�uorohexylhexadecane (F6H16),
F(CF2)6(CH2)16H

Ski wax; medical
applications

n:2 Fluorotelomer iodides
(n:2 FTIs) (Telomer B)

-CH2CH2I 8:2 Fluorotelomer iodide (8:2
FTI), C8F17CH2CH2I

Major raw material for
surfactant and surface

protection products

n:2 Fluorotelomer ole�ns
(n:2 FTOs)

-CH … CH2 6:2 Fluorotelomer ole�n (6:2
FTO), C6F13CH … CH2

Raw material for
surfactant and surface

protection products

n:2 Fluorotelomer alcohols
(n:2 FTOHs)

-CH2CH2OH 10:2 Fluorotelomer alcohol (10:2
FTOH), C10F21CH2CH2OH

Major raw material for
surfactant and surface

protection products

n:2 Unsaturated �uorotelomer
alcohols (n:2 FTUOHs)

-CF … CHCH2OH 8:2 Unsaturated �uorotelomer alcohol
(8:2 FTUOH), C7F15CF … CHCH2OH

Intermediate
environmental

transformation product

n:2 Fluorotelomer acrylates
(n:2 FTACs) and methacrylates

(n:2 FTMACs)

-CH2CH2OC(O)CH … CH2 and
-CH2CH2OC(O)C(CH3) … CH2

8:2 Fluorotelomer acrylate (8:2
FTAC), C8F17CH2CH2OC(O)CH … CH2

6:2 Fluorotelomer methacrylate
(6:2 FTMAC), C6F13CH2CH2O-

C(O)C(CH3) … CH2

Major raw material for
�uorotelomer-based

polymers used in surface
protection products

n:2 Poly�uoroalkyl phosphoric
acid esters, poly�uoroalkyl
phosphates, �uorotelomer

phosphates (PAPs)

(-CH2CH2O)xP(…O)(OH)3-x

where x … 1 or 2
8:2 Fluorotelomer phosphate
monoester (8:2 monoPAP),
C8F17CH2CH2OP(…O)(OH)2

8:2 Fluorotelomer phosphate diester
(8:2 diPAP), (C8F17CH2CH2O)2P(…O)OH

Surfactant and surface
protection products

(Continued )
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In addition to their major commercial use as �uoropolymer
processing aids and numerous industrial and consumer
applications (Kissa 2001; Prevedouros et al. 2006), PFCAs
are also the terminal degradation products from abiotic and
biotic degradation of certain precursor PFASs. Such precur-
sors include �uorotelomer alcohols (Hagen et al. 1981;
Dinglasan et al. 2004; Ellis et al. 2004; Hurley et al. 2004;
Wang et al. 2009; Liu et al. 2010), �uorotelomer acrylates
(Butt et al. 2009; Butt et al. 2010b), �uorotelomer iodides
(Young et al. 2008), �uorotelomer ole�ns (Nakayama et al.
2007), N-alkyl per�uoroalkane sulfonamides (Tomy, Tit-
tlemier, et al. 2004; Martin et al. 2006; Plumlee et al. 2009),
N-alkyl per�uoroalkane sulfonamidoethanols (D�eon et al.
2006; Plumlee et al. 2009), and poly�uoroalkyl phosphates
(D�eon and Mabury 2007; Lee et al. 2010). Short-chain
PFCAs (e.g., tri�uoroacetic and penta�uoropropionic acids)
may also be formed in the atmospheric degradation of certain
hydrochloro�uorocarbons, hydro�uorocarbons, and �uori-
nated anesthetics (Boutonnet et al. 1999; Young and Mabury
2010) and per�uoro-2-methyl-3-pentanone (Jackson et al.
2011), as well as in the oxidative thermolysis of �uorinated
polymers (Ellis et al. 2001). Yet, the quantitative attribution
of sources of these short-chain PFCAs in the environment
remains uncertain, and it is quite possible that further
precursors will be identi�ed. PFCA yields and rates of
formation vary depending on the precursor substance and
degradation conditions. Moreover, PFCAs and potential
PFCA precursors, such as residual raw materials, may be
present as impurities in commercial PFAS-based products
(Washburn et al. 2005; Berger and Herzke 2006; Dinglasan-
Panlilio and Mabury 2006; Larsen et al. 2006; Prevedouros
et al. 2006; Schulze and Norin 2006; D�eon and Mabury
2007; Jensen et al. 2008; Fiedler et al. 2010). It was estimated
that the majority (�80%) of PFCAs have been released to the

environment from �uoropolymer manufacture and use
(Prevedouros et al. 2006). This percentage is, however, an
overall value, heavily weighted toward the PFCAs with the
greatest emissions, namely PFOA and (to a much lesser
extent) PFNA. PFCAs with shorter or longer chain lengths are
not known to arise primarily from �uoropolymer manufac-
ture and use. Although in the same study (Prevedouros et al.
2006), indirect sources of PFOA and PFNA were estimated to
be much less important than direct sources, there were larger
uncertainties associated with the calculations for indirect
sources and some recently identi�ed precursors (e.g., poly-
�uoroalkyl phosphates) were excluded.

In 2006, 8 major global companies signed on to the USEPA
��2010/2015 PFOA Stewardship Program�� (USEPA 2006b)
with commitments �rst to reduce emissions and product
content of PFOA, higher homologues and precursors by 95%
by 2010 and second to work toward the elimination of PFOA,
higher homologues, and precursors by 2015. Companies have
reported signi�cant progress toward achieving these goals
(Ritter 2010). Interestingly, coincident with these changes,
there have been reports showing signi�cantly increased levels
of per�uorobutanoic acid (PFBA) in water (Mo¤ ller et al.
2010) and air (Weinberg et al. 2011b) that are most likely
associated with the conversion to shorter chain per�uoroalkyl
products.

Per�uoroalkane (or -alkyl) sulfonic acids: Per�uoroalkyl sul-
fonic acids, CnF2nþ1SO3H (PFSAs, Table 2), are the 2nd
major PFAA family of signi�cance. The alternative name
per�uoroalkane sulfonic acid has been used most commonly
in the literature, in line with IUPAC recommendations,
and we will adopt it here. Per�uorooctane sulfonic acid
C8F17SO3H (PFOS), is the PFSA that has commanded
greatest attention beginning when it was �rst detected

Table 3. (Continued )

Classi�cation and chemical
structure CnF2nR1R, where R U Examples Uses

n:2 Fluorotelomer aldehydes
(n:2 FTALs) and unsaturated

aldehydes (n:2 FTUALs)

-CH2CHO and -CF … CHCHO 8:2 Fluorotelomer aldehyde
(8:2 FTAL), C8F17CH2CHO

8:2 Fluorotelomer unsaturated aldehyde
(8:2 FTUAL), C7F15CF … CHCHO

Intermediate
environmental

transformation product

n:2 Fluorotelomer carboxylic
acids (n:2 FTCAs) and

unsaturated carboxylic acids
(n:2 FTUCAs)

-CH2COOH and
-CF … CHCOOH

8:2 Fluorotelomer carboxylic acid
(8:2 FTCA), C8F17CH2COOH

8:2 Fluorotelomer unsaturated
carboxylic acid (8:2

FTUCA), C7F15CF … CHCOOH

Intermediate
environmental

transformation product

n:3 Saturated acids (n:3 Acids)
and n:3 Unsaturated acids

(n:3 UAcids)

