Monte Carlo Simulations and Validation of NectarCAM, a Medium Sized Telescope Camera for CTA

Armstrong, T.P.; Costantini, H.; Glicenstein, J.-F.; Lenain, J.-P.; Schwanke, U.; CTA Collaboration

DOI
10.22323/1.395.0747

Publication date
2022

Document Version
Final published version

Published in
Proceedings of Science

License
CC BY-NC-ND

Citation for published version (APA):

Download date: 29 May 2024
Monte Carlo Simulations and Validation of NectarCAM, a Medium Sized Telescope Camera for CTA

Thomas P. Armstrong, Heide Costantini, Jean-François Glicenstein, Jean-Philippe Lenain, Ullrich Schwanke and Thomas Tavernier on behalf of the CTA Collaboration

(a complete list of authors can be found at the end of the proceedings)

aAix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
bCEA-IRFU, Gif-Sur-Yvette, France
cLPNHE, CNRS/IN2P3, Paris, France
dHumboldt University, Department of Physics, Berlin, Germany

E-mail: armstrong@cppm.in2p3.fr

The upcoming Cherenkov Telescope Array (CTA) ground-based gamma-ray observatory will open up our view of the very high energy Universe, offering an improvement in sensitivity of 5-10 times that of previous experiments. NectarCAM is one of the proposed cameras for the Medium-Sized Telescopes (MST) which have been designed to cover the core energy range of CTA, from 100 GeV to 10 TeV. The final camera will be capable of GHz sampling and provide a field of view of 8 degrees with its 265 modules of 7 photomultiplier each (for a total of 1855 pixels). In order to validate the performance of NectarCAM, a partially-equipped prototype has been constructed consisting of only the inner 61-modules. It has so far undergone testing at the integration test-bench facility in CEA Paris-Saclay (France) and on a prototype of the MST structure in Adlershof (Germany). To characterize the performance of the prototype, Monte Carlo simulations were conducted using a detailed model of the 61 module camera in the CORSIKA/sim_telarray framework. This contribution provides an overview of this work including the comparison of trigger and readout performance on test-bench data and trigger and image parameterization performance during on-sky measurements.
Monte Carlo Simulations of NectarCAM
Thomas P. Armstrong

1. Introduction

CTA is the next generation of ground based imaging atmospheric telescopes, representing the move from current experiments to a full observatory. With its two arrays covering both hemispheres, it will provide an order of 5-10 times improvement in sensitivity. Using three different sizes of telescope, it will be able to observe gamma rays with energies between 20 GeV to over 300 TeV. The bulk of this energy range will be met with the 12 m diameter Medium Sized Telescope (MST). NectarCAM is one of the proposed cameras which will be mounted on the MST [1]. Its concept is based on a modular design, where a module consists of 7 photomultiplier tubes (PMTs) and an associated set of readout and trigger electronics. The full camera will consist of 1855 PMTs providing an 8 degree field of view. The readout is based on the NECTAr ASIC which is able to store data in a circular buffer with GHz sampling until the camera is triggered (resulting in a 60 ns readout window). The camera has two gain channels with the nominal voltage able to measure the single photo-electron (p.e.) level and a higher gain providing a dynamic range up to 2000 p.e. (with a linearity of 5%).

The trigger logic of NectarCAM uses a multi-level scheme in order to reduce the number of random triggers from noise, while maximising the number of shower images recorded. In the first step, or the Level 0 (L0) trigger, a copy of the analog signal from an individual pixel is sent to the L0 ASIC, where the signal is compared to a programmable voltage threshold using a discriminator circuit. The output of the discriminator consists of gate pulse, reshaped to a programmable gate width at the trigger FPGA which also handles the Level 1 (L1) trigger fabric. The L1 trigger is based on the processing of L0 signals of overlapping 37-pixels regions, where the signal from each 7-pixel module is shared with its 6 neighbours. Several trigger algorithms can be implemented, but the default 3 Nearest Neighbours (3NN) is currently used in NectarCAM.

A first demonstrator prototype of NectarCAM has been constructed and evaluated. Consisting of only the central 427 PMTs, this prototype has facilitated full testing and validation of the camera concept. The majority of the tests have been carried out at the CEA Paris-Saclay dark room test bench (France), a 12 m long dark room which is equipped with a LED pulser and continuous Night Sky Background (NSB) emulating light. To allow further tests, including integration with the telescope structure, the demonstrator was mounted on the prototype MST located in Adlershof (Berlin, Germany) where on-sky observations were carried out.

The performance of CTA is estimated using Monte Carlo (MC) simulations of particle air showers produced by gamma rays and background protons and electrons. The response to the resulting Cherenkov light through the telescope optics and camera electronics therefore needs to be well understood. A large effort has gone into ensuring the models for each telescope are accurate, through performing matching simulations to tests carried out in the lab and on-sky. In this paper, a summary of the results from this process with NectarCAM will be presented, covering dark room tests in Section 2 and on-sky tests in Sections 3.

2. Simulation of Test Bench

For the work presented in this paper, the simulation software CORSIKA (v6.9) and sim_telarray (2018-11-07) are used [2, 3]. A light source similar to the LED flasher is implemented in the simu-
Monte Carlo Simulations of NectarCAM
Thomas P. Armstrong

Figure 1: The derived intensity resolution for nominal NSB (~250 MHz) in blue and high NSB (~1GHz) in orange, where the ranges are due to the uncertainty of the NSB test bench source. Also shown is the CTA requirements on the intensity resolution for these two levels.

Simulations including the wavelength (405 nm), the light pulse shape (Gaussian with a standard deviation of 0.64 ns) and the angular distribution (flat response over 11.4 degrees opening angle). The model for the camera used in the sim_telarray simulations was updated with various lab measurements and design specifications. Some model parameters were adjusted during the comparisons presented in this section and are mainly parameters which are difficult to measure directly in a lab. While there are many intermediate results in the validation process, the two main outcomes presented here are the validation of the readout in terms of the intensity resolution, and the matching of the trigger performance for both the L0 and L1 stages.

2.1 Verification of Readout Performance

The reconstructed charge was studied at the CEA dark chamber with a LED flasher and the NSB source. Before the measurement was made, the linearity of the response was tested and the cross-talk between pixels was measured to be negligible. Data were taken at a range of values of NSB between 0 - 1 GHz. The data were calibrated using the pedestals obtained without light sources (dark events) and the measured gain derived from the single p.e. spectrum, obtained using the method described in Ref. [4]. For the simulations, a data set of a 1000 events was created for each illumination in the range of sub p.e. to greater than 2000 p.e.. The camera simulation was performed with a range of NSB values chosen in the same range as the data. The gain and pedestal values are generated automatically by sim_telarray.

Both the data and the simulations were processed using the prototype processing pipeline for CTA, ctapipe (version v0.8.0) [5], where the charge was extracted using an integration window of width of 16 ns starting 6 ns before the peak of the signal. This was chosen to encompass the full pulse width recorded in the waveform. In order to include the effect of the photon detection efficiency (PDE) in the results, the values in p.e. were converted back to photons, using a conversion factor of 3.73 ph p.e.\(^{-1}\) derived from the total camera efficiency at 405 nm (the wavelength of the flasher). The intensity resolution was then calculated, using the expression

\[
\text{Intensity Resolution} = \frac{1}{\sqrt{2\pi \cdot \text{FWHM}^2}}
\]

where FWHM is the full width at half maximum of the intensity distribution.
Monte Carlo Simulations of NectarCAM

Thomas P. Armstrong

Figure 2: Left: L0 threshold as a function of illumination, where the black lines represent the dispersion of measurements from different pixels taken in the lab and the blue is the simulations. Right: The difference between the L1 50% trigger threshold values for data and simulations for the same illumination.

\[
\sigma_I = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (I_{rec,i} - \bar{I}_{rec})^2},
\]

(1)

where \(I_{rec,i} \) is the intensity measured for the \(i \)th event and \(\bar{I}_{rec} \) is the mean over events. This form of intensity resolution does not take into account any bias present in the reconstruction. This requires an absolute calibrated light source which was not available. The results for two separate NSB regimes are shown in Figure 1, where these represent the nominal dark sky conditions and high NSB conditions. From here it can be seen that the simulations and data match well, providing confidence in the model constructed for the camera.

2.2 Verification of Trigger Performance

The trigger efficiency was studied with the same dark chamber set up as with the readout study but excluding the use of the NSB source. The gains of each pixel were adjusted based on flat fielding measurements. For each illumination, data were recorded with a range of trigger threshold levels ensuring that the transition from 100% to 0% trigger rate was recorded. For the simulation, a dataset of 1000 events was created for each illumination level and trigger threshold from sub p.e. to \(\sim 40 \) p.e., the same used in the tests, and the trigger efficiency was recorded.

In a first step, only the performance of the L0 trigger was considered, i.e. the trigger efficiency of each pixel separately. In each scan, the trigger threshold which provided a 50% trigger efficiency was recorded. The results are shown in the left panel of Figure 2 where it can be seen that the relationship between expected light level in p.e. and the L0 threshold in digital counts at 50% trigger efficiency matches the data very well.

In a second step, simulations were performed using a single module of 7 pixels with a 3NN (next neighbours) trigger condition in order to evaluate the L1 performance. The right panel of Figure 2 shows the comparison of the L1 threshold at 50% trigger efficiency for data and MC with matching illumination levels. It can be seen that the trigger level matches well (within 5%) further providing confidence in the simulation model.
3. Simulation of Test Observations at Adlershof

In May and June of 2019, tests were performed with the NectarCAM demonstrator mounted on the MST prototype structure in Adlershof. While the main goal was to perform integration tests, several changes were implemented to reduce the NSB contribution from the surrounding light pollution, resulting in the successful observation of air-shower events. To test the model constructed for the camera in realistic conditions, simulations were performed to compare to the air-shower data observed. However, before this could be done, several changes had to be made.

- **UV Filter** - To help reduce the level of NSB, a UV Pass filter was placed in front of the camera. The transmission as a function of wavelength can be seen in the left panel of Figure 3 along with the PDE, mirror reflectivity and total transmission (values obtained through measurements or from manufacturer specifications).
- **Mirror Layout** - Missing mirror facets at the time of observations were removed from the model (18 out of 86). In addition the mirrors had begun to show signs of degradation due to their prolonged exposure to the environment at Adlershof. This will be evaluated when comparing the observed proton rate of the telescope (See Section 3.1).
- **Point Spread Function** - The PSF was measured on site using a white target in front of the focal plane and a CCD camera mounted on the telescope structure. Images of stars were taken and the 80% containment angle was measured. The average value obtained was 0.218 deg, about three times worse than expected due to the non-smooth distribution of light in the image, most likely originating from misaligned mirrors (see middle panel of Figure 3). The spread, but not the structure, was matched in the simulations.
- **Shadowing** - In addition to the UV filter, a baffle was also mounted on the camera to reduce the amount of background light entering the camera, as can be seen in the right panel in Figure 3. The effect of this on the shadowing on the camera was evaluated using the ray tracing software ROBAST [6].
Monte Carlo Simulations of NectarCAM
Thomas P. Armstrong

![Figure 4: Threshold scan for data in red and simulations in blue. For the MC simulation a range of NSB values is shown and only one mirror reflectivity value is shown (60%). The data matches well to a NSB rate between 0.2 and 0.3 GHz (NSB rates provided in the legend).](image)

For the CORSIKA site simulation, the following parameters were adopted: Altitude of 37 m; MODTRAN atmospheric transmissivity model for tropical atmosphere; NRLMSISE-00 atmospheric density and refractive index model for CTA northern site; Magnetic field strength of $H = 18.450 \mu T$ and $Z = 45.351 \mu T$, calculated from the Latitude and Longitude of the site location of $\phi = 52.43^\circ$ N, $\lambda = 13.54^\circ$ E and British Geological Survey World Magnetic Model.\(^1\) While the atmospheric models are clearly not tuned to the site in Adlershof, they were the available models that extended to sea level. The simulated initiating particles were protons as it is expected that only background events were observed.

3.1 Threshold Scan Comparison

During the on-sky tests at Adlershof, one of the frequent measurements was that of the threshold scan. This is a series of measurements of the trigger rate as a function of trigger threshold, similar to that performed in Section 2.2, which would be used to choose a safe observational trigger level. For this study, three on-sky runs that were carried out under similar observational conditions were used (pointing at dark sky spot, open shutter, nominal HV, internal trigger).

For the simulations, the trigger rate from proton showers and NSB have to be calculated separately. For this study 1.25×10^6 proton showers were simulated with CORSIKA between the energy range of 80 GeV and 50 TeV with an energy spectrum of E^{-2}. Showers were set to originate from a field of view of radius 10° centered 20° from zenith and were scattered at observation level in an area of 600 m radius. For the telescope simulation, the model used in Section 2 was adopted with the changes reported at the start of this Section. In addition, the NSB rate, the mirror reflectivity (degradation), and the trigger threshold were varied to find matching values to the data.

The proton rate is calculated by finding the trigger efficiency as a function of energy and using the following expression,

\(^1\)http://www.geomag.bgs.ac.uk/data_service/models_compass/wmm_calc.html
Monte Carlo Simulations of NectarCAM

Thomas P. Armstrong

Figure 5: Comparison of selected Hillas parameters. The results from the simulation have been re-weighted to the assumed background proton spectrum from [7] and the rate per bin has been calculated for each set of results.

\[R_{\text{proton}} = S \cdot \Omega \int_{E_{\text{min}}}^{E_{\text{max}}} \frac{\phi(E) \cdot N(E)_{\text{trig}}}{N(E)_{\text{sim}}} \, dE, \]

(2)

where the simulated area is defined as \(S = \pi r^2 \) with \(r = 600 \) m and the simulated solid angle as \(\Omega = 2\pi \cdot (1 - \cos(\theta)) \) with \(\theta = 10 \) degrees. The proton flux, \(\phi(E) \), was taken from Ref. [7] and is defined as:

\[\phi(E) = 9.6 \times 10^{-2} \cdot (E / \text{TeV})^{-2.70} \text{ TeV}^{-1} \text{ s}^{-1} \text{ m}^{-2} \text{ sr}^{-1}. \]

For the NSB simulation, a CORSIKA file containing \(10^5 \) events with no Cherenkov light is used. The rate is calculated using ratio of triggered events to an equivalent simulated observation time, determined by the number of simulated events and the width of the readout window. Once the proton and NSB rates are determined, they are added to obtain the complete threshold scan. The results of this can be seen in Figure 4 where it was found that a mirror degradation down to 60% was required to match the proton spectrum. This might not all be due to the weathering of the mirrors, but could also encompass loss of efficiency in other parts of the system or the use of not ideal atmospheric models. Ideally for a more reliable result, images from muon rings are used to measure the total throughput efficiency, however not enough events were recorded for this analysis. For the NSB it was found that a value of 0.3 GHz was required to match the data. This value is in agreement with measurements that were taken earlier in the campaign.

3.2 Hillas Parameter Comparison

With updates to the telescope model obtained in the previous sections, a full simulation was performed using \(25 \times 10^6 \) proton showers between 80 GeV and 100 TeV. The on-sky data were calibrated using per pixel gain measurements recorded in the lab. Although interleaved pedestals were available for some of the data sets, for simplicity they were instead estimated from the average over the events for each run, using the first 10 samples in each waveform. The data were processed with ctapipe [5], where the charge was extracted and the images were cleaned using a two-level threshold, where only core pixels with at least 10 p.e. and any boundary pixels with at least 6 p.e. were kept, discarding any images that had less than 4 pixels remaining.
For both MC and data, the cleaned images were fit with an ellipsoid in order to extract the Hillas parameters [8] and the distributions were normalised to the expected rate. For the simulations, equation (2) was used to determine the rate. For the on-sky data the rate was calculated using the observation time of 26.65 min. In addition, simulated events are weighted before the construction of the histograms as $\frac{\phi_p E^{\Gamma_p - \Gamma_{sim}}}{\phi_{mc}}$ where Γ_p is the assumed proton spectral index (-2.7), Γ_{sim} is the simulated spectral index (-2), and ϕ_{mc} is the simulated flux normalisation. The resulting distributions can be seen in Figure 5, where a good agreement is found.

4. Conclusion

In this paper an overview of the main results produced during the model validation of NectarCAM has been shown. Concerning the comparison of results from the lab tests, both the readout and the trigger show good agreement. For the on-sky results, even though the conditions were not ideal for the observation of Cherenkov air-showers, an agreement was found through the scaling of the NSB (to 0.3 GHz) and the mirror degradation (down to 60% of the original model). From these results, it is concluded that a good understanding of the camera has been achieved.

Acknowledgements: We gratefully acknowledge financial support from the agencies and organizations listed here: www.cta-observatory.org/consortium_acknowledgments

References

Monte Carlo Simulations of NectarCAM

Thomas P. Armstrong

cedex 09, France 28 : INAF - Osservatorio Astronomico di Roma, Via di Frascati 33, 00040, Monteporzio Catone, Italy 29 : INAF - Osservatorio Astrofisico di Catania, Via S. Sofia, 78, 95123 Catania, Italy 30 : Gruppo di Astronomia, Università Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain 31 : National Astronomical Research Institute of Thailand, 191 Huay Kaew Rd., Surhep, Muang, Chiang Mai, 50201, Thailand 32 : Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Tenerife, Spain 33 : FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovecku 1999/2, 182 21 Praha 8, Czech Republic 34 : Astronomical Institute of the Czech Academy of Sciences, Bocni II 1401 - 1400 Prague, Czech Republic 35 : CCTVal, Universidade Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile 36 : ETH Zurich, Institute for Particle Physics, Schaffnattstr. 20, CH-8093 Zurich, Switzerland 37 : The University of Manitoba, Dept of Physics and Astronomy, Winnipeg, Manitoba R3T 2N2, Canada 38 : Department of Astronomy, University of Geneva, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland 39 : Laboratoire Univ. et Particules de Montpellier, Université de Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France 40 : Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, RJ 22290-180, Rio de Janeiro, Brazil 41 : Instituto de Física d’Altes Energies (IAFE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain 42 : University of Groningen, KV1 - Center for Advanced Radiation Technology, Zernikelaan 25, 9747 AA Groningen, The Netherlands 43 : School of Physics, University of New South Wales, Sydney NSW 2052, Australia 44 : INAF - Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy 45 : Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, 74000 Annecy, France 46 : Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44221 Dortmund, Germany 47 : University of Zagreb, Faculty of electrical engineering and computing, Unska 3, 10000 Zagreb, Croatia 48 : University of Namibia, Department of Physics, 340 Mandume Ndumufayo Ave., Pioneerspark, Windhoek, Namibia 49 : Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland 50 : Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany 51 : Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 52 : Deutsches Elektronen-Synchrotron, Platanenallee 6, 15738 Zeuthen, Germany 53 : Max-Planck-Institut für Kryosphere, Saupfercheckweg 1, 69117 Heidelberg, Germany 54 : RIKEN, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan 55 : INFN Sezione di Padova and Università degli Studi di Padova, Via Marzotto 8, 35131 Padova, Italy 56 : Escuela Politécnica Superior de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, Edif. A3, 23071 Jaén, Spain 57 : Department of Physics and Electrical Engineering, Linköping University, 581 93 Linköping, Sweden 58 : University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000 Johannesburg, South Africa 59 : Institut für Theoretische Physik, Lehrstuhl IV: Plasma-Astroteilchenphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany 60 : Faculty of Physics and Applied Computing Science, University of Lodz, ul. Pomorska 149-153, 90-236 Lodz, Poland 61 : INFN - Istituto di Fisica Spaziale e Fisica Cosmica di Milano, Via A. Corti 12, 20133 Milano, Italy 62 : INFN and Università degli Studi di Siena, Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente (DSFTA), Sezione di Fisica, Via Roma 56, 53100 Siena, Italy 63 : Center for Astrophysics | Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02139, USA 64 : INFN Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy 65 : Finnish Centre for Astronomy with ESO, University of Turku, Finland, FI-20014 University of Turku, Finland 66 : Pulsarforschung Institute for Applied Problems in Mechanics and Mathematics NASU, 3B Naukova Street, Lviv, 79060, Ukraine 67 : Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India 68 : Center for Astrophysics and Cosmology, University of Nova Gorica, Vipavska 11c, 5270 Ajdovščina, Slovenia 69 : Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen, Germany 70 : Research School of Astronomy and Astrophysics, Australian National University, Canberra ACT 0200, Australia 71 : Department of Physics, University of California, Los Angeles 72 : INFN Sezione di Bari and Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy 73 : Laboratoire de Physique des 2 infinis, Irene Joliot-Curie-IN2P3/CNRS, Université Paris-Saclay, Université de Paris, 15 rue Georges Clemenceau, 91406 Orsay, Cedex, France 74 : INAF Sezione di Pisa, Largo Pontecorvo 3, 56217 Pisa, Italy 75 : IFUs/DEDP, CEA, Université Paris-Saclay, Bat 141, 91191 Girif-sur-Yvette, France 76 : INFN - Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 77 : INAF - Osservatorio Astronomico di Palermo "G.S. Vaiana", Piazza del Parlamento 1, 90134 Palermo, Italy 78 : School of Physics, University of Sydney, Sydney NSW 2006, Australia 79 : Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, 4 Place Jussieu, F-75005 Paris, France 80 : Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 408 - CEP 13566-590, São Carlos, SP, Brazil 81 : Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 408 - CEP 13566-590, São Carlos, SP, Brazil 82 : Departamento de Física Quântica e Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC/UB, Martí i Franquès, 1, 08028, Barcelona, Spain 83 : Department of Physics, Washington University, St. Louis, MO 63130, USA 84 : Saha Institute of Nuclear Physics, Bidhannagar, Kolkata-700 064, India 85 : INFN - Osservatorio Astronomico di Capodimonte, Via Salita Moiariello 16, 80131 Napoli, Italy 86 : University of Paris, CNRS, Astroparticule et Cosmologie, 10, rue Alice Domon et Léonie Duquet, 75013 Paris Cedex 13, France 86 : Astronomy Department of Faculty of Physics, Sofia University, 5 James Bourchier Str., 1164 Sofia, Bulgaria 87 : Institut de Recherche en Astrophysique et Planétologie, CNRS-INSU, Université Paul Sabatier, 14 av. E. Belin, 31028 Toulouse Cedex 4, France 88 : School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E. Minneapolis, Minnesota 55455-0112, USA 89 : INFU, CEa, Université Paris-Saclay, Bât 141, 91191 Girif-sur-Yvette, France 90 : INFN - Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy 91 : INFN - Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, 90146 Palermo, Italy 92 : Astronomical Observatory, Department of Physics, University of Warsaw, Aleje Ujazdowskie 4, 00478 Warsaw, Poland 93 : Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, United Kingdom 94 : INFN Sezione di Catania, Via S. Sofia 64, 95123 Catania, Italy 95 : INFN - Osservatorio Astronomico di Brera, Via Brera 28, 20121 Milano, Italy 96 : Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA 97 : Universidade de Cruziero do Sul, Núcleo de Astrofísica Teórica (NAT/UCS), Rua Galvão Bueno 8687, Bloco B, sala 16, Liberdade 01506-000 - São Paulo, Brazil 98 : Universidade de Valparaíso, Blanco 951, Valparaíso, Chile 99 : INFN - Istituto di Astrofisica e Planetologia Spaziali (IAPS), Via del 12
Monte Carlo Simulations of NectarCAM

Thomas P. Armstrong

Kingdom 173 : University of Iowa, Department of Physics and Astronomy, Van Allen Hall, Iowa City, IA 52242, USA 174 : Anton Pannekoek Institute/GRAPPA, University of Amsterdam, Science Park 904 1098 XH Amsterdam, The Netherlands 175 : Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Kraków, al. Mickiewicza 30, 30-059 Cracow, Poland 176 : Faculty of Science, Ibaraki University, Mito, Ibaraki, 310-8512, Japan 177 : Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan 178 : Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland 179 : Graduate School of Science and Engineering, Saitama University, 255 Simo-Okhubo, Sakura-ku, Saitama city, Saitama 338-8570, Japan 180 : Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan 181 : Centre for Quantum Technologies, National University Singapore, Block S15, 3 Science Drive 2, Singapore 117543, Singapore 182 : Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), I-1 Oho, Tsukuba, 305-0801, Japan 183 : Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom 184 : Centro de Ciencias Naturales e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, CEP: 09.210-580, Santo André - SP, Brazil 185 : Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95123 Catania, Italy 186 : Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany 187 : Texas Tech University, 2500 Broadway, Lubbock, Texas 79409-1035, USA 188 : University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland 189 : Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 boul. Tsarigradsko chaussee, 1784 Sofia, Bulgaria 190 : University of Białystok, Faculty of Physics, ul. K. Ciolkowskiego 1L, 15-254 Białystok, Poland 191 : Faculty of Physics, National and Kapodestrian University of Athens, Panepistimiopolis, 15771 Ilissia, Athens, Greece 192 : Universidad de Chile, Av. Libertador Bernardo O’Higgins 1058, Santiago, Chile 193 : Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 194 : Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192, Japan 195 : School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan 196 : Departamento de Astronomía, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile 197 : Charles University, Institute of Particle & Nuclear Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic 198 : Astronomical Observatory of Ivan Franck National University of Lviv, 8 Kryyla i Mephodia Street, Lviv, 79005, Ukraine 199 : Kobayashi-Maskawa Institute (KMI) for the Origin of Particles and the Universe, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan 200 : Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan 201 : Space Research Centre, Polish Academy of Sciences, ul. Bartynka 18A, 00-716 Warsaw, Poland 202 : Instituto de Física - Universidade de São Paulo, Rua do Matão Travessa R Nr.187 CEP 05508-090 Cidade Universitária, São Paulo, Brazil 203 : International Institute of Physics at the Federal University of Rio Grande do Norte, Campus Universitário, Lagoa Nova CEP 59078-970 Rio Grande do Norte, Brazil 204 : University College Dublin, Belfield, Dublin 4, Ireland 205 : Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa 206 : Departamento de Física, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile 207 : Núcleo de Formação de Professores - Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 CEP 13565-905 - SP-310 São Carlos - São Paulo, Brazil 208 : Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland 209 : Departement of Physical Sciences, Aoyama Gakuin University, Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan 210 : University of the Free State, Nelson Mandela Avenue, Bloemfontein, 9300, South Africa 211 : Faculty of Electronics and Information, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland 212 : Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb, Croatia 213 : Department of Physics, Konan University, Kobe, Hyogo, 658-8501, Japan 214 : Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan 215 : University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy 216 : Aalto University, Otakaari 1, 00076 Aalto, Finland 217 : Agenzia Spaziale Italiana (ASI), 00133 Roma, Italy 218 : Observatorio de la Cote d’Azar, Boulevard de l’Observatoire CS34229, 06304 Nice Cedex 4, France