Structured doping of upconversion nanosystems for biological applications
Wang, Y.

Citation for published version (APA):
Wang, Y. (2011). Structured doping of upconversion nanosystems for biological applications

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CONTENTS

1. **Introduction** ... 11

 1.1 Nanotechnology .. 13

 1.2 Upconversion and rare earth ions doped upconversion nanoparticles 13
 1.2.1 Upconversion process ... 13
 1.2.2 Rare earth ions doped upconversion nanoparticles 14

 1.3 Synthesis of upconversion nanoparticles ... 15
 1.3.1 Hydrothermal/solvothermal method ... 16
 1.3.2 Sol-gel method .. 17
 1.3.3 Thermal decomposition .. 17
 1.3.4 Ionothermal synthesis .. 17

 1.4 Strategies to enhance upconversion luminescence 19
 1.4.1 Inert shell coating .. 19
 1.4.2 Active shell coating ... 19
 1.4.3 Au/Ag enhancement .. 20
 1.4.4 Li⁺/Sc³⁺ doping .. 20

 1.5 Hydrophobic to hydrophilic phase transfer of nanoparticles 20
 1.5.1 Ligand exchange (ligand substitution) .. 21
 1.5.2 Polymer encapsulation .. 21
 1.5.3 Silica coating ... 22
 1.5.4 Other methods .. 22

 1.6 Upconversion nanoparticles in bio-applications .. 24
 1.6.1 Fluorescence cell imaging and bioimaging in vivo (multimodal imaging) ... 24
 1.6.2 Immunoassay and nucleic acid detection ... 25
 1.6.3 DNA detection ... 27
 1.6.4 Photodynamic therapy .. 28

 1.7 Outline of the thesis ... 29

 1.8 References .. 30
2. Upconversion Luminescence of β-NaYF₄:Yb³⁺,Er³⁺@β-NaYF₄ Core/Shell Nanoparticles

 2.1 Introduction ... 41
 2.2 Experiments ... 42
 2.2.1 Chemicals ... 42
 2.2.2 Synthesis of β-NaYF₄:Yb³⁺,Er³⁺ nanoparticles and β-NaYF₄:Yb³⁺,Er³⁺@β-NaYF₄ core/shell nanoparticles 42
 2.2.3 Characterizations .. 43
 2.3 Results and discussion ... 43
 2.4 Conclusions ... 54
 2.5 Acknowledgments .. 54
 2.6 References ... 55

3. Effect of Surface Related Organic Vibrational Modes in Luminescent Upconversion Dynamics of Rare Earth Ions Doped Nanoparticles

 3.1 Introduction ... 61
 3.2 Experiments ... 61
 3.2.1 Chemicals ... 61
 3.2.2 Synthesis of NaYF₄:Yb³⁺,Er³⁺@NaYF₄ core/shell structured upconversion nanoparticle 62
 3.2.3 Phase transfer of upconversion nanoparticle from hydrophobic to hydrophilic ... 62
 3.2.4 Characterizations .. 63
 3.3 Results and Discussion ... 63
 3.4 Conclusions ... 71
 3.5 Acknowledgements .. 71
 3.6 References ... 71

4. Structured Doping: A Strategy to Enhance Upconversion Luminescence for Bio-application

 4.1 Introduction ... 77
 4.2 Experiments ... 78
 4.2.1 Chemicals ... 78
 4.2.2 Nanoparticle synthesis .. 79
4.2.3 Phase transfer of upconversion nanoparticles from hydrophobic to hydrophilic .. 79
4.2.4 Conjugation of upconversion nanoparticles and rose bengal photosensitizer .. 79
4.2.5 Singlet oxygen detection .. 79
4.2.6 Characterization .. 79
4.3 Results and Discussion ... 80
4.4 Conclusions .. 88
4.5 Acknowledgments .. 89
4.6 References ... 89

5. Covalently-linked Multifunctional Upconversion Nanoconjugates for Photodynamic Therapy and Imaging of Cancer Cells 93
5.1 Introduction ... 95
5.2 Experiments .. 95
 5.2.1 Chemicals ... 95
 5.2.2 Synthesis of NaYF₄:Yb³⁺,Er³⁺ upconversion nanoparticles.............. 96
 5.2.3 Phase transfer of upconversion nanoparticles from hydrophobic to hydrophilic .. 96
 5.2.4 Conjugation of upconversion nanoparticles and rose bengal photosensitizer .. 96
 5.2.5 Construction of upconversion nanoconjugates:
 NaYF₄:Yb³⁺,Er³⁺-rose bengal/PEG-folic acid .. 97
 5.2.6 Upconversion luminescent spectra measurement 97
 5.2.7 Singlet oxygen detection ... 98
 5.2.8 Cell imaging .. 98
 5.2.9 Upconversion luminescence imaging of cancer cells 98
 5.2.10 MTT assay .. 98
5.3 Results and discussion ... 99
5.4 Conclusions ... 103
5.5 Acknowledgments .. 103
5.6 References ... 104

6. Critical shell thickness of core/shell upconversion luminescence nanoplatforms for FRET applications ... 107
6.1 Introduction..109
6.2 Experiments ...110
 6.2.1 Chemicals ..110
 6.2.2 Synthesis of NaYF₄:Yb³⁺,Er³⁺@NaYF₄ core/shell structured upconversion nanoparticle...110
 6.2.3 Phase transfer of upconversion nanoparticle from hydrophobic to hydrophilic ...111
 6.2.4 Conjugation of upconversion nanoparticles and rose bengal photosensitizer...111
 6.2.5 Singlet oxygen measurements ...111
 6.2.6 Characterizations ...111
6.3 Results and discussion...112
6.4 Conclusions..118
6.5 Acknowledgments ..118
6.6 References..119

Summary ..123

Samenvatting (Summary in Dutch)..126

摘要(Summary in Chinese)...129

Acknowledgements ...131