Universal autohomeomorphisms of \mathbb{N}^*

Hart, K.P.; van Mill, J.

Publication date
2022

Document Version
Final published version

Published in
Proceedings of the American Mathematical Society. Series B

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Universal autohomeomorphisms of \mathbb{N}^*

Klaas Pieter Hart and Jan van Mill

To the memory of Cor Baayen, who taught us many things

Abstract

We study the existence of universal autohomeomorphisms of \mathbb{N}^*. We prove that the Continuum Hypothesis (CH) implies there is such an autohomeomorphism and show that there are none in any model where all autohomeomorphisms of \mathbb{N}^* are trivial.

Introduction

This paper is concerned with universal autohomeomorphisms on \mathbb{N}^*, the Čech-Stone remainder of \mathbb{N}.

In very general terms we say that an autohomeomorphism h on a space X is *universal* for a class of pairs (Y, g), where Y is a space and g is an autohomeomorphism of Y, if for every such pair there is an embedding $e : Y \rightarrow X$ such that $h \circ e = e \circ g$, that is, h extends the copy of g on $e[Y]$.

In [1, Section 3.4](https://www.ams.org/journals/bproc/2022-09-08/S2330-1511-2022-00106-8/viewer/#settings) one finds a general way of finding universal autohomeomorphisms. If X is homeomorphic to X^∞ then the shift mapping $\sigma : X^\mathbb{Z} \rightarrow X^\mathbb{Z}$ defines a universal autohomeomorphism for the class of all pairs (Y, g), where Y is a subspace of X. One embeds Y into $X^\mathbb{Z}$ by mapping each $y \in Y$ to the sequence $\langle g^n(y) : n \in \mathbb{Z} \rangle$.

Thus, the Hilbert cube carries an autohomeomorphism that is universal for all autohomeomorphisms of separable metrizable spaces and the Cantor set carries one for all autohomeomorphisms of zero-dimensional separable metrizable spaces. Likewise the Tychonoff cube $[0, 1]^\kappa$ carries an autohomeomorphism that is universal for all autohomeomorphisms...
of completely regular spaces of weight at most \(\kappa \), and the Cantor cube \(2^\kappa \) has a universal autohomeomorphism for all zero-dimensional such spaces.

Our goal is to have an autohomeomorphism \(h \) on \(\mathbb{N}^* \) that is universal for all autohomeomorphisms of all closed subspaces of \(\mathbb{N}^* \). The first result of this paper is that there is no trivial universal autohomeomorphism of \(\mathbb{N}^* \), and hence no universal autohomeomorphism at all in any model where all autohomeomorphisms of \(\mathbb{N}^* \) are trivial. On the other hand, the Continuum Hypothesis implies that there is a universal autohomeomorphism of \(\mathbb{N}^* \). The proof of this will have to be different from the results mentioned above because \(\mathbb{N}^* \) is definitely not homeomorphic to its power \((\mathbb{N}^*)^0\); it will use group actions and a homeomorphism extension theorem.

We should mention the dual notion of universality where one requires the existence of a surjection \(s : X \to Y \) such that \(g \circ s = s \circ h \). For the space \(\mathbb{N}^* \) this was investigated thoroughly in 2 for general group actions.

1. Some preliminaries

Our notation is standard. For background information on \(\mathbb{N}^* \) we refer to 5.

We denote by \(\text{Aut} \) the autohomeomorphism group of \(\mathbb{N}^* \). We call a member \(h \) of \(\text{Aut} \) trivial if there are cofinite subsets \(A \) and \(B \) of \(\mathbb{N} \) and a bijection \(b : A \to B \) such that \(h \) is the restriction of \(b \) to \(\mathbb{N}^* \).

In both sections we shall use the \(G_\delta \)-topology on a given space \((X, \tau)\); this is the topology \(\tau_\delta \) on \(X \) generated by the family of all \(G_\delta \)-subsets in the given space. It is well-known that \(\omega(X, \tau_\delta) \leq \omega(X, \tau)^{\aleph_0} \); we shall need this estimate in Section 3.

2. What if all autohomeomorphisms are trivial?

To begin we observe that fixed-point sets of trivial autohomeomorphism of \(\mathbb{N}^* \) are clopen. Therefore, to show that no trivial autohomeomorphism is universal it would suffice to construct a compact space that can be embedded into \(\mathbb{N}^* \) and that has an autohomeomorphism whose fixed-point set is not clopen.
The example

We let L be the ordinal $\omega_1 + 1$ endowed with its G_δ-topology. Thus all points other than ω_1 are isolated and the neighbourhoods of ω_1 are exactly the co-countable sets that contain it. Then L is a P-space of weight \aleph_1 and hence, by the methods in 4, Section 2, its Čech-Stone compactification βL can be embedded into \mathbb{N}^*.

We define $f : L \to L$ such that ω_1 is the only fixed point of βf. We put

$$
\begin{align*}
 f(\omega_1) &= \omega_1, \\
 f(2 \cdot \alpha) &= 2 \cdot \alpha + 1, \text{ and} \\
 f(2 \cdot \alpha + 1) &= 2 \cdot \alpha.
\end{align*}
$$

This defines a continuous involution on L.

If $p \in \beta L \setminus L$ then $p \in \text{cl} \alpha$ for some $\alpha < \omega_1$ and then either $E = \{2 \cdot \beta : \beta < \alpha\}$ or $O = \{2 \cdot \beta + 1 : \beta < \alpha\}$ belongs to the ultrafilter p. But $f[E] \cap E = \emptyset = f[O] \cap O$, hence $\beta f(p) \neq p$.

Since ω_1 is not an isolated point of βL, no matter how this space is embedded into \mathbb{N}^* there is no trivial autohomeomorphism of \mathbb{N}^* that would extend βf.

3. The Continuum Hypothesis

Under the Continuum Hypothesis the space \mathbb{N}^* is generally very well-behaved and one would expect it to have a universal autohomeomorphism as well. We shall prove that this is indeed the case. We need some well-known facts about closed subspaces of \mathbb{N}^*.

First we have Theorem 1.4.4 from 5 which characterizes the closed subspaces of \mathbb{N}^* under CH: they are the compact zero-dimensional F-spaces of weight c, and, in addition: every closed subset of \mathbb{N}^* can be re-embedded as a nowhere dense closed P-set.

Second we have the homeomorphism extension theorem from 3: CH implies that every homeomorphism between nowhere dense closed P-sets of \mathbb{N}^* can be extended to an autohomeomorphism of \mathbb{N}^*.

Step 1.

We consider the natural action of Aut on \mathbb{N}^*; the map $\sigma : \text{Aut} \times \mathbb{N}^* \to \mathbb{N}^*$ given by $\sigma(f, p) = f(p)$. This action is continuous when Aut carries the compact-open topology τ and hence also when Aut carries the G_δ-modification τ_δ of τ. For the rest of the construction we consider the topology τ_δ.

Using this action we define an autohomeomorphism $h : \text{Aut} \times \mathbb{N}^* \to \text{Aut} \times \mathbb{N}^*$ by $h(f, p) = (f, f(p))$. The map h is continuous because its two coordinates are and it is a homeomorphism because its inverse $(f, p) \mapsto (f, f^{-1}(p))$ is continuous as well.

Now if X is a closed subset of \mathbb{N}^* and $g : X \to X$ is an autohomeomorphism then we can re-embed X as a nowhere dense closed P-set and we can then find an $f \in \text{Aut}$ such that $f \upharpoonright X = g$. We transfer this embedded copy of X to $\{f\} \times \mathbb{N}^*$ in $\text{Aut} \times \mathbb{N}^*$; for this copy of X we then have $h \upharpoonright X = g$. It follows that h satisfies the universality condition.

Step 2.

We embed $\text{Aut} \times \mathbb{N}^*$ into \mathbb{N}^* in such a way that there is an autohomeomorphism H of \mathbb{N}^* such that $H \upharpoonright (\text{Aut} \times \mathbb{N}^*) = h$. Then H is the desired universal autohomeomorphism of \mathbb{N}^*.

To this end we list a few properties of this product.

Weight

The weight of the product is equal to ω, as both factors have weight ω. For \mathbb{N}^* this is clear and for Aut this follows because the topology τ has weight ω and one obtains a base for τ_δ by taking the intersections of all countable subfamilies of a base for τ.

Zero-dimensional and F

The product is a zero-dimensional F-space as the product of the P-space Aut and the compact zero-dimensional F-space \mathbb{N}^*, see 6, Theorem 6.1.
Strongly zero-dimensional

The product $\text{Aut} \times \mathbb{N}^*$ is not compact, but we shall construct a compactification of it that is also a zero-dimensional F-space of weight \mathfrak{c}.

