Grothendieck inequalities, nonlocal games and optimization
Briët, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Acknowledgments

1 Nonlocal Games and Optimization

1.1 Introduction ... 1

1.2 Quantum information theory 3
 1.2.1 States and quantum systems 4
 1.2.2 Measurements and observables 4
 1.2.3 Entangled states and local measurements 5

1.3 Nonlocal games .. 7
 1.3.1 Classical strategies 7
 1.3.2 Entangled strategies 7

1.4 Two-player XOR games 8
 1.4.1 The CHSH game 10

1.5 Tsirelson’s Theorem .. 11

1.6 Multiplayer XOR games 14
 1.6.1 Mermin’s Game 15
 1.6.2 Stabilizer states 16

1.7 Semidefinite programs and relaxations 17
 1.7.1 Approximation algorithms 17
 1.7.2 MAX CUT ... 18
 1.7.3 The chromatic number and the Lovász theta number .. 22
 1.7.4 A little on the Unique Games Conjecture 23
Contents

2 Grothendieck inequalities
2.1 Introduction ... 25
2.2 Grothendieck’s Inequality 26
2.3 Generalizations of Grothendieck’s Inequality 27
2.3.1 The rank-\(r\) Grothendieck constant 27
2.3.2 The Grothendieck constant of a graph 29
2.3.3 The complex Grothendieck constant 30
2.3.4 Tonge’s Inequality 30

3 Nonlocal games that require high entanglement 37
3.1 Introduction ... 37
3.2 Grothendieck’s Inequality with operators 39
3.3 Lower bounds .. 42
3.4 Nonlocal games that require high entanglement 47
3.5 Invariant operators and Grothendieck’s constant 50
3.6 Open problems .. 53
3.7 Summary .. 53
3.8 Proof of the operator lemma 53

4 The PSD Grothendieck problem 57
4.1 Introduction ... 57
4.1.1 An optimal approximation algorithm? 59
4.1.2 Interpretations ... 62
4.1.3 More related work 63
4.2 The approximation ratio 64
4.2.1 The expectation function 64
4.2.2 Positive functions for spheres 66
4.2.3 The Wishart distribution 67
4.3 A refined, dimension-dependent analysis 70
4.4 Unique-Games hardness of approximation 72
4.5 The case of graphs 72
4.6 Summary .. 74

5 Grothendieck problems with rank constraint 75
5.1 Introduction ... 75
5.1.1 Applications .. 77
5.1.2 An efficient approximation algorithm for graphs with small chromatic number 78
5.2 A matrix version of Grothendieck’s Identity 82
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 Convergence radius</td>
<td>85</td>
</tr>
<tr>
<td>5.4 Constructing new vectors</td>
<td>87</td>
</tr>
<tr>
<td>5.5 A refined, dimension-dependent analysis</td>
<td>90</td>
</tr>
<tr>
<td>5.6 Upper bounds for large chromatic numbers</td>
<td>95</td>
</tr>
<tr>
<td>5.7 Summary</td>
<td>99</td>
</tr>
<tr>
<td>6 Entanglement in multiplayer XOR games</td>
<td>101</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>101</td>
</tr>
<tr>
<td>6.2 Bounded violations for a large class of states</td>
<td>103</td>
</tr>
<tr>
<td>6.2.1 Implications</td>
<td>105</td>
</tr>
<tr>
<td>6.3 Proof overview and techniques</td>
<td>107</td>
</tr>
<tr>
<td>6.3.1 First step: relating the entangled bias to the GIP bias</td>
<td>109</td>
</tr>
<tr>
<td>6.3.2 Second step: relating the GIP bias to the classical bias</td>
<td>110</td>
</tr>
<tr>
<td>6.4 Notation and definitions</td>
<td>110</td>
</tr>
<tr>
<td>6.5 Bounded violations for Schmidt states</td>
<td>111</td>
</tr>
<tr>
<td>6.5.1 Strategies with GHZ states.</td>
<td>111</td>
</tr>
<tr>
<td>6.5.2 Extension to Schmidt states</td>
<td>112</td>
</tr>
<tr>
<td>6.6 Bounded violations for clique-wise entanglement</td>
<td>114</td>
</tr>
<tr>
<td>6.6.1 Carne’s Theorem</td>
<td>115</td>
</tr>
<tr>
<td>6.6.2 Bounding the violations achievable by strategies with clique-</td>
<td>116</td>
</tr>
<tr>
<td>wise entanglement</td>
<td></td>
</tr>
<tr>
<td>6.7 Hardness of approximation of the entangled bias</td>
<td>119</td>
</tr>
<tr>
<td>6.8 Proof of Carne’s Theorem</td>
<td>120</td>
</tr>
<tr>
<td>6.9 Open questions</td>
<td>122</td>
</tr>
<tr>
<td>6.10 Summary</td>
<td>122</td>
</tr>
<tr>
<td>7 A problem of Varopoulos</td>
<td>123</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>123</td>
</tr>
<tr>
<td>7.1.1 Banach algebras</td>
<td>124</td>
</tr>
<tr>
<td>7.1.2 Q-algebras</td>
<td>125</td>
</tr>
<tr>
<td>7.1.3 Schatten spaces and the Schur product</td>
<td>126</td>
</tr>
<tr>
<td>7.2 Varopoulos’s question and our part of the answer</td>
<td>127</td>
</tr>
<tr>
<td>7.2.1 The connection to the Schmidt states</td>
<td>133</td>
</tr>
<tr>
<td>7.3 The intermediate cases</td>
<td>134</td>
</tr>
<tr>
<td>A Some useful linear algebra and analysis</td>
<td>137</td>
</tr>
<tr>
<td>A.1 Vector spaces</td>
<td>137</td>
</tr>
<tr>
<td>A.2 Matrices</td>
<td>139</td>
</tr>
<tr>
<td>A.3 Tensor products</td>
<td>141</td>
</tr>
</tbody>
</table>