Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project


DOI 10.22323/1.395.0881
Publication date 2022
Document Version Final published version
Published in Proceedings of Science
License CC BY-NC-ND

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

E. Kasai, a, P. Goldoni, b M. Backes, a,c G. Cotter, d S. Pita, b C. Boisson, e D. A. Williams, f F. D’Ammando, g E. Lindfors, h U. Barres de Almeida, i W. Max-Moerbeck, j V. Navarro-Arangüiz, j J. Becerra-Gonzalez k,l O. Hervet, f J.-P. Lenain, m H. Sol n and S. Wagner on behalf of the CTA Collaboration
(a complete list of authors can be found at the end of the proceedings)

a Department of Physics, Chemistry & Material Science, University of Namibia, Private Bag 13301, Windhoek, Namibia
b APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice

c Centre for Space Research, North-West University, Potchefstroom 2520, South Africa
d University of Oxford, Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom
e LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Meudon, France
f Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, Santa Cruz, CA

g INAF - Istituto di Radioastronomia, Via Gobetti 101, I-40129 Bologna, Italy
h Finnish Centre for Astronomy with ESO (FINCA), Quantum, Vesilinnantie 5, FI-20014, University of Turku, Finland
i Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
j Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile
k Universidad de La Laguna (ULL), Departamento de Astrofísica, E-38206 La Laguna, Tenerife, Spain
l Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife, Spain
m Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, 4 Place Jussieu, F-75252 Paris, France
n Landessternwarte, Universität Heidelberg, Königstuhl 12, D 69117 Heidelberg, Germany

E-mail: ekasai@unam.na

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory.
1. Introduction

The last two decades have seen the emergence of a new window on the Universe: very-high-energy (VHE, E >100 GeV) gamma-ray astronomy. Thanks to three major Imaging Air Cherenkov Telescope (IACT) ground based experiments - H.E.S.S. in the Southern hemisphere, MAGIC and VERITAS in the Northern hemisphere - over 200 sources have been detected, both Galactic and extragalactic\(^1\). Since 2008, the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope - which is very sensitive up to a few tens of GeV - provides complementary detections at lower energies. In the coming years, the future CTA observatory will start operations with lower energy threshold for VHE gamma-ray detections down to a few tens of GeV with roughly an order of magnitude flux sensitivity improvement compared to the current-generation of IACTs. VHE observations of active galaxies harbouring super-massive black holes and ejecting relativistic outflows represent a unique tool to probe the physics of extreme environments, including accretion physics, jet formation, interaction of the black-hole magnetosphere with the accretion disk corona, relativistic interaction processes and general relativity. The same observations also allow us to characterise the evolution and differentiation (diversity, environmental impact, feedback within the host galaxy) of some of the brightest cosmic sources through space and time.

The use of AGN as beacons provides insights into the cosmological evolution of star and galaxy formation through constraints on photon fields and magnetic fields along the line of sight. AGN are known to emit variable radiation across the entire electromagnetic spectrum up to multi-TeV energies, with fluctuations on time-scales from several years down to a few minutes. Apart from four nearby radio-galaxies, all VHE AGN are blazars, i.e. their jets are closely aligned with the line of sight to Earth. Three quarters of blazars are classified as high-frequency peaked BL Lac objects but there are also a few VHE blazars of other classes: flat-spectrum radio quasars, low and intermediate frequency peaked BL Lac objects and a newly defined class of ultra-high-frequency peaked BL Lac objects, with spectral peaks above 1 TeV. The highest redshift of this sample of VHE detected sources is \(z = 0.95\) and there is some evidence of the detection of photons above 100 GeV for redshifts as large as 1.1 \([1]\), but the majority have redshifts lower than 0.2.

The currently-known population of VHE AGN is still very limited with respect to the coverage of different classes and redshifts. Beyond the study of VHE BL Lac objects, their detection at different redshifts is also a valuable tool to put constraints on the density of the extragalactic background light (EBL, see \([2]\), \([3]\), and \([4]\)) because absorption is due to pair production in the interactions between VHE and EBL photons. This EBL radiation includes the UV-optical emission of all the stars and galaxies since the end of the cosmic dark ages and its reprocessing by dust in the near infrared. It therefore carries valuable information about the evolution of matter in the Universe, and also plays a role as an absorber for gamma-rays.

One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated optical spectra. Indeed, many of the early studies using X-ray or radio-selected samples had highly incomplete redshift measurements, even though the samples were confined to relatively bright sources. Uncertainty in extrapolating from the measured set of redshifts complicated population interpretations. This difficulty has not been solved yet and it also plagues present-day samples of BL Lacs \([5]\). As a consequence, it is

\(^1\)http://tevcat.uchicago.edu/
expected that a significant fraction of the AGN detected with CTA (more than 50% of the AGN from the Third Catalogue of Hard Fermi-LAT Sources, [6]), especially BL Lac objects, will have no spectroscopic redshifts, thus strongly compromising studies of the BL Lac population and of its cosmic evolution. The problem is more acute at redshifts $z > 0.3$, where known VHE sources currently become sparse. Indeed detection of TeV photons from sources at $z > 0.3$ implies probing very high optical depths and have led to suggestions of exotic non-standard model physics like photon-axion coupling. True spectroscopic redshifts are thus the only way to obtain uniform population studies and constrain these theories. It is therefore of great importance to measure the redshifts of a large fraction of the AGN sources that are likely to be detected with CTA.

In 2019, we proposed to observe three BL Lacs as a pilot project with the Southern African Large Telescope (SALT) to evaluate its spectroscopic capabilities in measuring redshifts. With an 11 m primary mirror diameter, SALT is the largest single-mirror optical telescope in the Southern Hemisphere\(^2\) and is located at the Sutherland Observatory in South Africa, operated by the South African Astronomical Observatory\(^3\). SALT observed high signal-to-noise (S/N) spectra from which we successfully determined three redshifts. Since then, SALT observations have been on-going.

In this contribution, we present an overview of the SALT redshift determination program, providing specific results of two of the first sources observed in the program for which redshifts were successfully measured and have been published in our recent paper [7], along with more than ten other results from other spectroscopic follow-up telescopes in the program.

The layout of the contribution is as follows: we present observations and data reduction in Section 2, redshift determination in Section 3, results in Section 4 and discussion and conclusions in Section 5. The calculations we perform assume a cosmology with $\Omega_M = 0.27$, $\Omega_\Lambda = 0.73$ and $H_0 = 70$ km s\(^{-1}\) Mpc\(^{-1}\), and the AB system for magnitudes.

2. Observations and data reduction

From November 2019 to June 2021, we have observed a total of twenty-one (21) BL Lacs, conducted with the Robert Stobie Spectrograph (RSS, [8]) – SALT’s main workhorse instrument that has a wide range of capabilities. We use the RSS in long slit mode with a slit width of 2" and the PG0900 grating in first-order. This configuration results in a spectral range of roughly 4500 to 7500 Å with resolution $\lambda/\Delta \lambda \sim 1000$ and a throughput of more than 20 % and [9]. We use PySALT [10] to perform data reduction – correcting for cross-talk, bias, gain and flat fielding the frames – and the standard IRAF [11] routines for wavelength calibration. Cosmic-ray cleaning and flux calibration are performed using algorithms in the Interactive Data Language\(^4\) software.

Absolute flux calibration is difficult to achieve with SALT due to the telescope’s moving pupil [12] and for this reason, some of our targets get observed photometrically around the same period that spectroscopic observations are conducted, including the two sources 1RXS J015658.6-530208 and 1RXS J020922.2-522920, whose observational results we present in this contribution. 1RXS J015658.6-530208 was observed on the 30\(^{th}\) of November 2019 in four different optical

\(^2\)https://www.salt.ac.za/
\(^3\)https://www.saao.ac.za/
\(^4\)http://www.harrisgeospatial.com
bands using the Ultraviolet/Optical Telescope (UVOT, [12]) onboard the Neil Gehrels Swift Observatory [13] and 1RXS J020922.2-522920 was observed for five nights between the end of December 2019 and the start of January 2020 using the REM Optical Slitless Spectrograph (ROSS2) at the REM telescope [14], located at an ESO observatory in Chile.

Out of the total 21 BL Lacs observed to date, we have successfully measured redshifts for eight of them. We could not detect redshift determination spectral features in the spectra of nine of the BL Lacs, despite sufficient S/N as per our requirements and the spectra for the remaining four of the 21 BL Lacs have lower S/N compared to our minimum requirement, necessitating further visits to those sources still.

3. Redshift determination

The steps involved in measuring the redshifts of our observed sources are presented in greater detail in [7]. We summarise the steps in this section. The redshift determination process starts with searching for absorption or emission features in observed spectra. Whenever one such feature is found, a check is made for other features that yield the same redshift measurement result. After this step, the spectra are normalised with cubic splines and within each pixel the flux is integrated to measure each feature’s total equivalent width. The error involved in such a measurement is estimated with the root of the sum of the squares of the error spectrum and considering the uncertainties of the continuum placement [15].

To estimate the uncertainty of a measured redshift using the above steps, two types of uncertainties are considered: (1) wavelength calibration uncertainties and (2) detected feature position uncertainties. In all our spectra, we find that from ~ 4000 to ~ 8000 Å, the wavelength calibration dispersion is less than 0.5 Å, which points to a relative precision of less than 6-12 × 10^{-5}. After a redshift is measured, Gaussian functions are fitted at each feature position in the spectrum and the variance of the fits are taken to be the uncertainty. Summing such uncertainties with the wavelength calibration uncertainties results in the estimated uncertainty on a measured redshift.

4. Results

The results of SALT/RSS observations of 1RXS J015658.6−530208 and 1RXS J020922.2−522920 – along with ten other sources observed by various other telescopes in the overall CTA redshift determination program – were discussed extensively in [7]. We provide a brief summary of that discussion in this section, focussing only on these two sources.

4.1 1RXS J015658.6−530208

SALT/RSS observations of this target were conducted on the 24th and 26th of November 2019 with good transparency and average seeing of 1.2” and 1.4”, respectively. The averaged spectrum from the two observations yielded a S/N = 100 and its inspection revealed a clear presence of the CaHK and CaIG features that can be seen in the bottom part of the left panel of Figure 1. The two spectral features led to a precise redshift measurement of $z = 0.3043 \pm 0.0004$, which was confirmed
Figure 1: SALT/RSS spectra of 1RXS J015658.6–530208 (left) and 1RXS J020922.2–522920 (right), each containing two parts. The top parts shown in black are the flux-calibrated and telluric-corrected spectra and in red are the best fit galaxy models (where the galaxy component shown in green is assumed to be elliptical) used by [7] to estimate total blazar emission of the sources. The bottom parts are the normalised spectra and illustrating the absorption features used for redshift determination. The symbols @ represent atmospheric telluric absorption features. Figure from [7].

by a weaker presence of the Mgb feature (also indicated in the normalised spectrum) at the same redshift.

Comparison of the Swift/UVOT near-contemporaneous photometric data points to the flux-calibrated spectrum revealed that fluxes derived from the former were higher than those from the latter but the slopes were compatible, as the left panel of Figure 2 shows.

To get more accurate spectral fluxes, a rescaling was performed to match the average UVOT photometry by multiplying the former with the value 1.3, found to be the ratio between flux from the \( v \) Swift/UVOT filter (fully contained in the spectral range of the source, see left panel of Figure 2) and the spectral flux within the corresponding spectral \( v \) filter range.

4.2 1RXS J020922.2–522920

SALT/RSS observation of this target was conducted on the 28\(^{th}\) of December 2019 with good transparency and an average seeing of 1.4" and the resulting spectrum yielded a S/N = 160. Upon inspection, a CaHK feature marked on the normalised spectrum in the bottom part of the right panel of Figure 1 was identified and used to measure the redshift. A weaker presence of CaIG, Mgb and NaID features, also indicated on the normalised spectrum, confirmed the determined redshift value \( z = 0.2110 \pm 0.0002 \).

Comparison of the average fluxes derived from the REM/ROSS2 photometry show consistency with the SALT/RSS spectral fluxes to within 0.1 magnitudes (see right panel of Figure 2).

5. Discussion and conclusions

As a 10m-class telescope, SALT allows reasonably short exposures to get good S/N, which is a great advantage as longer exposures result in more cosmic ray hits, which makes the data reduction
process more challenging. Over 90% of the spectra for all the 21 sources taken with SALT/RSS reached our target S/N range of 50-150, making SALT one of the best tools we have in our quest for successful measurements of redshifts for sources in our sample. The S/N of the spectra for both 1RXS J015658.6−530208 and 1RXS J020922.2−522920 were well within our target S/N interval for the former and the latter exceeded the maximum value of the interval, an aspect that is crucial to the work of the CTA Redshift Determination Group (herein CRDG).

While the above is true, we are also cognisant of the fact that not all spectra with S/N falling within our required interval result in successful redshift measurements as the necessary spectral features are undetectable in some of such spectra. For such sources, CRDG is currently actively working towards obtaining Target of Opportunity programs on telescopes, including SALT, and observe them when in their optical low states, with a potential to result in a higher chance of detecting redshift determination features.

To conclude, SALT redshift determination program for the CTA project is ongoing. We have an approved multi-semester observing proposal on SALT running until the end of 2022, subject to approval of our semesterly performance reports by the SALT time allocation committee to continue observations in six-month intervals, in which we observe a minimum of five or six targets depending on their brightnesses.

Acknowledgements

We gratefully acknowledge financial support from the agencies and organisations listed here: http://www.cta-observatory.org/consortium_acknowledgments.
References


SALT Spectroscopy of BL Lacs for CTA
SALT Spectroscopy of BL Lacs for CTA

E. Kasai
SALT Spectroscopy of BL Lacs for CTA

E. Kasai

77: INAF - Osservatorio Astronomico di Palermo "G.S. Vaiana", Piazza del Parlamento 1, 90134 Palermo, Italy
78: School of Physics, University of Sydney, Sydney NSW 2006, Australia
79: Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, 4 Place Jussieu, F-75005 Paris, France
80: Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400 - CEP 13566-590, São Carlos, SP, Brazil
81: Departamento de Física Quântica e Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès, 1, 08028, Barcelona, Spain
82: Department of Physics, Washington University, St. Louis, MO 63130, USA
83: Jahan Institute of Nuclear Physics, Budhannagar, Kolkata-700 064, India
84: INAF - Osservatorio Astronomico di Capodimonte, Via Salita Moiariello 16, 80131 Napoli, Italy
85: Université de Paris, CNRS, Astroparticule et Cosmologie, 10, rue Alice Monon et Léone Duquet, 75013 Paris Cedex 13, France
86: Astroparticle Department of Faculty of Physics, Sofia University, 5 James Bourchier Str., 1164 Sofia, Bulgaria
87: Institut de Recherche en Astrophysique et Planétologie, CNRS-INSU, Université Paul Sabatier, 9 avenue Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
88: School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E. Minneapolis, Minnesota 55455-0112, USA
89: IRFU, CEA, Université Paris-Saclay, Bât 141, 91919 Gif-sur-Yvette, France
90: INAF - Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy
91: INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, 90146 Palermo, Italy
92: Astronomical Observatory, Department of Physics, University of Warsaw, Aleje Ujazdowskie 4, 00478 Warsaw, Poland
93: Armagh Observatory and Planetarium, College Hill, Armagh BT6 9IG, Northern Ireland
94: INFN Sezione di Catania, Sicily, Italy
95: INAF - Osservatorio Astronomico di Brera, Via Brera 28, 20121 Milano, Italy
96: Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
97: Universidade Cruzeiro do Sul, Núcleo de Astrofísica Teórica (NAT/UCS), Rua Galvão Bueno 8687, Bloco B, sala 16, Libertade 01506-000 - São Paulo, Brazil
98: Universidad de Valparaíso, Byron 951, Valparaíso, Chile
99: INAF - Istituto di Astrofisica e Planetologia Spaziali (IAPS), Via di Fosso del Cavaliere 100, 00133 Roma, Italy
100: Lund Observatory, Lund University, Box 1, SE-22100 Lund, Sweden
101: The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Cracow, Poland
102: Escola de Engenharia de Lorena, Universidade de São Paulo, Área I - Estrada Municipal do Campinho, s/n, CEP 12602-810, Pte. Nova, Lorena, Brazil
103: INFN Sezione di Trieste and Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
104: Palacky University Olomouc, Faculty of Science, RCPTM, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
105: Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany
106: CENBG, Univ. Bordeaux, CNRS-IN2P3, UMR 5797, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan Cedex, France
107: Dublin City University, Glasnevin, Dublin 9, Ireland
108: Departamento de Física - Università degli Studi di Torino, Via Pietro Giuria 1 - 10125 Torino, Italy
109: Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
110: University degli Studi di Napoli "Federico II" - Dipartimento di Fisica "E. Pancini", Complesso universitario di Monte Sant'Angelo, Via Cintia - 80126 Napoli, Italy
111: Oskar Klein Centre, Department of Physics, University of Stockholm, AlbaNova, SE-10691, Sweden
112: Yale University, Department of Physics and Astronomy, 260 Whitney Avenue, New Haven, CT 06520-8101, USA
113: CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
114: University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
115: School of Physics & Astronomy, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
116: University of California, Los Angeles, Physics, 5110 Campbell Hall, Los Angeles, CA 90095, USA
117: Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
118: School of Physical Sciences, University of Adelaide, Adelaide SA 5005, Australia
119: INFN Sezione di Roma La Sapienza, P.le Aldo Moro, 2 - 00185 Roma, Italy
120: INFN Sezione di Bari, via Orabona 4, 70126 Bari, Italy
121: University of Rijeka, Department of Physics, Radmile Matejic 2, 51000 Rijeka, Croatia
122: Institute for Theoretical Physics and Astrophysics, Universität Würzburg, Campus Hubland Nord, Emil-Fischer-Str. 31, 97074 Würzburg, Germany
123: Universidade Federal Do Paraná - Setor Palotina, Departamento de Engenharias e Exatas, Rua Pioneiro, 2153, Jardim Jóia, Curitiba, Paraná, Brazil
124: Depart. of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, United Kingdom
125: Univ. Grenoble Alpes, CNRS, IPAG, 414 rue de la Piscine, Domaine Universitaire, 38041 Grenoble Cedex 9, France
126 : National Centre for nuclear research (Narodowe Centrum Badań Jadrowych), Ul. Andrzeja Sołtana 7, 05-400 Otwock, Świerk, Poland
127 : Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
128 : Institut für Physik & Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
129 : Department of Physics and Astronomy, Iowa State University, Zaffarano Hall, Ames, IA 50011-3160, USA
130 : School of Physics, Aristotle University, Thessaloniki, 54124 Thessaloniki, Greece
131 : King’s College London, Strand, London, WC2R 2LS, United Kingdom
132 : Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, CEP 03828-000, 1000 São Paulo, Brazil
133 : Dept. of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
134 : National Technical University of Athens, Department of Physics, Zografos 9, 15780 Athens, Greece
135 : University of Wisconsin, Madison, 500 Lincoln Drive, Madison, WI 53706, USA
136 : Astronomical Observatory of Taras Shevchenko National University of Kyiv, 3 Observatorna Street, Kyiv, 04053, Ukraine
137 : Department of Physics, Purdue University, West Lafayette, IN 47907, USA
138 : Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, Edifici C3, Campus UAB, 08193 Bellaterra, Spain
139 : Institute for Space-Earth Environmental Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
140 : Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
141 : Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
142 : Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics (ECAP), Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
143 : Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
144 : IRFU/DIS, CEA, Université de Paris-Saclay, Bat 123, 91191 Gif-sur-Yvette, France
145 : INFN Sezione di Trieste and Università degli Studi di Trieste, Via Valerio 2, 34127 Trieste, Italy
146 : School of Physics & Center for Relativistic Astrophysics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia, 30332-0430, USA
147 : Alikhanyan National Science Laboratory, Yerevan Physics Institute, 2 Alikhanyan Brothers St., 0036, Yerevan, Armenia
148 : INAF - Telescopio Nazionale Galileo, Roche de los Muchachos Astronomical Observatory, 38787 Garafia, TF, Italy
149 : INFN Sezione di Bari and Università degli Studi di Bari, via Orabona 4, 70124 Bari, Italy
150 : University of Split - FESB, R. Boskovic 32, 21 000 Split, Croatia
151 : Universidad Andres Bello, República 252, Santiago, Chile
152 : Academic Computer Centre CYFRONET AGH, ul. Nauki 12, 30-950 Cracow, Poland
153 : University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE, United Kingdom
154 : Department of Physics, Yamagata University, Yamagata, Yamagata 990-8560, Japan
155 : Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605, USA
156 : Faculty of Management Information, Yamashita-Gakuen University, Kofu, Yamanashi 400-8575, Japan
157 : Department of Physics, Tokai University, 4-1-1, Kita-Kaname, Hiratsuka, Kanagawa 259-1292, Japan
158 : Centre for Astrophysics Research, Science & Technology Research Institute, University of Hertfordshire, College Lane, Hertfordshire AL10 9AB, United Kingdom
159 : Cherenkov Telescope Array Observatory, Saupfercheckweg 1, 69117 Heidelberg, Germany
160 : Tohoku University, Astronomical Institute, Aobaku, Sendai 980-8578, Japan
161 : Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
162 : Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
163 : Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Technikerstr. 25/8, 6020 Innsbruck, Austria
164 : Department of Physics, Yamashita-Gakuen University, Kofu, Yamanashi 400-8575, Japan
165 : Department of Physics, Tohoku University, 4-1-1, Kita-Kaname, Hiratsuka, Kanagawa 259-1292, Japan
166 : Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
167 : University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE, United Kingdom
168 : Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
169 : Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Cracow, Poland
170 : Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
171 : University of Alabama, Tuscaloosa, Department of Physics and Astronomy, Gallalee Hall, Box 870324 Tuscaloosa, AL 35487-0324, USA
172 : Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
173 : University of Iowa, Department of Physics and Astronomy, Van Allen Hall, Iowa City, IA 52242, USA
174 : Anton Pannekoek Institute/GRAPPA, University of Amsterdam, Science Park 904 1098 XH Amsterdam, The Netherlands
175 : Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Kraków, al. Mickiewicza 30, 30-059 Cracow, Poland
176 : Faculty of Science, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
177 : Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
SALT Spectroscopy of BL Lacs for CTA

E. Kasai

178 : Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland

179 : Graduate School of Science and Engineering, Saitama University, 255 Saito-Ohkubo, Sakuraku, Saitama city, Saitama 338-8570, Japan

180 : Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-0502, Japan

181 : Centre for Quantum Technologies, National University Singapore, Block S15, 3 Science Drive 2, Singapore 117543, Singapore

182 : Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

183 : Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom

184 : Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 3001, CEP: 09.210-580, Santo André - SP, Brazil

185 : Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Università di Catania, Via S. Sofia 78, 1-95123 Catania, Italy

186 : Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany

187 : Texas Tech University, 2500 Broadway, Lubbock, Texas 79409-1035, USA

188 : University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland

189 : Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 boul. Tsarigradsko chaussee, 1784 Sofia, Bulgaria

190 : University of Białystok, Faculty of Physics, ul. K. Ciolkowskiego 1L, 15-254 Białystok, Poland

191 : Faculty of Physics, National and Kapodestrian University of Athens, Panepistimiopolis, 15771 Ilissia, Athens, Greece

192 : Universidad de Chile, Av. Libertador Bernardo O’Higgins 1058, Santiago, Chile

193 : Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

194 : Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192, Japan

195 : School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan

196 : Departamento de Astronomía, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile

197 : Charles University, Institute of Particle & Nuclear Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic

198 : Astronomical Observatory of Ivan Franko National University of Lviv, 8 Kyryla i Mephedia Street, Lviv, 79005, Ukraine

199 : Kobayashi-Maskawa Institute (KMI) for the Origin of Particles and the Universe, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

200 : Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan

201 : Space Research Centre, Polish Academy of Sciences, ul. Bartycka 18A, 00-716 Warsaw, Poland

202 : Instituto de Física - Universidade de São Paulo, Rua do Matão Traversa R Nr.187 CEP 05508-090 Ciudad Universitaria, São Paulo, Brazil

203 : International Institute of Physics at the Federal University of Rio Grande do Norte, Campus Universitário, Lagoa Nova CEP 59078-970 Rio Grande do Norte, Brazil

204 : University College Dublin, Belfield, Dublin 4, Ireland

205 : Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa

206 : Departamento de Fisica, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile

207 : Núcleo de Formação de Professores - Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 CEP 13565-905 - SP-310 São Carlos - São Paulo, Brazil

208 : Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

209 : Department of Physical Sciences, Aoyama Gakuin University, Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan

210 : University of the Free State, Free State, Bloemfontein, 9300, South Africa

211 : Faculty of Electronics and Information, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

212 : Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb, Croatia

213 : Department of Physics, Konan University, Kobe, Hyogo, 658-8501, Japan

214 : Kumamoto University, 2-39-1 Karukami, Kumamoto, 860-8555, Japan

215 : School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy

216 : Aalto University, Otakaari 1, 00076 Aalto, Finland

217 : Agenzia Spaziale Italiana (ASI), 00133 Roma, Italy

218 : Observatoire de la Cote d’Azur, Boulevard de l’Observatoire CS34229, 06304 Nice Cedex 4, France