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ABSTRACT
We describe a method for automatically generating subjectivity clues
for a specific topic and a set of (relevant) document, evaluating it on
the task of classifying sentences w.r.t. subjectivity, with improve-
ments over previous work.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—Linguistic processing

General Terms
Experimentation, Measurement

Keywords
Subjectivity, sentiment retrieval

1. INTRODUCTION
We address the task of detecting on-topic subjectivity in text.

Specifically, we want to (1) tell whether a textual document ex-
presses an attitude (positive or negative) towards a specific topic,
and moreover, (2) to find where exactly in the document it is ex-
pressed (up to a phrase or at least a sentence). The first task is in
the area of sentiment retrieval. The simplest approach here consist
of two stages: first, we find texts that are on topic, then we filter out
(or, rank low) those without attitude [3]. A more elaborate approach
is based on the assumption that documents are mixtures of two
generative components, one “topical” and one “subjective” [4]. In
practice, however, these components are not independent: a word
that is neutral w.r.t. one topic can be a good subjectivity clue for
another (e.g., compare hard copy and hard problem). Noticing this,
Na et al. [6] generate a topic-specific list of possible clues, based
on top relevant documents, and use this list for subjectivity filtering
(reranking). Furthermore, Jijkoun et al. [1] argue that such clues
are specific not only to the topic, but to the exact target they refer
to, e.g., when looking for opinions about a sportsman, solid is a
good subjectivity clue in the phrase solid performance but not in
solid color.

Jijkoun et al. [1] describe a method for learning such pairs (clue,
target) for a given topic in an unsupervised manner, using syntactic
dependencies between clues and targets. Kim et al. [2] also use
syntactic relations to bootstrap a set of topic-specific clues and use
them for detecting sentences containing on-topic sentiment. Note
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that the methods in [1, 2] also address the second task introduced
above: finding the exact location of sentiment in documents.

We go beyond the subjectivity lexicon generation methods from
[1, 2], with the goal of improving subjectivity spotting. We extend
the method of [1] using bootstrapping (similarly to [2]). