Structured doping of upconversion nanosystems for biological applications

Wang, Y.

Citation for published version (APA):
CONTENTS

1. Introduction ... 11

1.1 Nanotechnology .. 13

1.2 Upconversion and rare earth ions doped upconversion nanoparticles 13
 1.2.1 Upconversion process .. 13
 1.2.2 Rare earth ions doped upconversion nanoparticles/nanocrystals 14

1.3 Synthesis of upconversion nanoparticles .. 15
 1.3.1 Hydrothermal/solvothermal method ... 16
 1.3.2 Sol-gel method .. 17
 1.3.3 Thermal decomposition .. 17
 1.3.4 Ionothermal synthesis .. 17

1.4 Strategies to enhance upconversion luminescence ... 19
 1.4.1 Inert shell coating ... 19
 1.4.2 Active shell coating .. 19
 1.4.3 Au/Ag enhancement .. 20
 1.4.4 Li+/Sc3+ doping .. 20

1.5 Hydrophobic to hydrophilic phase transfer of nanoparticles 20
 1.5.1 Ligand exchange (ligand substitution) ... 21
 1.5.2 Polymer encapsulation .. 21
 1.5.3 Silica coating .. 22
 1.5.4 Other methods ... 22

1.6 Upconversion nanoparticles in bio-applications 24
 1.6.1 Fluorescence cell imaging and bioimaging in vivo (multimodal imaging) 24
 1.6.2 Immunoassay and nucleic acid detection .. 25
 1.6.3 DNA detection .. 27
 1.6.4 Photodynamic therapy .. 28

1.7 Outline of the thesis .. 29

1.8 References ... 30
2. Upconversion Luminescence of β-NaYF$_4$:Yb$^{3+}$,Er$^{3+}$@β-NaYF$_4$ Core/Shell Nanoparticles

2.1 Introduction ... 41
2.2 Experiments ... 42
 2.2.1 Chemicals ... 42
 2.2.2 Synthesis of β-NaYF$_4$:Yb$^{3+}$,Er$^{3+}$ nanoparticles and β-NaYF$_4$:Yb$^{3+}$,Er$^{3+}$@β-NaYF$_4$ core/shell nanoparticles .. 42
 2.2.3 Characterizations ... 43
2.3 Results and discussion .. 43
2.4 Conclusions ... 54
2.5 Acknowledgments ... 54
2.6 References ... 55

3. Effect of Surface Related Organic Vibrational Modes in Luminescent Upconversion Dynamics of Rare Earth Ions Doped Nanoparticles

3.1 Introduction ... 61
3.2 Experiments ... 61
 3.2.1 Chemicals ... 61
 3.2.2 Synthesis of NaYF$_4$:Yb$^{3+}$,Er$^{3+}$@NaYF$_4$ core/shell structured upconversion nanoparticle .. 62
 3.2.3 Phase transfer of upconversion nanoparticle from hydrophobic to hydrophilic .. 62
 3.2.4 Characterizations ... 63
3.3 Results and Discussion .. 63
3.4 Conclusions ... 71
3.5 Acknowledgements ... 71
3.6 References ... 71

4. Structured Doping: A Strategy to Enhance Upconversion Luminescence for Bio-application

4.1 Introduction ... 77
4.2 Experiments ... 78
 4.2.1 Chemicals ... 78
 4.2.2 Nanoparticle synthesis ... 79
4.2.3 Phase transfer of upconversion nanoparticles from hydrophobic to hydrophilic .. 79
4.2.4 Conjugation of upconversion nanoparticles and rose bengal photosensitizer .. 79
4.2.5 Singlet oxygen detection .. 79
4.2.6 Characterization .. 79
4.3 Results and Discussion ... 80
4.4 Conclusions ... 88
4.5 Acknowledgments .. 89
4.6 References ... 89

5. Covalently-linked Multifunctional Upconversion Nanoconjugates for Photodynamic Therapy and Imaging of Cancer Cells 93

5.1 Introduction ... 95
5.2 Experiments .. 95
5.2.1 Chemicals ... 95
5.2.2 Synthesis of NaYF₄:Yb³⁺,Er³⁺ upconversion nanoparticles......... 96
5.2.3 Phase transfer of upconversion nanoparticles from hydrophobic to hydrophilic .. 96
5.2.4 Conjugation of upconversion nanoparticles and rose bengal photosensitizer .. 96
5.2.5 Construction of upconversion nanoconjugates:
NaYF₄:Yb³⁺,Er³⁺-rose bengal/PEG-folic acid .. 97
5.2.6 Upconversion luminescent spectra measurement 97
5.2.7 Singlet oxygen detection .. 98
5.2.8 Cell imaging ... 98
5.2.9 Upconversion luminescence imaging of cancer cells 98
5.2.10 MTT assay .. 98
5.3 Results and discussion .. 99
5.4 Conclusions ... 103
5.5 Acknowledgments .. 103
5.6 References ... 104

6. Critical shell thickness of core/shell upconversion luminescence nanoplatforms for FRET applications .. 107
6.1 Introduction..109
6.2 Experiments ...110
 6.2.1 Chemicals ..110
 6.2.2 Synthesis of NaYF\textsubscript{4}:Yb3+,Er3+@NaYF\textsubscript{4} core/shell structured upconversion nanoparticle...110
 6.2.3 Phase transfer of upconversion nanoparticle from hydrophobic to hydrophilic ...111
 6.2.4 Conjugation of upconversion nanoparticles and rose bengal photosensitizer...111
 6.2.5 Singlet oxygen measurements ...111
 6.2.6 Characterizations ...111
6.3 Results and discussion ...112
6.4 Conclusions ..118
6.5 Acknowledgments ..118
6.6 References..119

Summary ..123
Samenvatting (Summary in Dutch)..126
摘要(Summary in Chinese)..129
Acknowledgements ..131