-CH2CH2COOH and
-CH … CHCOOH

7:3 Acid, C7F15CH2CH2COOH
7:3 UAcid, C7F15CH … CHCOOH

Intermediate
environmental

transformation product

n:2 Fluorotelomer sulfonic acids
(n:2 FTSAs)

-CH2CH2SO3H 8:2 Fluorotelomer sulfonic acid
(8:2 FTSA), C8F17CH2CH2SO3H

Surfactant and
environmental

transformation product

Miscellaneous Poly�uoroalkyl ether carboxylic
acids

For example:
-O(CmF2m)OCHF(CpF2p)

COOH

4,8-Dioxa-3H-per�uorononanoate,
CF3OCF2CF2CF2OCHFCF2COOH

Alternative
�uoropolymer
processing aid

(as ammonium salt)

aSubstances originating by electrochemical �uorination (ECF) process;
bSubstances originating by �uorotelomer process.
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globally in biota (Giesy and Kannan 2001) and humans
(Hansen et al. 2001). Subsequently, as stated above, the
production of PFOS, per�uorohexane sulfonic acid (PFHxS),
per�uorodecane sulfonic acid (PFDS), and the precursors of
these PFSAs, was phased out by the major manufacturer in
2002 (3M Company 2000c; USEPA 2000). Nevertheless,
PFOS and its derivatives are still manufactured in China (Han
2009), with a production of more than 200 tons of its
precursor, per�uorooctane sulfonyl �uoride, in 2006 (Yue
2008). PFOS and related compounds have been the subject of
a European Union directive restricting their production and
use (European Parliament 2006b). Furthermore, PFOS has
been classi�ed as a persistent, bioaccumulative, and toxic
substance (OECD 2002) and was recently added to Annex B
(requiring use restrictions) of the Stockholm Convention list
of persistent organic pollutants (UNEP 2009). Formerly,
PFOS had a number of industrial and commercial applications
(3M Company 1999; Kissa 2001; Brooke et al. 2004; Paul
et al. 2009). However, the environmental and toxicological
signi�cance of PFOS, ubiquitous in the global environment,
also results from its presence as an impurity in and formation
from per�uorooctane sulfonamido precursor substances (3M
Company 1999, 2000a; Lange 2000, 2001; Xu et al. 2004;
Boulanger et al. 2005; D�eon et al. 2006; Rhoads et al. 2008;
Xie et al. 2009) used in vastly greater quantities (Brooke et al.
2004; Paul et al. 2009). The global commercial production of
PFOS and related compounds has, to our knowledge, been
based essentially or perhaps exclusively on ECF. In this

process, the electrolysis of a solution of octane sulfonyl
�uoride in anhydrous HF leads to per�uorooctane sulfonyl
�uoride, C8F17SO2F (POSF), the key intermediate from
which all PFOS-related products are subsequently produced
(3M Company 1999; Brooke et al. 2004; Lehmler 2005; Paul
et al. 2009). The resulting PFOS, the precursor POSF and
other derivatives manufactured from it, e.g., per�uorooctane
sulfonamido derivatives such as amides, ethanol-substituted
amides, and surfactant and polymeric products therefrom,
may contain up to 30% branched isomers (Reagen et al.
2007), as well as additional C chain length homologues. For
example, samples of the K salt of PFOS taken from the same
3M commercial lot were analyzed by 2 laboratories and found
to have a purity of only 85% to 87% (representing the sum of
all K-PFOS isomers), on the account of the presence mainly
of C2-C10 PFSA homologues, but also of a range of PFCAs
and other impurities (Seacat et al. 2003; Arsenault et al.
2008). Shorter per�uoroalkyl chain length products, notably
per�uorobutane sulfonyl�based products, have been intro-
duced as alternatives to the previously used compounds with
6 or more per�uorinated carbons, because these shorter chain
length substances do not bioaccumulate due to their rapid
elimination in multiple organisms tested (Olsen et al. 2009).
This substitution is a consequence of the voluntary phase-out
and/or subsequent regulatory restriction of PFOS-related
substances and certain homologues with 5 to 7 and 9 or 10
per�uorinated C atoms (3M Company 2000b; Federal
Register 2006b). Coincident with these changes, reports have

Table 4. Hierarchical overview of �uoropolymers, per�uoropolyethers, and side-chain��uorinated polymers

Example(s) Uses

Fluoropolymers:
Carbon-only polymer backbone

with F directly attached
to backbone C atoms

-(CF2CF2)n- Polytetra�uoroethylene (PTFE)
-(CH2CF2)n- Polyvinylidene �uoride (PVDF)
-(CH2CHF)n- Polyvinyl �uoride (PVF)
-(CF2CF2)n-(CF(CF3)CF2)m- Fluorinated ethylene
propylene (FEP)

Plastics

Per�uoropolyethers (PFPEs):
Ether polymer backbone

with F atoms directly attached

Examples:
F-(CmF2mO-)nCF3

HOCH2O-[CmF2mO-]nCH2OH
-where CmF2mO represents -CF2O-, -CF2CF2O-,
and/or -CF(CF3)CF2O- units distributed randomly
along the polymer backbone

Functional �uids,
surfactants, and surface
protection products

Side-chain��uorinated
polymers:
Non�uorinated
polymer backbone
with �uorinated
side chains, ending
in -CnF2nþ1

Fluorinated
acrylate and
methacrylate
polymers

Acrylate:
Backbone-CH-C(O)O-X-CnF2nþ1

Methacrylate:
Backbone-C(CH3)-C(O)O-X-CnF2nþ1

-where X is -CH2CH2N(R0)SO2-
with R0 … -CnH2nþ1 (n … 0,1,2,4)

or
-CH2CH2-

Surfactants and
surface protection
products

Fluorinated
urethane
polymers

Backbone-NHC(O)O- X-CnF2nþ1

-where X is either -CH2CH2N(R0)SO2-
with R0 … -CnH2nþ1 (n … 0,1,2,4)

or
-CH2CH2-

Surfactants and
surface protection
products

Fluorinated
oxetane
polymers

Backbone-CH2OCH2-R
-where R … -CF3, -C2F5 or -CH2C4F9

Surfactants and
surface protection
products
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shown signi�cantly increased levels of per�uorobutane
sulfonic acid (PFBS) in environmental waters, no doubt as a
consequence of the conversion to 4-C ECF-derived per�uoro-
butane sulfonyl products (Eschauzier et al. 2010; Mo¤ ller et al.
2010).

Per�uoroalkane (or -alkyl) sul�nic acids: Per�uoroalkane
sul�nic acids, CnF2nþ1SO2H (PFSIAs; Table 2), are degrada-
tion products from commercial precursor compounds con-
taining the CnF2nþ1SO2N< moiety (e.g., per�uoroalkane
sulfonamido ethanols, CnF2nþ1SO2N(R)CH2CH2OH)
(Lange 2000, 2001; Boulanger et al. 2005; Rhoads et al.
2008). PFSIAs have been detected in wastewater treatment
plant (WWTP) ef�uents and in the environment (Ahrens
et al. 2009b; Ahrens, Siebert, et al. 2009; Ahrens, Xie, et al.
2010).

Per�uoroalkyl phosphonic and phosphinic acids: Per�uoro-
alkyl phosphonic acids, O��P(OH)2CnF2nþ1 (PFPAs;
Table 2), and per�uoroalkyl phosphinic acids, O��P(OH)
(CnF2nþ1)(CmF2mþ1) (PFPIAs; Table 2), are commercial
surfactants manufactured and offered for a range of consumer
and industrial uses (USEPA 2006a; Mason Chemical 2011).
Blends of C6-C12 PFPAs and similar PFPIA blends, with CAS
numbers 68412-68-0 and 68412-69-1, respectively, have
been reported to have had annual production volumes in
the range of tonnes to hundreds of tonnes in 1998 and 2002
(Howard and Muir 2010), but only recently have PFPAs been
widely detected in environmental waters (D�eon et al. 2009b;
D�eon and Mabury 2010) and PFPIAs in WWTP sludge
(D�eon and Mabury 2010) and human serum (Lee and
Mabury 2011).

Fluorotelomer-based products. The term ���uorotelomer-
based products�� describes a family of raw material building
blocks, surfactant and polymeric products, and degradation
products that all originate from the starting �uorotelomer raw
material, per�uoroalkyl iodides (PFAIs), as depicted in
Figures 2 and 3. As reviewed below, the degradation of
�uorotelomer-based products is a potential source of PFCAs
in the environment.

Per�uoroalkyl iodides, �uorotelomer iodides, and �uorotelomer
ole�ns: Per�uoroalkyl iodides, CnF2nþ1I (PFAIs; Table 2), and
n:2 �uorotelomer iodides, CnF2nþ1CH2CH2I (n:2 FTIs;
Table 3), are the �rst 2 raw materials that lead to the family
of poly�uoroalkyl ���uorotelomer-based�� products. Both
PFAIs and n:2 FTIs have recently been detected in air and
soil near a �uorotelomer manufacturing facility in China
(Ruan et al. 2010). Fluorotelomer ole�ns, CnF2nþ1CH��CH2
(FTOs; Table 3) are synthesized by dehydrohalogenation of
FTIs and may also be formed as an impurity in synthesizing
�uorotelomer alcohols (FTOHs) from FTIs (Prevedouros
et al. 2006). As stated above, processes for manufacturing
PFNA by oxidation of 8:2 FTO have been patented and may
have been used industrially. FTOs are hydrosilylated to create
silanes that are used in a number of applications. FTOs have
been detected in the atmosphere (Barber et al. 2007; Jahnke
et al. 2007; Piekarz et al. 2007), where they degrade
completely and rapidly, but are expected to form low yields
of PFCAs (Young and Mabury 2010). The degradation
scheme proceeds via a CnF2nþ1CHO per�uoroalkyl aldehyde
(PFAL; Table 2) intermediate (Ve·sine et al. 2000; Nakayama

et al. 2007). The atmospheric transformation of FTIs
probably is comparable to FTOs in the ultimate outcome,
mineralization with low yield of PFCAs (typically 1%�10%),
and involves both �uorotelomer aldehyde CnF2nþ1CH2CHO
(FTAL; Table 3) and PFAL intermediates, together with the
�uorotelomer carboxylic acids, CnF2nþ1CH2COOH (FTCAs;
Table 3) (Young et al. 2008). FTIs may hydrolyze in natural
waters (Rayne and Forest 2010c), and this transformation
process would presumably lead to �uorotelomer alcohols and,
hence, their degradation products, as discussed below.

Fluorotelomer alcohols and their acrylic, methacrylic,
and phosphoric esters: The n:2 �uorotelomer alcohols,
CnF2nþ1CH2CH2OH (n:2 FTOHs; Table 3), are key raw
materials in the production of n:2 �uorotelomer acrylates,
CnF2nþ1CH2CH2OC(O)CH��CH2 (n:2 FTACs) and n:2
�uorotelomer methacrylates, CnF2nþ1CH2CH2OC(O)C(CH3)��
CH2 (n:2 FTMACs) (Table 3 and Figure 3). The FT(M)AC
monomers are copolymerized in an aqueous emulsion
polymerization with a host of non-�uorinated acrylates and
other monomers to manufacture �uorotelomer-based poly-
mers (Rao and Baker 1994). These polymers provide water,
oil, and stain repellency to textiles, leather, and paper
substrates. There is extensive scienti�c literature on the
environmental occurrence of FTOHs, particularly (but not
exclusively) in air (Martin et al. 2002; Oono, Harada, et al.
2008; Oono, Matsubara, et al. 2008; Strynar and Lindstrom
2008; Jahnke et al. 2009; Mahmoud et al. 2009; Dreyer et al.
2010; Langer et al. 2010; Shoeib et al. 2010; Yoo et al. 2010;
Ahrens et al. 2011; Haug et al. 2011; Shoeib et al. 2011; Yoo
et al. 2011). Likewise, some FTACs (Piekarz et al. 2007;
Oono, Harada, et al. 2008; Oono, Matsubara, et al. 2008;
Dreyer, Weinberg, et al. 2009; Mahmoud et al. 2009; Dreyer
et al. 2010; Langer et al. 2010; Weinberg et al. 2011a, 2011b)
and FTMACs (Oono, Matsubara, et al. 2008) have also been
detected in environmental samples. The chain lengths of these
�uorotelomer derivatives may vary over a broad range. For
example, FTOHs with up to 18 �uorinated C atoms have
been reported as detected, but not quanti�ed, in air from an
occupational setting (Nilsson et al. 2010).

Fluorotelomer alcohol phosphate esters (Table 3) are
commercial �uorinated surfactants that are made by many
global suppliers by the same reactions employed for non-
�uorinated phosphates and used primarily for their surface
tension lowering, wetting, and leveling surfactant properties
(Taylor 1999). The terminology we recommend for these
substances is poly�uoroalkyl phosphoric acid monoesters
(monoPAPs), (O)P(OH)2(OCH2CH2CnF2nþ1), and diesters
(diPAPs), (O)P(OH)(OCH2CH2CnF2nþ1)(OCH2CH2CmF2mþ1).
They may also be called n:2 �uorotelomer monophosphates
and diphosphates. These compounds have been used as
grease-proo�ng agents for food-contact paper (D�eon and
Mabury 2007; Begley et al. 2008; FDA 2009; Lee et al. 2010;
Lee and Mabury 2011), often as blends of varying per�uor-
oalkyl chain length and as salts (e.g., of diethanolamine). One
speci�c use of monoPAPs and diPAPs that has led to their
widespread presence in the environment is as an approved
defoaming adjuvant in pesticide formulations. Approval for
this use has now been rescinded (Federal Register 2006a).
Recently, diPAPs have been reported detected in human
serum at concentrations in some cases comparable to those of
PFOA and in WWTP sludge at much greater levels than
PFOA (D�eon et al. 2009a; Lee and Mabury 2011).
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Semi�uorinated alkanes and alkenes: Diblock semi�uorinated
n-alkanes (SFAs), F(CF2)n(CH2)mH (or, brie�y, FnHm;
Table 3), are a class of chemicals that are manufactured with
a wide variety of chain lengths, depending on the intended
use, by adding an ole�n to a per�uoroalkyl iodide followed by
reductive dehalogenation (Napoli 1996). These reactions also
lead to semi�uorinated n-alkenes (SFAenes), F(CF2)nCH��
CH(CH2)m-2H (or, brie�y, FnHmene), as byproducts (Coe
and Milner 1972). Since the 1990 s, industrial mixtures of
long-chain SFAs (�22 C atoms) have been applied in ski
waxes, because they reduce friction and repel dirt due to their
extremely low surface tension (Rogowski et al. 2007).
Shorter-chain SFAs are used in medicinal applications (e.g.,
Kirchhof et al. 2002). In �uorinated ski waxes, up to 15% of
SFAs are mixed with normal paraf�ns. The presence of SFAs
in snow and soil samples from a ski area in Sweden has
recently been demonstrated (Plassmann and Berger 2010).

Degradation products of �uorotelomer alcohols and their esters:
Fluorotelomer aldehydes and acids, per�uoroalkyl aldehydes,
per�uoroalkyl carboxylic acids, and so forth: The aerobic
biodegradation and metabolic degradation pathways for
�uorotelomer alcohols have been well studied (Fro¤mel and
Knepper 2010). A general overview of the 8:2 FTOH aerobic
biodegradation pathways is presented in Figure 5. The
pathways and yields of transformation products depend on
the matrix in which the environmental microbial degradation
(e.g., sludge, soil) or metabolism (rat, mouse, in vivo, in vitro)
takes place and the length of the per�uoroalkyl chain in the
�uorotelomer alcohol (Hagen et al. 1981; Dinglasan et al.
2004; Martin et al. 2005; Wang et al. 2009; Butt et al. 2010a;
Liu et al. 2010; Brandsma et al. 2011). In general, the �rst
step in biodegradation is aerobic oxidation of the starting n:2
�uorotelomer alcohol to form the corresponding n:2 �uo-
rotelomer aldehyde, CnF2nþ1CH2CHO (n:2 FTAL; Table 3),
a short-lived, highly reactive species. The aldehyde is rapidly
oxidized to form the corresponding n:2 �uorotelomer
carboxylic acid, CnF2nþ1CH2COOH (n:2 FTCA; Table 3).
Next, dehydrohalogenation of the acid occurs to form
the corresponding n:2 unsaturated carboxylic acid,
Cn�1F2n�1CF��CHCOOH (n:2 FTUCA; Table 3). The
dehydrohalogenation of the starting n:2 �uorotelomer
alcohol to form the n:2 unsaturated �uorotelomer alcohol,
Cn�1F2n�1CF��CHCH2OH (Table 3), and oxidation to yield
the n:2 unsaturated �uorotelomer aldehyde, Cn�1F2n�1CF��
CHCHO (n:2 FTUAL; Table 3), have also been observed.
Thereafter, a host of transient and stable transformation
products, including PFCAs, have been identi�ed. A unique
transformation product identi�ed is a poly�uorinated carbox-
ylic acid with the same number of total C atoms as the parent
n:2 FTOH where the 2 F atoms of the -CF2- group directly
adjacent to the -CH2CH2- moiety have been replaced with H
atoms, Cn�1F2n�1CH2CH2COOH, and a corresponding
unsaturated acid, Cn�1F2n�1CH��CHCOOH (Table 3) (Mar-
tin et al. 2005; Wang et al. 2005; Fasano et al. 2006; Wang
et al. 2009; Butt et al. 2010a). For these substances, we
suggest for simplicity that either the formal name of the acid
be used or the simple acronyms x:3 Acid and x:3 UAcid,
where the x (… n � 1) designates the number of per�uori-
nated carbons and ��3�� the number of non�uorinated C
atoms. For the remaining transformation products, we suggest
adopting the naming given to these substances by the authors
(e.g., Martin et al. 2005; Wang et al. 2009; Butt et al. 2010a;

Liu et al. 2010). In a sediment�water microcosm, the
degradation products observed from n:2 FTCA substrates
were the corresponding PFCAs, whereas n:2 FTUCAs also led
to (n � 1):3 Acids (Myers and Mabury 2010).

In mammals, the metabolic pathways for 8:2 and 6:2
FTOHs have been well studied in vivo in rats and mice and in
vitro in rats, mice, and human hepatocytes. In general, the
majority of administered FTOH test substance was eliminated
rapidly in urine as conjugates. Absorption, distribution,
metabolism, and elimination (ADME) studies using [14C]-
radiolabeled FTOHs have been conducted. The characteristic
degradation products observed in microbial studies, including
PFCAs, as well as some of their conjugates, have been
reported in urine and at trace levels in organs and tissues
(Fasano et al. 2006; Nabb et al. 2007; Fasano et al. 2009). The
reader is referred to the articles for greater detail on these
studies.

In atmospheric degradation studies, reviewed by Young
and Mabury (2010), it has been shown that oxidation of n:2
FTOHs also leads to the formation of n:2 FTALs, n:2 FTCAs,
and per�uoroalkyl aldehydes, CnF2nþ1CHO (PFALs;
Table 2). Low yields (typically 1%�5%) of PFCAs having
the same number of per�uorinated C atoms as the parent
FTOH, or fewer, down to CF3COOH, may be expected in
low-NOx atmospheres. The PFCAs with n � 2 or fewer
per�uorinated C atoms result from ��unzipping�� of the
per�uoroalkyl chain, by splitting off of C(O)F2 molecules
from the intermediate per�uoroalkoxy radicals (Ellis et al.
2004). Nevertheless, complete mineralization to C(O)F2 is
the major atmospheric outcome, and the yields of PFCAs
decline as atmospheric NOx levels increase (Ellis et al. 2004;
Wallington et al. 2006; Young and Mabury 2010). A
simpli�ed scheme, given in Figure 6, shows the key
intermediates in the atmospheric degradation of n:2 FTOHs
to the products mentioned above, illustrated for n … 8. This
scheme also includes the atmospheric breakdown pathways
for FTIs and FTOs, discussed above, as well as for FTACs
(Butt et al. 2009), because all these �uorotelomer
derivatives have part of their degradation mechanism in
common. This is also likely to be the case for PFAIs
(Figure 6), assuming they photolyze easily to per�uoroalkyl
radicals (which add O2 to give per�uoroalkylperoxy radicals)
in the lower atmosphere, as has been demonstrated
for CF3I (Solomon et al. 1994).

It is worth noting here that the PFALs will probably exist
in cloud and surface waters largely as their gem-diol
hydrates, CnF2nþ1CH(OH)2 (PFAL�H2Os; Table 2), unlike
the FTALs for which the hydration equilibrium is much less
favorable (Rayne and Forest 2010b). With estimated pKa
values of 9 or higher, the PFAL�H2Os will not be ionized to
any great extent under environmental conditions, whereas the
corresponding hydrates formed from FTALs are even weaker
acids (pKa > 12) (Rayne and Forest 2010b).

The esters of FTOHs may hydrolyze abiotically or bioti-
cally to FTOHs and, hence, ultimately lead to the same range
of �uorinated transformation products described above.
Hydrolysis studies of mono- and polyesters and mono-
urethanes containing a �uorotelomer moiety have recently
been reported (Dasu et al. 2010). Moreover, as expected,
characteristic FTOH degradation products were detected
when rainbow trout were exposed to 8:2 FTAC through their
diet (Butt et al. 2010b), and when rats were dosed with
monoPAPs or diPAPs (D�eon and Mabury 2007, 2011). Both
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FTOHs and their transformation products were observed in
experiments intended to simulate aerobic biodegradation of
monoPAPs and diPAPs in WWTPs (Lee et al. 2010). The
abiotic hydrolysis of FTACs has been predicted to have half-
lives of years in marine systems but possibly only days in
land�lls (Rayne and Forest 2010c). Hydrolytic stability
studies, conducted under OECD 111 Guidelines, on a
commercial �uorotelomer-based acrylate polymer (Russell
et al. 2008) and a urethane polymer (Russell et al. 2010)
showed no discernible hydrolysis. Nevertheless, there is much
debate regarding the hydrolysis and biodegradation of
commercial �uorotelomer-based polymers (Russell et al.
2008; Koch et al. 2009; Russell et al. 2009; Washington
et al. 2009a; Washington et al. 2009b) that future research
will illuminate.

A number of reported observations of n:2 FTCAs and/or
n:2 FTUCAs have occurred in environmental media and biota
such as atmospheric particles (Stock et al. 2007), indoor dust
(Barber et al. 2007), precipitation (Loewen et al. 2005; Scott
et al. 2006; Taniyasu et al. 2008; Kwok et al. 2010; Scott et al.
2010), surface waters (Stock et al. 2007; Ahrens et al., 2009a;
Scott et al. 2010; Zushi et al. 2011), sediments (Stock et al.
2007), WWTP ef�uent (Sinclair and Kannan 2006; Zushi
et al. 2011), sewage sludge (Zhang et al. 2010), land�ll
leachate (Huset et al. 2011), animal biota (Houde et al. 2005;
Taniyasu et al. 2005; Butt, Mabury, et al. 2007; Butt, Muir,
et al. 2007; Furdui et al. 2007; Gebbink et al. 2009), human
breast milk (So et al. 2006), and foodstuffs (Ostertag et al.
2009). The 7:3 Acid has also been detected in biota (Powley
et al. 2008; Peng et al. 2010; Guruge et al. 2011). The various
per�uorinated and poly�uorinated aldehydes discussed above

have apparently not yet been found in environmental
samples. This is most likely due to their highly reactive
nature, because only trapping experiments have quali�ed
their presence thus far in laboratory studies.

Fluorotelomer sulfonic acids: The n:2 �uorotelomer sulfonic
acids, CnF2nþ1CH2CH2SO3H (FTSAs; Table 3) have been
found in groundwater, soil, and biota, especially at military
bases, �re�ghting training sites, and locations where major
�res have been extinguished through use of AFFFs (Schultz
et al. 2004; Norwegian Pollution Control Authority 2008;
Oakes et al. 2010). They have also been detected in WWTP
ef�uents (Huset et al. 2008; Ahrens et al., 2009b), land�ll
leachate (Eggen et al. 2010; Huset et al. 2011), precipitation
and fresh surface waters (Kim and Kannan 2007; Scott et al.
2010; Nguyen et al. 2011), seawater contaminated by AFFFs
(Taniyasu et al. 2005), sediments (Zushi et al. 2010), Arctic
biota (Miljeteig et al. 2009), and human serum (Lee and
Mabury 2011). These FTSAs arise from the degradation of
more complex �uorotelomer-based substances containing
the CnF2nþ1CH2CH2S�R or CnF2nþ1CH2CH2SO2�R moiety
(where R is a hydrophilic functional group that provides
surfactant properties). These precursor compounds may
be used as components of �re�ghting foams (Bertocchio
and Foulletier 1970; Falk 1982; Schultz et al. 2004), e.g.,
the betaine F(CF2)nCH2CH2SO2NHCH2CH2Nþ(CH3)2
CH2CH2CO�

2 ), or in food packaging applications, e.g., the
�uororotelomer mercaptoalkyl phosphate esters (Lee and
Mabury 2011; Trier, Granby, et al. 2011; Trier, Nielsen, et al.
2011). FTSAs have been shown to undergo slow aerobic
biotransformation to form trace levels of PFCAs (Wang et al.

Figure 5. Aerobic biotransformation pathways for 8:2 �uorotelomer alcohol (8:2 FTOH). Adapted from Wang et al. (2009).
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2011). It should be noted that 6:2 FTSA has been referred to
in some literature as ��tetrahydro PFOS.�� Because 6:2 FTSA is
both chemically and biologically very different from PFOS
(Wang et al. 2011), we strongly discourage this usage and
recommend 6:2 FTSA be used in naming this substance.

Per�uoroalkane sulfonamido derivatives: Per�uoroalkane
sulfonamides, sulfonamidoethanols, sulfonamidoethyl acry-
lates, and sulfonamidoethyl methacrylates. In the same way
as the per�uoroalkyl iodides and �uorotelomer iodides are
important building blocks for a broad range of �uorotelomer
derivatives, the per�uoroalkane sulfonyl �uorides,
CnF2nþ1SO2F (PASFs; Table 2) play an analogous role as
precursors in the manufacture not only of the PFSAs already
discussed, but also of a variety of compounds containing

the per�uoroalkane sulfonamido group, CnF2nþ1SO2N<
(Tables 2 and 3). This is illustrated in Figure 7 for the
synthesis of several families of per�uoroalkane sulfonamido
derivatives, exempli�ed for a starting PASF with 8 C atoms.
PFSAs were directly manufactured by hydrolysis of PASFs
and the various salt forms (ammonium, diethanolamine, and
K and Li salts) were manufactured by neutralization of the
acids. The greater part of the production of PASFs (notably
POSF), however, was used to produce �uorinated surfactants
and high-molecular-weight �uorinated polymeric products
(3M Company 1999). The major pathway for conversion of
PASFs into commercial derivatives involves reacting them in a
�rst step with a primary amine, generally methylamine or
ethylamine, to give N-methyl or N-ethyl per�uoroalkane
sulfonamides, CnF2nþ1SO2NH(CmH2mþ1), where m … 1 or 2

Figure 6. Simpli�ed atmospheric degradation scheme for 8:2 �uorotelomer derivatives. Free-radical and transient molecular intermediates are shown in boxes
with a dashed outline, while the starting compounds, the more stable molecular intermediates, and the �nal products are shown in boxes with a solid outline,
their acronyms being indicated in bold type. An arrow on the chart often implies several elementary steps: i.e., certain intermediates are omitted.
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(MeFASAs and EtFASAs; Table 3) (3M Company 1999;
Lehmler 2005). These N-alkyl FASAs are, in some cases,
commercial products in their own right, as well as building
blocks for further synthesis. For instance, N-ethyl per�uoro-
octane sulfonamide, C8F17SO2NH(C2H5), or EtFOSA, is
the pesticide sul�uramid. In a 2nd major industrial
reaction step, N-alkyl FASAs are reacted with ethylene
carbonate to give another series of building blocks, the N-
methyl or N-ethyl per�uoroalkane sulfonamido ethanols,
CnF2nþ1SO2N(CmH2mþ1)CH2CH2OH, where m … 1 or 2
(MeFASEs and EtFASEs; Table 3) (3M Company 1999;
Lehmler 2005). These N-alkyl FASEs are analogous to
FTOHs. Because they are alcohols, they can be converted
into acrylates and methacrylates, as well as into phosphates
and other derivatives (3M Company 1999) that will
not be discussed further here. The N-alkyl per�uoro-
alkane sulfonamidoethyl acrylates, CnF2nþ1SO2N(CmH2mþ1)
CH2CH2OC(O)CH��CH2, where m … 1 or 2 (MeFASACs
and EtFASACS; Table 3) and the corresponding N-
alkyl per�uoroalkane sulfonamidoethyl methacrylates,
CnF2nþ1SO2N(CmH2mþ1)CH2CH2OC(O)C(CH3)��CH2
(MeFASMACs and EtFASMACs; Table 3) are used in a
similar manner to the �uorotelomer acrylates and methacry-
lates, as comonomers for synthesizing acrylic polymers used
in surface protection applications (3M Company 1999).

The (alkyl-)FASA, FASE, FASAC, and FASMAC inter-
mediates were the principal building blocks of many
�uorochemical products used in surface treatments, paper
packaging protectors, and other specialist applications. A
more extensive range of commercial compounds has, how-
ever, been produced, as described in industry reports (3M
Company 1999). In 2002, the largest historic manufacturer of
per�uorooctane sulfonyl derivatives (n � 6) ceased manu-
facture (3M Company 2000a; USEPA 2000) and has since
introduced products based on per�uorobutane sulfonyl

chemistry (Renner 2006; Ritter 2010). Meanwhile, existing
and new manufacturers continue to make PFOS and other
long-chain per�uoroalkane sulfonates and products derived
from them.

Degradation products of per�uoroalkane sulfonamido derivati-
ves: Published studies on the aerobic biotransformation of the
per�uoroalkane sulfonamido derivatives focus on those
compounds having 8 per�uorinated C atoms, in particular
N-ethyl per�uorooctane sulfonamidoethanol (EtFOSE),
which is ultimately degraded to PFOS. Various intermediates
leading to this per�uoroalkane sulfonic acid have been
reported, including the members of the following families
(Tables 2 and 3) with n … 8: N-ethyl per�uoroalkane
sulfonamidoacetic acids (EtFASAAs), CnF2nþ1SO2N(C2H5)
CH2COOH; N-ethyl per�uoroalkane sulfonamides
(EtFASAs), CnF2nþ1SO2NH(C2H5); per�uoroalkane sulfona-
midoacetic acids (FASAAs), CnF2nþ1SO2NHCH2COOH;
per�uoroalkane sulfonamides (FASAs), CnF2nþ1SO2NH2;
FASA N-glucuronides, and per�uoroalkane sul�nic acids
(PFSIAs), CnF2nþ1SO2H (Lange 2000, 2001; Tomy, Tit-
tlemier, et al. 2004; Xu et al. 2004; Boulanger et al. 2005; Xu
et al. 2006; Rhoads et al. 2008; Xie et al. 2009) (Figure 8).
There appears to be con�icting evidence as to whether PFOA
can be formed in the environment from EtFOSE as a minor
end product (Lange 2001; Tomy, Tittlemier, et al. 2004;
Boulanger et al. 2005; Rhoads et al. 2008).

The N-alkyl per�uoroalkane sulfonamidoethyl acrylates
and methacrylates, and polymers based on them, may
undergo hydrolysis of the ester linkage in the environment
to give N-alkyl FASEs (Martin et al. 2010) and, hence, lead to
the same per�uoroalkyl biotransformation products. How-
ever, there do not appear to have been any published
experimental studies that explicitly demonstrate this to be
the case.

Figure 7. Per�uoroalkane sulfonamido derivatives synthesized from per�uoroalkane sulfonyl �uorides (PASFs), exempli�ed for a starting PASF with 8 C atoms.
N.B. Names and acronyms for substance families are indicated. Those for the speci�c compounds shown can be found in the Supplemental Data.
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Studies on the hydroxyl-radical�initiated degradation of
EtFOSE in the aqueous phase show that some of the
intermediates and products observed, including EtFOSAA,
EtFOSA, FOSAA, FOSA, and PFOA, are the same as those
reported for biodegradation. On the other hand, PFOS and
PFOSI were not observed or were present at only trace levels
in these abiotic studies (Hat�eld 2001; Plumlee et al. 2009)
and FOSA was considered to be a stable end product
(Plumlee et al. 2009).

Atmospheric degradation pathways have been studied
for 2 per�uoroalkane sulfonamido derivatives having 4
per�uorinated C atoms. The breakdown of EtFBSA,
C4F9SO2NH(C2H5), has been shown to proceed through
ketone and aldehyde intermediates to give PFCAs, i.e., PFBA,
PFPrA and TFA, as well as COF2 (Martin et al. 2006). The
PFPrA and TFA are formed via chain unzipping of the
per�uoroalkoxy radical, as already mentioned above for
FTOHs and depicted schematically on Figure 6, so that
alkyl-FASAs share part of their degradation scheme with
FTOHs. PFBS was not observed to be formed from
EtFBSA (Martin et al. 2006). MeFBSE, C4F9SO2N(CH3)
CH2CH2OH, was observed to degrade to the same PFCAs as
EtFBSA, together with PFBS, MeFBSA, and other products
(D�eon et al. 2006).

Environmental occurrence of per�uoroalkyl sulfonamido deriva-
tives: Various per�uoroalkyl sulfonamido derivatives have
been found in the environment and human samples, whether
this is due to industrial or consumer use of these compounds
as such, losses during manufacturing operations, presence as
��residuals�� in other commercial products, or formation as
environmental degradation products or metabolites of pre-
cursors.

It should be noted that per�uoroalkane sulfonamido
derivatives bearing a H on the N atom are acidic in nature
and can dissociate to an amide anion, to a greater or lesser
extent depending on the ambient environmental or physio-
logical conditions, with the degree of branching of the
per�uoroalkyl chain having a signi�cant in�uence on
the pKa for a given family of compounds (Rayne and Forest
2009a). For FASAAs, there is the additional possibility of
dissociation of the carboxylic H (more acidic than the amide
H), whereas for the N-alkyl FASAAs, this is the only possible
ionization (Rayne and Forest 2009a). The dissociated species
are not depicted in the list of compounds provided in the
Supplemental Data.

All the families of per�uoroalkane sulfonamido derivatives
discussed above and depicted in Tables 2 and 3 have been
found in the environment or in human biota. Those with 8
per�uorinated C atoms are, in general, much more abundant
than those with other chain lengths. However, more recently,
compounds with 4 such C atoms have also been reported.
The medium in which they are detected depends on their
physical properties and on their likelihood of being formed
there from precursors. In atmospheric air and its associated
particulate matter, commonly detected compounds are the
relatively volatile FOSA, MeFBSA, MeFOSA, Me2FOSA,
EtFOSA, MeFBSE, EtFBSE, MeFOSE, and EtFOSE (Martin
et al. 2002; Barber et al. 2007; Piekarz et al. 2007; Stock et al.
2007; Dreyer, Matthias, et al. 2009; Dreyer, Weinberg, et al.
2009; Dreyer et al. 2010; Langer et al. 2010; Shoeib et al.
2010; Haug et al. 2011; Weinberg et al. 2011a, 2011b),
whereas house dust has been found to contain FOSA,
MeFOSA, EtFOSA, MeFOSE, EtFOSE (Shoeib et al. 2005;
Kato et al. 2009; Goosey and Harrad 2011), the acrylate
MeFOSAC (Shoeib et al. 2005), and the oxidation products
MeFOSAA and EtFOSAA (Kato et al. 2009). FOSA has also

Figure 8. Transformation pathways for per�uoroalkane sulfonamido derivatives. Adapted from Olsen et al. 2002 and Olsen et al. 2005.
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been detected in open ocean water, sometimes at levels
comparable to those of PFOA (Ahrens, Gerwinski, et al.
2010; Ahrens, Xie, et al. 2010; Busch et al. 2010b;
Kirchgeorg et al. 2010), as well as in precipitation (Kim and
Kannan 2007; Taniyasu et al. 2008; Kwok et al. 2010), river
and lake water (Kim and Kannan 2007; So et al. 2007; Ahrens
et al. 2009b; Ahrens, Gerwinski, et al. 2010; Scott et al. 2010;
Zushi et al. 2011), groundwater (Murakami, Kuroda, et al.
2009), surface runoff water (Kim and Kannan 2007;
Murakami, Shinohara, et al. 2009), land�ll leachate (Kallen-
born et al. 2004; Busch et al. 2010a; Huset et al. 2011),
sewage sludge (Llorca et al. 2011), and drinking water
(Ericson et al. 2009). In wildlife, FOSA is often the
predominant sulfonamido species, although it is generally
present at lower levels than PFOS (Sturm and Ahrens 2010
and references therein), whereas EtFOSA and/or Et2FOSA
(Tomy, Budakowski, et al. 2004; Tittlemier et al. 2005;
Tittlemier et al. 2006; Lo¤ fstrand et al. 2008; Ahrens, Siebert,
et al. 2009; Yeung et al. 2009), MeFOSE (Ahrens and
Ebinghaus 2010), FOSAA (Peng et al. 2010), and EtFOSAA
(Yoo et al. 2009) have also been reported. FOSA and various
N-alkyl-FOSAs (Me-, Et-, Me2-, and Et2-FOSAs) were
detected in foodstuffs (Tittlemier et al. 2005; Tittlemier
et al. 2006). WWTP ef�uents and river, coastal, and ocean
waters were found to contain some N-alkyl sulfonamido
derivatives (MeFBSA, MeFBSE, MeFOSE, EtFOSE, MeFB-
SAA, MeFOSAA, and EtFOSAA) as well as FOSA and
FOSAA (Ahrens et al. 2009a; Ahrens et al. 2009b; Ahrens,
Gerwinski, et al. 2010; Huset et al. 2011; Nguyen et al. 2011;
Zushi et al. 2011). In human blood, the sulfonamido
derivatives FOSA, FOSAA, MeFOSAA, and EtFOSAA have
been quanti�ed (Kannan et al. 2004; Calafat et al. 2007;
Olsen et al. 2008; Weihe et al. 2008; Toms et al. 2009; Lee
and Mabury 2011). MeFOSAA and/or EtFOSAA have also
been detected in precipitation (Taniyasu et al. 2008; Kwok
et al. 2010), wildlife (Yoo et al. 2009), sediments (Higgins
et al. 2005; Ahrens, Taniyasu, et al. 2010; Zushi et al. 2010)
and WWTP in�uent and ef�uent (Boulanger et al. 2005).
These 2 compounds have also been shown to be among the
most abundant PFAS components of municipal WWTP
sludge (Higgins et al. 2005; Sepulvado et al. 2011), in which
FOSAA has also been detected (Higgins et al. 2005).

Per�uoroalkyl and poly�uoroalkyl ether carboxylic acids.
Salts of per�uoroalkyl ether carboxylic acids (not depicted
in the tables) and poly�uoroalkyl ether carboxylic acids
(Table 3) are widely cited in patents as alternative �uoropol-
ymer processing aids, that are more environmentally and/or
toxicologically acceptable alternatives to APFO and APFN. A
common feature is that a terminal �COO� group, attached to
one or both ends of the �uorinated ether chain, is the
common hydrophile, generally with an NHþ

4 counter-ion
(Tsuda et al. 2003; Visca et al. 2003; Higuchi et al. 2005;
Hintzer et al. 2005; Brothers et al. 2008; Ishikawa et al. 2008;
Gordon 2011). These and/or other alternative surfactants are
expected to enable manufacturers to meet the USEPA 2010/
15 Stewardship Program goal to eliminate the use of PFOA
and higher homologues. Most recently, a toxicological
evaluation for one of these substances (ammonium 4,8-
dioxa-3H-per�uorononanoate; Table 3) has been published
(Gordon 2011). Substances based on certain members of this
family of compounds have a suf�cient number of repeating
units (together with other characteristics) to enable them to

be considered to be polymers under the European Union
REACH legislation (ECHA 2008).

Fluorinated polymers

The polymers discussed in this section are those: 1) whose
synthesis involves the incorporation of one or more PFASs as
monomers. In this case, there is some potential (theoretical or
demonstrated) for the degradation of the polymer, during or
after its useful lifetime, to lead to release of PFASs to the
environment; or 2) whose manufacture requires the use of a
PFAS as a processing aid.

Fluoropolymers. Fluoropolymers contain F bound to one or
both of the ole�nic C atoms, to form a per�uorinated C-only
polymer backbone with F atoms directly attached to it
(Table 4). Examples of �uoropolymers are polytetra�uoro-
ethylene (PTFE); polyvinylidene �uoride (PVDF); polyvinyl
�uoride (PVF); copolymers of tetra�uoroethylene (TFE) and
hexa�uoropropylene (HFP); terpolymers of TFE, vinylidene
�uoride, and HFP; and copolymers of TFE and ethylene.
Certain grades of �uoropolymers, manufactured by emulsion
(or dispersion) polymerization, in order to obtain a �ne
particle size distribution, require the use of a �uorosurfactant
��processing aid.�� This additive, used at a level of a few tenths
of a percent relative to the amount of polymer produced
(Prevedouros et al. 2006), was often traditionally the
ammonium salt of PFOA or PFNA. The �uorosurfactant is
removed when the �uoropolymer aqueous emulsion is dried
for sale as a solid. Similarly, when an aqueous �uoropolymer
emulsion is used, the polymer is heated to cure it. High cure
temperatures thermally destroy the �uorosurfactant. At low
cure temperatures, residual surfactant may remain (Guo et al.
2009). Most producers have discontinued the use of PFOA
and PFNA salts as processing aids and have developed and
implemented more environmentally acceptable alternatives,
as discussed above in the Per�uoroalkyl and Poly�uoroalkyl
Ether Carboxylic Acids section. It should be emphasized that
those grades of �uoropolymers (e.g., PTFE, PVDF) that are
made by suspension (rather than emulsion) polymerization
do not require a �uorosurfactant to be used as a ��processing
aid.��

Per�uoropolyethers. Per�uoropolyethers (PFPEs; Table 4)
are polymers in whose backbone -CF2-, -CF2CF2-, and
possibly -CF(CF3)CF2- units are separated by O atoms. For
example, the ultraviolet-initiated copolymerization of TFE
with O2 leads to PFPEs with a structure that may be
represented symbolically by CF3O(CF2CF2O)m(CF2O)nCF3,
although this overall formula does not show that the -CF2O-
and -CF2CF2O- units are generally distributed randomly
rather than in blocks (Sianesi et al. 1994). If the photo-
polymerization is conducted using hexa�uoropropylene
(HFP) instead of (or together with) TFE, then PFPEs with
the overall formula CF3O(CF2CF2O)m(CF2O)n[CF(CF3)C-
F2O]pCF3 are obtained. Furthermore, the PFPE
-[CF(CF3)CF2O]n- can be synthesized by homopolymeriza-
tion of HFP (ep)oxide.

Because the repeating units of these PFPEs contain only 2
or 3 per�uorinated C atoms per O atom, their degradation
cannot lead to the formation of long-chain PFCAs. The reason
for mentioning them in this review is that certain difunctional
polymeric per�uoro-polyether products, corresponding to the
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overall formula X-CF2O(CF2CF2O)m(CF2O)nCF2�X, where
X is a hydrophilic group, are marketed as surface treatments
for natural stone, metal, glass, plastic, textiles, leather, and
paper and paperboard treatment for food-contact applica-
tions. These functionalized PFPEs bring properties such as a
low surface energy, high contact angle, reduced coef�cient of
friction, and high oleo-hydrophobicity (Solvay Solexis 2011),
so that they are potential alternatives to the ECF-based
polymers, �uorotelomer-based polymers, and �uorinated
oxetane polymers described in this review.

Side-chain��uorinated polymers. In contrast to the polymers
described previously, side-chain��uorinated polymers do not
have per�uorinated or poly�uorinated polymer backbones,
but are composed of variable composition backbones with
poly�uoroalkyl (and possibly per�uoroalkyl) side chains
(Table 4). With regard to the sources of long-chain PFAAs,
we review 3 groups of side-chain��uorinated polymers
distinguished from one another by the linkage (acrylate and/
or methacrylate, urethane, and oxetane) between the polymer
backbone and the poly�uoroalkyl (and possibly per�uor-
oalkyl) side chains. Side chains of each of these polymer types
may possess the ability to sever from the polymer chain to
become PFASs shown in Tables 2 and 3. It should be noted,
however, that this transformation process can occur over long
time periods (e.g., >1000 y) and may exhibit low yields of
PFASs such that their contribution to the environmental
inventory of long-chain PFAAs may be insigni�cant relative to
other historical and current sources. Further research is
required to clarify this question.

Fluorinated acrylate polymers: Fluorinated acrylate polymers
are made by polymerizing a �uorinated acrylate (or
methacrylate) monomer, in which the alcohol moiety
is n:2 FTOH, CnF2nþ1CH2CH2OH, or an alkyl-FASE,
CnF2nþ1SO2N(R)CH2CH2OH, where R … CH3, C2H5, or
another alkyl group (Table 4). Some possible structures for
the �uorinated acrylate monomers are therefore:

CnF2nþ1CH2CH2OCðOÞCH…CH2 ðan n :2 FTACÞ

CnF2nþ1CH2CH2OCðOÞCðCH3Þ…CH2ðan n :2 FTMACÞ

CnF2nþ1SO2NðCH3ÞCH2CH2OCðOÞCH…CH2ða MeFASACÞ

CnF2nþ1SO2NðC2H5ÞCH2CH2OCðOÞCH…CH2ðan EtFASACÞ

CnF2nþ1SO2NðCH3ÞCH2CH2OCðOÞCðCH3Þ…CH2ða MeFASMACÞ

CnF2nþ1SO2NðC2H5ÞCH2CH2OCðOÞCðCH3Þ…CH2ðan EtFASMACÞ:

These �uorinated acrylate monomers are copolymerized
with one or more non�uorinated acrylate monomers, and
possibly other monomers, to give the �nal side-chain
�uorinated acrylate polymers. These types of polymers are
useful as water-, stain- and grease-proo�ng �nishes for textile,
leather, and paper surfaces. As stated above, it is not yet clear
to what extent such polymers may break down in the
environment to give PFAAs, such as PFOA, PFOS, PFBA, and
PFBS. Moreover, although we have shown only �uorotelomer
and per�uoroalkane sulfonamido (meth)acrylates, the term
��side-chain��uorinated polymer�� would encompass many
other potential structures and products therefrom that
conform to the de�nition provided.

Fluorinated urethane polymers: Polymeric materials for repel-
ling water and stains may also be based on urethane polymers
formed by reacting �uorotelomer alcohols (FTOHs), or
per�uoroalkane sulfonamidoethanols (alkyl-FASEs), with
polyisocyanato homopolymers, followed by a cross-linking
step (Kirchner 1989). The products are poly�uorinated in
their side chains (Table 4). They are used mainly in textile
applications. In the case of an (8:2) FTOH-based urethane
polymer, a recent study has shown that the half-life with
respect to biodegradation to PFOA in aerobic soils is on the
order of a century (Russell et al. 2010).

Fluorinated oxetane polymers: An alternative �uorinated poly-
mer technology to those described thus far originates from the
reaction of poly�uorinated alcohols with oxetanes bearing a -
CH2Br group in their side chains, to create oxetane
monomers that can undergo ring-opening polymerization to
give side-chain�poly�uorinated polyethers (Figure 9). These
�uorinated oxetane polymers (Table 4) are offered in many
forms and functionalities primarily as �uorosurfactants and
coatings additives (Kausch et al. 2002; Kausch et al. 2003a,
2003b; Thomas 2006; Omnova Solutions 2011).

Commercial articles containing multiple types of �uorinated
polymers. It should be noted that there are commercial
products that contain both �uoropolymers and side-chain�
�uorinated polymers, which can cause confusion about the
origin of individual PFASs. In all-weather clothing products,
for example, multiple layered materials containing different
types of polymers are common. A porous PTFE membrane
layer is often used in garments to make the fabric ��breath-
able.�� The outer fabric layer may be nylon or polyester

Figure 9. Oxetane-based �uorinated polymers.
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treated with a side-chain��uorinated polymer water repel-
lent. Analyses of all-weather clothing revealed the presence of
FTOHs in the outer layer of some all-weather clothing
products (Berger and Herzke 2006; Schulze and Norin 2006).
The origin of the FTOHs is not the PTFE breathable
membrane.

SUMMARY AND FUTURE PROSPECTS
We have provided an overview of PFASs detected in the

environment, wildlife, and humans and recommended clear,
speci�c, and descriptive terminology, names, and acronyms
for PFASs. We hope the terminology will be widely adopted
and used. Future interest in �uorinated substances by the
global scienti�c community is expected to remain high, and
continued publications should be numerous. The consistent
use of the terminology described here by this community will
facilitate clear and coherent communication, understanding,
interpretation, and comparison of published studies as well as
serve to highlight similarities and acknowledge key differences
between PFASs. We strongly discourage the use of broad,
poorly de�ned terms and acronyms in favor of the clear,
speci�c, and descriptive terminology provided here.

SUPPLEMENTAL DATA
Supplemental Data. Names, formulas, acronyms, and CAS

numbers for selected per�uoroalkyl and poly�uoroalkyl
substances. Terminology decision �ow charts.
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