Second coordination sphere effects in [FeFe]-Hydrogenase mimics

Zaffaroni, R.

Citation for published version (APA):
Summary
Large-scale use of fossil fuels allowed for impressive developments of our society, providing a cheap and abundant energy supply. Nevertheless, it is now clear that the intense exploitation of these natural resources came with the high price of releasing huge amounts of carbon dioxide in the atmosphere; a potent greenhouse gas responsible for the climate changes that we are recently observing. Thus, the dependency of our current society on fossil fuels is not sustainable, and the need of for a different energy source to sustain our massive energy demand is of prime importance. Ideally, the energy source of our future should be sustainable and carbon-neutral. Looking at the resources available within our planet, the most abundant energy source is by far solar radiation. Photovoltaics, the technology to convert sunlight into usable electricity is already available and widely distributed. However, it solely provides electricity, which only accounts for 20% of our current energy demand. Furthermore it is intrinsically dependent on solar radiation intermittency i.e. photovoltaics are powerless in the dark and as a consequence solutions for energy storage are required.

A complementary approach would be required to convert sunlight into compounds (chemical bonds) that can be stored and used when needed at later stages. As it turns out, such a process has been operative on our planet for billions of years. Performed by plants and certain microorganisms, it is known as photosynthesis, and it is able to utilize solar energy to extract reducing equivalents from water that are then used to fix carbon dioxide into carbohydrates (chemical bonds). Looking at the complex machinery evolved by Nature, clear blueprints can be obtained to reproduce the light-induced water oxidation reaction, which is the core reaction of the process. Although fixation of carbon dioxide into carbohydrates might not be the best approach to pursue for our current energy issue, Nature has also evolved dedicated machineries able to discard excess reducing equivalents in the form of hydrogen. This process is operated by enzymes called hydrogenases, which are present in various types of bacteria. This also provides us with detailed blueprints for the conversion of reducing equivalents, gathered from the light-induced water oxidation reaction, into dihydrogen, which is considered as a promising energy carrier for the future.

The aim for mankind is therefore to develop ‘artificial photosynthesis’ devices that are able to combine and perform both reactions as described: light-driven water oxidation and (light-driven) proton reduction. Many different approaches are already present in literature, classified depending on the components employed for the construction of the device. Among them, devices based on molecular components are of great interest, as they can benefit from the rational design of the components. In this respect, great attention is devoted to the development of suitable catalysts to efficiently perform the two reactions of interest.

The focus of this thesis is the development of molecular catalysts for the proton reduction reaction. As the hydrogenase enzymes excel at producing dihydrogen, outperforming even
the best synthetic catalysts based on precious metals, yet are found to contain organometallic clusters based exclusively on earth-abundant elements such as iron, nickel and sulfur; they are of great interest also in view of possible applications. Not surprisingly, the molecular architecture of many proton reduction catalysts is thus inspired by the design evolved by Nature for the hydrogenase enzymes. In particular, the focus has been directed to synthetic models of the iron-iron hydrogenase enzyme (H-cluster), as this is undoubtedly the fastest hydrogen evolving catalyst. Several years of combined research efforts on the natural di-iron system led to identification of the key features responsible for the high activity and efficiency observed, namely:

- a di-iron organometallic core
- a proton-relay (azadithiolate bridge)
- an electron reservoir (Fe_2S_4-cluster)
- second coordination sphere around the H-cluster (protein matrix)

Synthetic models are readily available but most often the only feature is the di-iron core. Several reports deal with the incorporation of a proton relay, which proved to be of great importance for the activity of the catalysts. Only a handful of complexes combine the first three features described, but even then the activity and efficiency of such complexes are nowhere near those of the natural enzyme. This suggests that the second coordination sphere around synthetic models, typically an ignored feature, might also be of great importance to approach the enzymatic rates and efficiency.

This thesis focuses on synthetic models of the iron-iron hydrogenases, specifically on benzenedithiolate bridged complexes. In chapter 2 we present synthetic di-iron model complexes where either one or two carbonyl ligands have been substituted for more electron-rich ligands that carry proton-relay moieties. The presence of the proton-relays has been shown to confer interesting advantages to the complexes. As such, protonation of the proton-relays allows for dissolution of the complexes in acidic aqueous media where proton reduction takes place at the first reduction event of the complexes. Furthermore, this protonation offers a useful handle to effectively counterbalance the increased electron density of the di-iron core, originating from ligand substitution. We note that proton-coupled electron transfer steps (PCET) are important to lower the first reduction potential of the complexes, thereby effectively lowering the catalytic overpotential. This work demonstrates that the presence of proton-relays alone allows for catalytic rates far beyond those of the natural system, although the driving force required (overpotential) is still relatively high.
Second coordination sphere effects in [FeFe]-Hydrogenase mimics

The first step towards the development of devices based on molecular components is typically the preparation of conductive electrodes decorated with molecular catalysts. In chapter 3 we describe the immobilization and study of a benzenedithiolate di-iron complex onto conductive (nano)FTO electrodes. The electrodes are shown to be competent for the hydrogen evolution reaction from acidic aqueous media at relatively low driving force (overpotential). Comparison of the immobilized catalyst to the freely diffusing species in organic solvents shows that the same catalyst can operate at lower overpotentials, yet with similar rates, when immobilized onto the electrode surface.

Figure 1. Left molecular structure of the active site of the natural enzyme (H-cluster) and synthetic model \(\text{Fe}_2(\text{bdt})(\text{CO})_4(\text{PPy}_3)_2 \). Right: comparative Tafel plot for the two catalysts depicted, showing that the synthetic model is a far more active catalyst than the natural one but it also requires a higher driving force.

The first step towards the development of devices based on molecular components is typically the preparation of conductive electrodes decorated with molecular catalysts. In chapter 3 we describe the immobilization and study of a benzenedithiolate di-iron complex onto conductive (nano)FTO electrodes. The electrodes are shown to be competent for the hydrogen evolution reaction from acidic aqueous media at relatively low driving force (overpotential). Comparison of the immobilized catalyst to the freely diffusing species in organic solvents shows that the same catalyst can operate at lower overpotentials, yet with similar rates, when immobilized onto the electrode surface.

Figure 2. Schematic representation of the modified high surface area, catalyst decorated electrodes prepared. The electrodes display \(\sim 1.6 \text{ mAcm}^{-2} \) current density at 500 mV overpotential in 0.05 M NaHSO_4 buffer solution at pH 3.5.
Part of this thesis is dedicated to mimicking the protein environment around the H-cluster. We envisioned that supramolecular cage assemblies could be a suitable platform for such a study. In particular, $M_{12}L_{24}$ cages have been the focus of this investigation, as they feature a relatively large cavity, and synthetic modification of the cage building blocks provides a straightforward way to tune and customize the nano-confined space defined by their structure. As literature provides little information regarding the electron transfer kinetics of redox-active species encapsulated into large supramolecular assemblies, chapter 4 revolves around the preparation of $M_{12}L_{24}$ nano-spheres containing redox-active probes. Throughout the chapter we have demonstrated the feasibility of electron transfer to the encapsulated redox probes, paving the way for the encapsulation of electro-active systems and electrocatalytic applications of such supramolecular assemblies.

Chapter 5 extends on some of the findings described in chapter 4. In particular, in chapter 4 we have prepared $M_{12}L_{24}$ cages that co-encapsulate several redox-active probes. Electrochemical measurements indicate that those moieties are electronically independent as they feature a single redox event, thereby generating cages featuring several charges at their cavity. Nevertheless we suspected that the electrolyte used during the measurements plays a major role at neutralizing the net accumulation of charges within the cavity of the spheres as it can freely diffuse across the cage rim. Furthermore, considering the Faraday principle, applicable to macroscopic conductive objects featuring a hollow cavity, extra charges added to those objects redistributes to their outer shell as to minimize the repulsive forces created. As the $M_{12}L_{24}$ cages are based on fully conjugated building blocks that are held together by metallic ions, thus extending the conjugation throughout the entire supramolecular structure, such nanometer-sized objects would resemble macroscopic Faraday cages. We therefore prepared an exceptionally large size electrolyte to be used during the electrochemical measurement. As the electrolyte cannot enter the cage windows due to its steric hindrance charge accumulation within the cavity of the spheres is thereby, in principle allowed. Our preliminary results indicate that the void of $M_{12}L_{24}$ does have some similarities with macroscopic Faraday cages, as the data suggest that charging of the redox-active species encapsulated at their cavity generates electrostatic repulsive interactions among the charged redox probes. Physical redistribution of those charges toward the outer shell of the cage is suggested by a loss in their electrochemical reversibility at slow scan rates, which also suggests a follow-up reactivity of the redox probes.
Second coordination sphere effects in [FeFe]-Hydrogenase mimics

After having established the feasibility of electron transfer to redox-active probes encapsulated into $M_{12}L_{24}$ nano-cages, in chapter 6 we developed two general strategies to encapsulate di-iron complexes into specific nano-environments. Encapsulation provides the catalyst with a second coordination sphere that is fine-tuned to provide preorganization of proton substrates around the catalyst. Proton preorganization proved to be important, as it allows for faster catalytic rates compared to cages that do not have proton preorganization but most strikingly we showed for the first time that changing the local environment around the catalyst drastically decreases its catalytic overpotential, demonstrating the importance of the second coordination sphere around synthetic hydrogenase models. In principle, our strategy allows for closely mimicking the essential amino acid residues found around the natural H-cluster; we believe this is a key factor that will give access to synthetic catalysts that will finally approach enzymatic rates and overpotentials.

Figure 3. Schematic representation of the envisioned charge reorganization within the cavity of the $M_{12}L_{24}$ sphere, upon electrochemical oxidation of the redox-active probes.

Figure 4. Left: Spartan model of $M_{12}L_{24}$ cage featuring two encapsulated di-iron hydrogenase synthetic models (shown in orange and yellow CPK-style). Each of the remaining 22 building blocks possesses an acidic ammonium functional group (shown in light blue and white CPK-style) effectively achieving proton preorganization around the hydrogenases models. Right: voltammograms indicating that the caged catalyst shows 200 mV lower overpotential for the proton reduction reaction (red line) as compared to the free diffusing catalyst functionalized building block (black line).
The research described in this thesis shows that the second coordination sphere plays a very important role in proton reduction catalysis. Proton substrate preorganization around synthetic models drastically increases the activity of the catalysts while the overpotential can be reduced by switching the working solvent to aqueous media or by installing electron-withdrawing groups on the synthetic models. Nevertheless, the design of more sophisticated second-coordination sphere architectures is essential to achieve the enzymatic efficiency e.g. catalysis at negligible overpotential and sufficient rates. In this work we have shown a valid strategy for the encapsulation of model compounds into specific customized environments by using large supramolecular cages. This approach can be further extended to develop smart matrices that preorganize proton substrates, allow for PCET and force the di-iron model to adopt the rotated structure, allowing for terminal hydrides catalytic pathways. We believe that mimicking the protein environment is the way to decrease the catalytic overpotential of hydrogenase model complexes.
Samenvatting
Het grootschalige gebruik van fossiele brandstoffen heeft, door het verschaffen van een goed-kope en overvloedige energievoorraad, geleid tot indrukwekkende ontwikkelingen in onze samenleving. Het is nu echter duidelijk dat het intensieve gebruik van deze natuurlijke bronnen zijn tol begint te eisen, omdat dit gepaard gaat met de uitstoot van koolstofdioxide, een krachtig broeikasgas dat verantwoordelijk wordt gehouden voor de klaarblijkelijke klimaatverandering. Dit zorgt ervoor dat de afhankelijkheid van fossiele brandstoffen door onze huidige samenleving niet duurzaam is. Om te kunnen blijven beantwoorden aan de enorme en toenemende energiebehoeften is dus een alternatieve energiebron van primair belang. Idealiter is onze toekomstige energiebron van duurzame aard en klimaatneutraal. Als we kijken naar de bronnen die wij tot onze beschikking hebben, levert zonne-energie verreweg de meeste energie. Fotovoltaïsche technieken om zonlicht om te zetten in elektriciteit zijn al mogelijk en worden op grote schaal toegepast. Dit levert echter enkel elektriciteit op, dat slechts 20% van onze huidige totale energie vraag omvat. Daarbij is deze techniek volledig afhankelijk van zonlicht, wat betekent dat fotovoltaïsche technieken gevoelig zijn voor discontinuïteit (wolken, nacht) met als gevolg dat er een oplossing moet komen voor energieopslag.

Dit vraagt om een complementaire aanpak waarbij de energie van zonlicht wordt omgezet in chemische (ver)bindingen. De gevormde chemische verbindingen kunnen worden opgeslagen opdat ze later gebruikt kunnen worden. Een dusdanig proces vindt al miljoenen jaren plaats op deze planeet in planten en micro-organismen, genaamd fotosynthese. In dit proces, dat gebruik maakt van zonne-energie, worden reducerende equivalenten gevormd uit water, die de energie leveren om vanuit koolstofdioxide koolhydraten te genereren. Door dit complexe natuurlijke proces onder de loep te nemen, kan een blauwdruk verkregen worden van de licht-gedreven water-oxidatie reactie. Alhoewel het fixeren van koolstofdioxide in koolhydraten wellicht niet de beste aanpak lijkt te zijn om ons energieprobleem op te lossen, heeft de natuur ook de beschikking tot de machinerie om de reducerende equivalenten om te zetten in waterstofgas. Dit proces wordt uitgevoerd door een klasse van enzymen genaamd de hydrogenases, die in verschillende soorten bacteriën voorkomen. Bovendien geeft dit ons een gedetailleerde blauwdruk voor de omzetting van reducerende equivalenten, verkregen uit de door zonlicht gedreven water-oxidatie reactie, in waterstofgas, dat gezien wordt als een veelbelovende energiedrager voor de toekomst.

Een aantrekkelijk doel is daarom om een apparaat te ontwikkelen voor kunstmatige fotosynthese dat in staat is om beide beschreven reacties uit te voeren, namelijk: licht-gedreven water-oxidatie en (licht-gedreven) vorming van waterstof (protonreductie). Momenteel zijn er al verschillende manieren van aanpak bekend in de literatuur en een deel van de interesse gaat uit naar apparaten die gebaseerd zijn op moleculaire componenten. Deze componenten kunnen relatief eenvoudig worden gemodificeerd met behulp van synthese en hebben dus het voordeel van de mogelijkheid tot een rationeel ontwerp en optimalisatie. Om deze reden
is er een grote belangstelling voor de ontwikkeling van passende katalysatoren voor de twee desbetreffende reacties.

In dit proefschrift wordt de focus gelegd op de ontwikkeling van moleculaire katalysatoren voor de proton-reductie reactie. Tot nog toe zijn de hydrogenase-enzymen excellent en overtreffen deze zelfs de beste edelmetaalbevattende synthetische katalysatoren. Met het oog op een mogelijke toepassing is er dus grote belangstelling voor deze systemen, mede omdat deze enzymen bestaan uit organometalclusters die alleen volop aanwezige elementen bevatten, zoals koolstof, ijzer, nikkel, zuurstof en zwavel. Het is daarom ook geen verrassing dat de moleculaire constructie van vele proton-reductie katalysatoren geïnspireerd is door de structuur van de hydrogenase katalysatoren die ontstaan zijn in de natuur. Vooral de synthetische modellen van de ijzer-ijzer hydrogenase-enzymen (H-cluster) staan onder de aandacht, aangezien dit zonder twijfel de snelste waterstofproducerende katalysatoren zijn. Vele jaren van onderzoek hebben geleid tot de identificatie van de belangrijkste kenmerken die verantwoordelijk zijn voor de observatie van de hoge activiteit en efficiëntie van de ijzer-ijzersystemen, namelijk:

- Een di-ijzer organometakern
- Een proton-relais (azadithiolaatbrug)
- Een elektronenreservoir (Fe₅S₄-cluster)
- Tweede coördinatieschil rondom het H-cluster (eiwitmatrix)

Vele synthetische modellen zijn binnen handbereik, echter bevatten deze meestal slechts de di-ijzerkern als kenmerk. Daarnaast zijn er verscheidene voorbeelden van een geïntegreerd proton-relais, dat van groot belang blijkt te zijn voor de activiteit van de katalysator. Slechts enkele complexen bevatten een combinatie van de bovenste drie kenmerken die hierboven beschreven zijn, maar zelfs dan is de activiteit en efficiëntie van de complexen ver verwijderd van die van het natuurlijke enzym. Dit suggereert dat de tweede coördinatieschil rondom de synthetische modellen, die in het algemeen niet meegenomen wordt in de lijst met belangrijkste katalysatorkenmerken, van groot belang kan zijn om de enzymatische omzettingssnelheden te benaderen.

Vooral de synthetische modellen van de ijzer-ijzerhydrogenases en in het bijzonder de benzeendithiolaat-gebrugde complexen worden behandeld in dit proefschrift. In hoofdstuk 2 worden di-ijzer modelcomplexen getoond waar een of twee carbonyl liganden zijn vervangen door elektronenrijker liganden die een proton-relais bevatten. Het is aangetoond dat de aanwezigheid van een dergelijk proton-relais interessante voordelen met zich meebrengt. Zo zorgt protonering van het proton-relais voor oplosbaarheid van deze complexen in zuur waterig milieu, waar protonreductie al plaatsvindt bij het eerste reductieproces van de com-
Second coordination sphere effects in [FeFe]-Hydrogenase mimics

plexen. Bovendien kan de toegenomen elektronendichtheid van de di-ijzercomplexen als gevolg van het gebruik van andere liganden gecompenseerd worden door protonering. We stellen vast dat protongekoppelde elektronenoverdracht (PCET) van belang is om de eerste reductiepotentiaal te verlagen van de complexen om zo de katalytische overpotentiaal te verlagen. In dit hoofdstuk wordt aangetoond dat enkel de aanwezigheid van een proton-relais zorgt voor katalytische snelheden die het natuurlijke systeem ruimschoots overstijgen. Heelaas blijft voor deze systemen de nodige drijvende kracht (overpotentiaal) nog altijd relatief hoog.

De eerste stap om apparaten te ontwikkelen die gebaseerd zijn op moleculaire componenten is het vastzetten van katalysatoren op het geleidende oppervlak van een electrode. In hoofdstuk 3 wordt de immobilisering van een benzeendithiolaat di-ijzerkatalysatorcomplex op geleidende (nano)FTO oppervlakken bestudeerd. Hierbij wordt aangetoond dat deze elektrodes in staat zijn om waterstof te genereren bij een relatief lage overpotentiaal. In vergelijking met de vrij-diffunderende complexen in organische oplosmiddelen blijkt dat identieke geïmmobiliseerde katalysatoren werken bij een lagere overpotentiaal, maar met vergelijkbare snelheden.
Een onderdeel van dit proefschrift is gewijd aan het nabootsen van de eiwitomgeving rondom het H-cluster. Hierbij wordt voorgesteld dat supramoleculaire kooiestructuren passende structuren zijn om dit te kunnen bestuderen. In het bijzonder staan de $M_{12}L_{24}$-kooiestructuren centraal in dit onderzoek, omdat deze structuren bekend staan om hun grote lege nanoruimte die door middel van synthetische modificatie van de kooibouwstenen op een eenvoudige manier afgesteld kan worden, omdat de beperkte nanoruimtes van de kooiestructuren gedefinieerd worden door de structuur van deze bouwstenen. Omdat de kinetiek van elektronenoverdracht van redox-actieve deeltjes die ingevangen zijn in grote supramoleculaire structuren een tamelijk onbekend gebied is, richt hoofdstuk 4 zich op het maken van de $M_{12}L_{24}$-nanobollen die redox-actieve verbindingen bevatten. In dit hoofdstuk wordt aangetoond dat elektronenoverdracht naar de ingevangen redox-actieve verbindingen mogelijk is. Het is dus realiseerbaar om elektrokatalytische toepassingen uit te werken met in dit soort supramoleculaire systemen ingevangen elektro-actieve systemen.

Hoofdstuk 5 gaat verder in op de bevindingen die beschreven zijn in hoofdstuk 4, waarbij in het bijzonder gekeken wordt naar het maken van de $M_{12}L_{24}$-nanobollen die verschillende redox-actieve verbindingen bevatten. Uit de elektrochemische metingen blijkt dat deze ingevangen verbindingen elektronisch gezien onafhankelijk zijn omdat er een enkel redoxproces wordt gefaciliteerd, waardoor iedere kooistructuur binnenin meerdere ladingen bevat. Desalniettemin bleek dat het elektrolyt dat gebruikt is tijdens deze metingen een grote rol speelt in het neutraliseren van de ophoping van de ladingen aan de binnenkant van de nanokooien, omdat het elektrolyt gemakkelijk kan diffunderen door de openingen van de kooi. Bovendien kan worden gesteld vanuit Faraday’s principe, toegepast op macroscopisch geleidende objecten die een lege ruimte bevatten, dat extra ladingen die worden toegevoegd aan deze objecten zich naar de buitenste randen toe herschikken om de repulsieve krachten te

Figuur 2. Schematische weergave van het gemodificeerde, vergrote oppervlakte waaraan de katalysator is gebonden. De elektrodes laten een stroomdichtheid zien van ongeveer 1.6 mA cm$^{-2}$ bij een overpotentiaal van 500 mV in 0.05 M NaHSO$_4$ bufferoplossing bij pH 3.5.
minimaliseren. Aangezien de $\text{M}_{12}\text{L}_{24}$-kooiisstructuren bestaan uit volledig geconjugeerde bouwstenen die bij elkaar gehouden worden door metaalionen, waardoor de conjugatie zich uitstrekt over de gehele supramoleculaire structuur, doen de nano-structuren aan als macroscopische Faradaykooien. Daarom is er een exceptioneel groot elektrolyt molecuul gemaakt dat gebruikt is gedurende de elektrochemische metingen. Omdat dit elektrolyt molecuul niet door de openingen in de kooiisstructuren past als gevolg van sterische hindering, is het in principe mogelijk om ladingophoping binnenin de nanokooien te bewerkstelligen. De voorgelopen uitkomsten wijzen uit dat de holte in de $\text{M}_{12}\text{L}_{24}$-kooiisstructuren overeenkomt met macroscopische Faradaykooien. De experimenten tonen aan dat tijdens het ladingsproces van de redox-actieve deeltjes binnenin de nanokooien waarschijnlijk een elektrostatische repulsie teweeg wordt gebracht tussen de geladen redox-actieve verbindingen. Het verlies van elektrochemische reversibiliteit bij lage scansnelheden suggereert namelijk dat er een fysische herverdeling van de ladingen naar de buitenste randen van de nanokooi plaatsvindt, hoewel het ook een vervolgreactie kan aanduiden van de geladen redox-actieve verbindingen.

Figuur 3. Schematische weergave van de voorgestelde ladingreorganisatie binnenin de holte van de $\text{M}_{12}\text{L}_{24}$-kooiisstructuur tijdens elektrochemische oxidatie van de redox-actieve verbindingen.

Nadat is vastgesteld dat elektronenoverdracht naar de redox-actieve verbindingen die ingevangen zijn in $\text{M}_{12}\text{L}_{24}$-kooiisstructuren mogelijk is, worden er in hoofdstuk 6 twee verschillende algemene aanpakken beschreven om di-ijzercomplexen in te vangen in specifieke nano-omgevingen. Het invangen zorgt voor een tweede coördinatieschil rondom de katalysator die de mogelijkheid biedt om de protonen rondom de katalysator te pre-organiseren. Deze pre-organisatie van protonen is belangrijk gebleken voor het bepalen van hogere katalytische snelheden in vergelijking met snelheid van kooien zonder proton pre-organisatie. Bovenal is er voor de eerste keer aangetoond dat het veranderen van de locale omgeving rondom de katalysator de katalytische overpotentiaal drastisch verlaagt. Dit laat het belang zien van de tweede coördinatieschil in de synthetische hydrogenasemodellen. Onze strategie geeft de mogelijkheid tot een precieze nabootsing van de essentiële aminozuurreisduien die aanwezig zijn in het natuurlijke H-cluster en wij geloven dat dit een noodzakelijke factor is die ons toegang biedt tot synthetische katalysatoren die uiteindelijk de enzymatische snelheden en overpotentialen kunnen benaderen.
Het onderzoek dat is beschreven in dit proefschrift toont aan dat de tweede coördinatieschil een heel belangrijke rol speelt in protonreductiekatalyse. Protonen pre-organiseren rondom een synthetisch model verhoogt de activiteit van de katalysator op drastische wijze. Daarnaast kan de overpotentiaal verlaagd worden door water als oplosmiddel te gebruiken of door elektronenzuigende groepen in te bouwen in synthetische modellen. Desondanks is het ontwerpen van een geavanceerder tweede coördinatieschil essentieel om enzymatische efficiëntie te behalen, wat zeggen wil: katalyse bij verwaarloosbare overpotentiaal en toereikende snelheden. In dit werk hebben we een valide strategie laten zien om modelverbindingen in te vangen in specifiek afgestemde omgevingen gebruikmakend van grote supramoleculaire kooien. Deze aanpak kan verder worden uitgebreid door het ontwikkelen van matrices die protonen kunnen pre-organiseren en daarmee protongekoppelde elektronenoverdracht kunnen faciliteren en het di-ijzermodel dwingen om de geroteerde structuur aan te nemen, waarmee het eindstandige hydride reactiepad mogelijk is zoals dat in de natuurlijke enzymen plaatsvindt. Wij geloven dat het nabootsen van de eiwitomgeving de manier is om de katalytische overpotentiaal van de synthetische hydrogenasemodellen terug te dringen.