For this we need to prove that $\text{Aut} \times \mathbb{N}^*$ is actually strongly zero-dimensional. We prove more: the product is ultraparacompact, meaning that every open cover has a pairwise disjoint open refinement.

Let \mathcal{U} be an open cover of the product consisting of basic clopen rectangles.

For each $f \in \text{Aut}$ there is a finite subfamily \mathcal{U}_f of \mathcal{U} that covers $\{f\} \times \mathbb{N}^*$, say $\mathcal{U}_f = \{C_i \times D_i : i < k_f\}$. Let $C_f = \bigcap_{i < k_f} C_i$ and $D_{f,i} = D_i \setminus \bigcup_{j < i} D_j$ for $i < k_f$. Then $\mathcal{C}_f = \{C_f \times D_{f,i} : i < k_f\}$ is a disjoint family of clopen rectangles that covers $\{f\} \times \mathbb{N}^*$ and refines \mathcal{U}.

Because Aut has weight \mathfrak{c}, and we assume CH, there is a sequence $(f_\alpha : \alpha \in \omega_1)$ in Aut such that $\{C_{f_\alpha} : \alpha \in \omega_1\}$ covers Aut. Next we let $V_\alpha = C_{f_\alpha} \setminus \bigcup_{\beta < \alpha} C_{f_\beta}$ for all α. Because Aut is a \mathcal{P}-space the family $\{V_\alpha : \alpha \in \omega_1\}$ is a disjoint open cover of Aut.

The family $\{V_\alpha \times D_{f_\alpha,i} : i < k_{f_\alpha}, \alpha \in \omega_1\}$ then is a disjoint open refinement of \mathcal{U}.

A compactification

To complete Step 2 we construct a compactification of $\text{Aut} \times \mathbb{N}^*$ that is a zero-dimensional F-space of weight \mathfrak{c} and that has an autohomeomorphism that extends h. The Čech-Stone compactification would be the obvious candidate, were it not for the fact that its weight is equal to $2^\mathfrak{c}$. More precisely, using some continuous onto function from (Aut, τ) onto $[0, 1]$ one obtains a clopen partition of $(\text{Aut}, \tau_\delta)$ of cardinality \mathfrak{c}. This shows that $\beta(\text{Aut} \times \mathbb{N}^*)$ admits a continuous surjection onto the space $\beta\mathfrak{c}$ (where \mathfrak{c} carries the discrete topology).

To create the desired compactification we build, either by transfinite recursion or by an application of the Löwenheim-Skolem theorem, a subalgebra \mathcal{B} of the algebra of clopen subsets of $\text{Aut} \times \mathbb{N}^*$ that is closed under h and h^{-1}, of cardinality \mathfrak{c}, and that has the property that for every pair of countable subsets A and B of \mathcal{B} such that $a \cap b = \emptyset$ whenever $a \in A$.
and \(b \in B \) there is a \(c \in B \) such that \(a \subseteq c \) and \(c \cap b = \emptyset \) for all \(a \in A \) and \(b \in B \). The latter condition can be fulfilled because \(\text{Aut} \times \mathbb{N}^* \) is an \(F \)-space — \(\bigcup A \) and \(\bigcup B \) have disjoint closures — and strongly zero-dimensional — the closures can be separated using a clopen set.

The Stone space \(\text{St}(B) \) of \(B \) is then a compactification of \(\text{Aut} \times \mathbb{N}^* \) that is a compact zero-dimensional \(F \)-space of weight \(\iota \), with an autohomeomorphism \(\tilde{h} \) that extends \(h \). We embed \(\text{St}(B) \) into \(\mathbb{N}^* \) as a nowhere dense \(P \)-set and extend \(\tilde{h} \) to an autohomeomorphism \(H \) of \(\mathbb{N}^* \).

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

ARTICLE INFORMATION

MSC 2020

Primary: 54D40 (Remainders in general topology)

Secondary: 03E50 (Continuum hypothesis and Martin's axiom), 54A35 (Consistency and independence results in general topology)

Keywords

Autohomeomorphism

\mathbb{N}^*

universality

Author Information

Klaas Pieter Hart

Faculty EEMCS, TU Delft, Postbus 5031, 2600 GA Delft, the Netherlands

k.p.hart@tudelft.nl

Homepage

MathSciNet

Jan van Mill

KdV Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands