Reconstruction of stereoscopic CTA events using deep learning with CTLearn

DOI
10.22323/1.395.0730

Publication date
2022

Document Version
Final published version

Published in
Proceedings of Science

License
CC BY-NC-ND

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Reconstruction of stereoscopic CTA events using deep learning with CTLearn

T. Miener, D. Nieto, A. Brill, S. Spencer and J. L. Contreras for the CTA Consortium

(a complete list of authors can be found at the end of the proceedings)

EMFTEL department and IPARCOs, Universidad Complutense de Madrid, Madrid, Spain
Columbia University, Physics Department, New York, USA
University of Oxford, Department of Physics, Oxford, United Kingdom
E-mail: tmiener@ucm.es

The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input.
1. Introduction

The Cherenkov Telescope Array (CTA) [1] is the next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments by a factor of five to ten and provide an energy coverage from 20 GeV to more than 300 TeV. CTA will consist of two arrays of tens of imaging atmospheric Cherenkov telescopes (IACTs) to be built in the Northern Hemisphere (La Palma, Canary Island, Spain) and in the Southern Hemisphere (near Cerro Paranal, Chile). Arrays of IACTs observe simultaneously the Cherenkov light induced by the showers of particles produced when very-high-energy (VHE; above 20 GeV) gamma rays or charged cosmic rays enter the atmosphere. Those Cherenkov photons are collected by the optical systems and focused onto cameras, producing a stereoscopic record of the event. The IACT images contain the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information.

The gamma-ray and cosmic-ray initiated showers can be distinguished from their morphological differences, translated into their IACT stereoscopic images. This distinction, dubbed particle or event classification, is crucial for IACTs since cosmic-ray events are their main background. The original approach to classify IACT events from their images was to extract handcrafted features, like the commonly used Hillas parameters [2], and perform parameter-wise selection over the multidimensional space of those parameters. As a result of the improvement in available computational resources and algorithms over the past few decades, this original approach evolved into more sophisticated strategies where supervised learning algorithms like Random Forests [3] or Boosted Decision Trees [4–6] are trained on those handcrafted features, substantially improving the performance of the particle classification and, consequently, the sensitivity of the instruments. In addition, IACT data analysis methods also need to infer further properties of the gamma-ray events, namely, the energy and the incoming direction of the originating particles. This so-called full-event reconstruction could also be performed with deep convolutional neural networks (DCNs), a particular class of deep learning algorithms, which are currently the most successful machine learning methods for computer vision, excelling at image classification and regression among other tasks [7]. Rather than crafting the features by hand, these types of algorithms are capable of learning the feature extraction by themselves (representation learning). Therefore, DCNs can access all the information contained in the images, not only those condensed in handcrafted features extracted from those images.

Previous works have demonstrated the potential application of these algorithms for IACT event reconstruction [8–13]. DCN-based monoscopic telescope performance and the application of DCNs on observational data from the first Large-Sized Telescope (LST-1 prototype) of CTA North is discussed in these proceedings elsewhere [14, 15]. As a natural continuation of this line of work, this contribution focuses on full-event reconstruction of MC-simulated stereoscopic events.

2. CTA analysis workflow with deep learning

The CTA analysis workflow consists of several software blocks. The MC simulations and later the observational data are reduced with the stage1-tool of ctapipe\(^1\) [16, 17], a prototype

\(^1\)https://github.com/cta-observatory/ctapipe
low-level data processing pipeline for CTA, and the resulting calibrated images, as well as their image parameters, are stored in the official CTA Data Level 1 (DL1) format. Data loading and pre-processing, specially designed for deep learning purposes, are managed using an associated external package, DL1-Data-Handler2 \cite{DL1-Data-Handler}. It supports event-wise data reading using generators to handle big datasets. The training of the deep learning models and their inference, the actual full-event reconstruction, are performed with CTLearn3 \cite{CTLearn}. The high-level products like instrument response functions (IRFs) and sensitivity curves are obtained using pyirf4 \cite{pyirf}, a prototype for the generation of IRFs and sensitivities for CTA. The CTA analysis workflow with conventional methods can be found in these proceedings in Ref. \cite{CTAAnalysis}.

Full-event reconstruction with CTLearn The high-level, open-source CTLearn package provides a framework for training deep learning models for IACT full-event reconstruction using TensorFlow. This work focuses on the thin ResNet (TRN) model \cite{TRN} (see Fig. 1, left model), a deep DCN-based architecture for monoscopic full-event reconstruction with residual connections (meaning that the original input is added to the output at each stage, demonstrated to improve performance) \cite{ResNet}. A dual (squeeze-and-excitation) attention mechanism \cite{SqueezeAndExcitation} is deployed in each of the residual blocks. Either particle classification or regression (energy or arrival direction reconstruction) is performed with a selectable fully-connected head (FCH), a traditional multi-layer perceptron neural network (MLP), after the deep backbone, consisting of several stacked residual blocks.

![Diagram depicting the main layers of the TRN (left) and the TRN-RNN model (right).](https://arxiv.org/abs/2101.07626)

2https://github.com/cta-observatory/dl1-data-handler
3https://github.com/ctlearn-project/ctlearn
4https://github.com/cta-observatory/pyirf
The stereoscopic full-event reconstruction is performed with the TRN-RNN model (see Fig. 1, right model), which consists of multiple thin ResNet blocks connected via a recurrent neural network (RNN) [7]. In particular, the RNN - implemented in CTLearn - is a dynamic long short-term memory network (LSTM) [7], which adjusts its size according to the number of triggered telescopes for each event. The images of triggered telescopes are sorted a priori by the total amount of integrated charge in the camera. To train this large architecture, and to overcome computing limitations, transfer learning [7] is utilized: the DCN backbone of the TRN model is trained beforehand, its parameters are set to be untrainable weights and transferred into the TRN-RNN model.

3. Dataset

The analysis is carried out with the CTA South (zenith angle of 20°, North pointing) reference dataset, processed with ctapipe [5]. A detailed description of the simulation production, together with the telescope layout and performance study of CTA can be found elsewhere in Ref. [26]. For the deep learning training process of the particle classification, diffuse gamma-ray and proton-initiated events, simulated within a cone of 10° radius (covering the whole field of view of the instrument) are considered, in a balanced way so both populations contribute equally to the statistics of the datasets. 80% of the data are used for training (from which 5% are reserved for validation of the learning process) and 20% for testing. The regression models (energy or arrival direction reconstruction) are trained with the whole training set of diffuse gamma rays. The performance of the deep learning models is evaluated on simulated protons (∼7e9), electrons (∼2e9) and point-source gamma rays (∼2e9) with 0.4° offset with respect to the telescope pointing.

Array layout The array layout M5C5, consists of 13 medium-size telescopes (MSTs) and 40 small-size telescopes (SSTs), and four additional large-size telescopes (LSTs) are considered in this work. The M6C5 array layout with 14 MSTs, 40 SSTs and no LSTs is depicted in lower left panel of Fig. 1 in Ref. [26]. For the monoscopic full-event reconstruction, all images from the corresponding telescope type, regardless of the particular telescope, are included at training stage. However, the single telescope performances are evaluated with one particular telescope per telescope type.

Data selection (quality cuts) In order to compare to the conventional IACT analysis methods, two different data selection cuts are performed. The TRN model are trained and tested with a modest cut, adapted from Ref. [14], where faint images (Hillas intensity less than 50 photoelectrons) and images close to the camera edge (leakage2 parameter more than 0.2) are discarded. For the stereoscopic reconstruction, faint and truncated images are kept, but a multiplicity cut of four or more triggered telescopes is applied.

4. Results

The TRN and TRN-RNN models successfully learn to perform monoscopic and stereoscopic full-event reconstruction, respectively, for all sizes of CTA telescopes. The standard IACT IRFs and

5 The first stage of the analysis was performed on the EGI (www.egi.eu).
6 Please note that DCNs are fed with all the information contained in the event images and therefore no default quality cuts have to be applied.
sensitivities are depicted in Fig. 2 and 3. The angular resolution is defined as the angle containing 68% of the reconstructed gamma-ray events relative to the simulated point source gamma-ray direction. This is calculated in each logarithmic energy bin. The energy resolution in each energy bin is calculated with 68% of containment of \((E_{\text{reco}} - E_{\text{true}})/E_{\text{true}}\). The effective collection area, which is proportional to the gamma-ray efficiency of detection, is computed as a function of the simulated energy. Only events entering the calculation of the sensitivity curve are considered for the effective collection area and the resolution curves. The differential sensitivity calculation requires a minimal significance of more than 5 \(\sigma\), at least ten detected gamma rays and a minimal excess over background ratio of 0.05 for a observation of 50 hours. For IACTs, the receiver operating characteristic (ROC) curve visualizes the diagnostic ability of the gamma/hadron separation as its gammaness threshold is varied. The area under the ROC curve (AUC) is a measurement of the quality of the background rejection.

4.1 Single-telescope event reconstruction (TRN model)

The TRN model is trained on \(\sim 200k\) batches of 64 images for each telescope type, validating periodically. As expected (see Fig. 2), the LST is the most sensitive telescope type at the lowest energies; the sensitivity of an MST is best where this telescope type will be responsible for the full-array sensitivity; the SST is providing competitive sensitivity at multi-TeV energies. In the mono telescope analysis, SSTs are competitive with MSTs only at the highest energies. The LST, MST, and SST provide excellent energy resolutions of \(\sim 13\%, 9\%\), and \(10\%\) at their best, angular resolutions of \(\sim 0.12^\circ\), \(0.13^\circ\) and \(0.1^\circ\) at their best, and an AUC of 0.89, 0.944, and 0.959, in their entire energy ranges, respectively.

Figure 2: The single telescope IRFs and sensitivities, as defined in Sec. 4, obtained with the TRN model for the LST (blue), MST (green), and SST (orange).
4.2 Reconstruction of stereoscopic events (TRN-RNN model)

As discussed in Sec. 2, the backbone of the TRN model is transferred into the TRN-RNN model. Therefore, only \(\sim 100k \) batches of 16 images for each telescope type are needed to train the RNN and the FCH blocks of the model. The learning is also validated periodically. The particle classification, performed by the TRN-RNN model (see Fig. 3), works well, with an AUC score of 0.98, 0.994, and 0.996 for the subarrays of 4 LSTs-LSTCam, 13 MSTs-NectarCam, and 40 SSTs-CHEC, respectively. The three subarrays reach promising top values for the the energy resolution of \(\sim 10\% \), 7\%, and 6\% for LSTs, MSTs and SSTs, respectively. The IRFs produced with our models are cut off above 80 TeV, likely because they fail the requirement of 10 gamma rays in each energy bin. This should be solved once all telescope types would be combined in the reconstruction.

The TRN-RNN model performs poorly on the reconstruction of the arrival direction. The angular resolution for the highest energies differs from the conventional analysis significantly, which translates to the sensitivity curves, causing a deficit of performance especially at energies above 10 TeV. Achieving just a small improvement for the angular resolution by adding more telescopes concludes that this version of the TRN-RNN model needs further adjustments to be fully capable of learning stereoscopic features relevant for the arrival direction reconstruction. Including further information like the telescope position may help the network to better reconstruct the arrival direction. Future studies are planned to improve the angular resolution with DCN-based models especially in stereo mode. A fair comparison to the conventional analysis with the Eventdisplay software package (see black curves in Fig. 3) is not feasible at this stage of the development, because no LSTs are considered in the conventional analysis, and it is not limited to a per-telescope-type analysis [27].

Figure 3: The multi telescopes IRFs and sensitivities, as defined in Sec. 4, obtained with the TRN-RNN model for 4 LSTs (blue), 13 MSTs (green), and 40 SSTs (orange). The black curves depict the IRFs and sensitivities obtained with the conventional analysis of the array layout M6C5 with 14 MSTs, 40 SSTs, and no LSTs taken from Ref. [26].
5. Conclusion and Outlook

This contribution shows for the first time that DCN-based full-event reconstruction works for all sizes of CTA telescopes, in both single-telescope and stereo modes. The performance of the TRN and the TRN-RNN models for the particle classification and the energy estimation is promising. Tackling the arrival direction reconstruction task via DCNs requires additional modifications and improvements to the existing stereoscopic deep learning models to suit the requirements of CTA.

Future developments of CTLearn will include the combination of different telescope types to evaluate the full-array performance of CTA North and South with deep learning models. The results of each telescope type are obtained with the same set of non-optimized hyperparameters. Hyperparameter optimization will be explored in future. Multitask learning experiments (see Ref. [15]), where one single model performs the IACT specific tasks (particle classification, energy and arrival direction estimation), as well as the application of DCNs model on observational data, are also planned. Further validation of DCN-based full-event reconstruction under various circumstances (i.e. off-axis performance, divergent pointing, different zenith angles and night sky backgrounds, etc.) is very important and will be considered in future works.

6. Acknowledgments

This work was conducted in the context of the CTA Analysis and Simulations Working Group. We gratefully acknowledge financial support from the agencies and organizations listed in this link. TM acknowledges support from PID2019-104114RB-C32. DN and JLC acknowledges partial support from The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures funded by the European Union’s Horizon 2020 research and innovation program under Grant Agreement no. 824064. This work was performed using resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the University of Cambridge Research Computing Service (www.csd3.cam.ac.uk), provided by Dell EMC and Intel using Tier-2 funding from the Engineering and Physical Sciences Research Council (capital grant EP/P020259/1), and DiRAC funding from the Science and Technology Facilities Council (STFC, www.dirac.ac.uk). This work used IRIS computing resources funded by the STFC. SS acknowledges an STFC PhD studentship. We acknowledge the support of NVIDIA Corporation with the donation of a Titan X Pascal GPU used for part of this research.

This paper has gone through internal review by the CTA Consortium.

References

PoS(ICRC2021)730

The Cherenkov Telescope Array Consortium July 2021 Authors

cita deep learning analysis with ctlearn

Ti Meier
123 : Universidade Federal Do Paraná - Setor Palotina, Departamento de Engenharias e Exatas, Rua Pioneiro, 2153, Jardim Dallas, CEP: 85950-000 Palotina, Paraná, Brazil
124 : Dept. of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, United Kingdom
125 : Univ. Grenoble Alpes, CNRS, IPAG, 414 rue de la Piscine, Domaine Universitaire, 38041 Grenoble Cedex 9, France
126 : National Centre for nuclear research (Narodowe Centrum Badań Jądrowych), Ul. Andrzeja Soltana 7, 05-400 Orwock, Świecie, Poland
127 : Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
128 : Institut für Physik & Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
129 : Department of Physics and Astronomy, Iowa State University, Zaffarano Hall, Ames, IA 50011-3160, USA
130 : School of Physics, Aristotle University, Thessaloniki, 54124 Thessaloniki, Greece
131 : King’s College London, Strand, London, WC2R 2LS, United Kingdom
132 : Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Betto, CEP 03828-000, 1000 São Paulo, Brazil
133 : Dept. of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
134 : National Technical University of Athens, Department of Physics, Zografos 9, 15780 Athens, Greece
135 : University of Wisconsin, Madison, 500 Lincoln Drive, Madison, WI, 53706, USA
136 : Astronomical Observatory of Taras Shevchenko National University of Kyiv, 3 Obserwatorna Street, Kyiv, 04053, Ukraine
137 : Department of Physics, Purdue University, West Lafayette, IN 47907, USA
138 : Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, Edifici C3, Campus UAB, 08193 Bellaterra, Spain
139 : Institute for Space-Earth Environmental Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
140 : Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
141 : Department of Physics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
142 : Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Center for Astroparticle Physics (ECAP), Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
143 : Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
144 : IRFU / DIS, CEA, Université de Paris-Saclay, Bat 123, 91191 Gif-sur-Yvette, France
145 : INFN Sezione di Trieste and Università degli Studi di Trieste, Via Valerio 2, 34127 Trieste, Italy
146 : School of Physics & Center for Relativistic Astrophysics, Georgia Institute of Technology, 837 Street East, Atlanta, Georgia, 30332-0430, USA
147 : Alikhanyan National Science Laboratory, Yerevan Physics Institute, 2 Alikhanyan Brothers St., 0036, Yerevan, Armenia
148 : INAF - Telescopio Nazionale Galilei, Roche de los Muchachos Astronomical Observatory, 38787 Garafia, TF, Italy
149 : INFN Sezione di Bari and Università degli Studi di Bari, via Orabona 4, 70124 Bari, Italy
150 : University of Split - FESR, R. Boskovica 32, 21 000 Split, Croatia
151 : Universidad Andres Bello, República 252, Santiago, Chile
152 : Academic Computer Centre CYFRONET AGH, ul. Nawojki 11, 30-950 Cracow, Poland
153 : University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE, United Kingdom
154 : Department of Physics, Yamagata University, Yamagata, Yamagata 990-8560, Japan
155 : Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605, USA
156 : Faculty of Management Information, Yamanshi-Gakuin University, Kofu, Yamanshi 400-8575, Japan
157 : Department of Physics, Tokai University, 4-1-1, Kita-Kaname, Hiratsuka, Kanagawa 259-1292, Japan
158 : Centre for Astrophysics Research, Science & Technology Research Institute, University of Hertfordshire, College Lane, Hertfordshire AL10 9AB, United Kingdom
159 : Cherenkov Telescope Array Observatory, Saupfercheckweg 1, 69117 Heidelberg, Germany
160 : Tohoku University, Astronomical Institute, Aobaku, Sendai 980-8587, Japan
161 : Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
162 : Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
163 : Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Technikerstr. 25/8, 6020 Innsbruck, Austria
164 : Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112-0830, USA
165 : IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
166 : Josip Juraj Strossmayer University of Osijek, Trg Ljudevita Gaja 6, 31000 Osijek, Croatia
167 : Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
168 : Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
169 : Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Cracow, Poland
170 : Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
171 : University of Alabama, Tuscaloosa, Department of Physics and Astronomy, Gallee Hall, Box 870324 Tuscaloosa, AL 35487-0324, USA
172 : Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
173 : University of Iowa, Department of Physics and Astronomy, Van Allen Hall, Iowa City, IA 52242, USA
174 : Anton Pannekoek Institute/GRAPPA, University of Amsterdam, Science Park 904 1098 XV Amsterdam, The Netherlands
175: Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Kraków, al. Mickiewicza 30, 30-059 Cracow, Poland
176: Faculty of Science, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
177: Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
178: Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
179: Graduate School of Science and Engineering, Saitama University, 255 Simo-Okubo, Sakura-ku, Saitama city, Saitama 338-8570, Japan
180: Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
181: Centre for Quantum Technologies, National University Singapore, Block S15, 3 Science Drive 2, Singapore 117543, Singapore
182: Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba, 305-0801, Japan
183: Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom
184: Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, CEP. 09.210-580, Santo André - SP, Brazil
185: Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95123 Catania, Italy
186: Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
187: Texas Tech University, 2500 Broadway, Lubbock, Texas 79409-1035, USA
188: University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
189: Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 boul. Tsarigradsko chaussee, 1422 Sofia, Bulgaria
190: University of Białystok, Faculty of Physics, ul. K. Ciolkowskiego 1L, 15-245 Białystok, Poland
191: Faculty of Physics, National and Kapodestrian University of Athens, Panepistimiopolis, 15771 Ilissia, Athens, Greece
192: Universidad de Chile, Av. Libertador Bernardo O’Higgins 1098, Santiago, Chile
193: Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
194: Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192, Japan
195: School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
196: Departamento de Astronomía, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile
197: Charles University, Institute of Particle & Nuclear Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
198: Astronomical Observatory of Ivan Franko National University of Lviv, 8 Kyryla i Mephodia Street, Lviv, 79005, Ukraine
199: Kobayashi-Maskawa Institute (KMI) for the Origin of Particles and the Universe, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
200: Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
201: Space Research Centre, Polish Academy of Sciences, ul. Bartęcka 18A, 00-716 Warsaw, Poland
202: Instituto de Física – Universidade de São Paulo, Rua do Matão Travessa R Nr.187 CEP 05508-090 Cidade Universitária, São Paulo, Brazil
203: International Institute of Physics at the Federal University of Rio Grande do Norte, Campus Universitário, Lagoa Nova CEP 59078-970 Rio Grande do Norte, Brazil
204: University College Dublin, Belfield, Dublin 4, Ireland
205: Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
206: Departamento de Física, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
207: Núcleo de Formação de Professores - Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 CEP 13565-095 - SP-310 São Carlos - São Paulo, Brazil
208: Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
209: Department of Physical Sciences, Aoyama Gakuin University, Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
210: University of the Free State, Nelson Mandela Avenue, Bloemfontein, 9300, South Africa
211: Faculty of Electronics and Information, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
212: Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb, Croatia
213: Department of Physics, Kohn University, Kobe, Hyogo, 658-8501, Japan
214: Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
215: University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
216: Aalto University, Otakaari 1, 00076 Aalto, Finland
217: Agenzia Spaziale Italiana (ASI), 00133 Roma, Italy
218: Observatoire de la Côte d’Azur, Boulevard de l’Observatoire CS34229, 06304 Nice Cedex 4, France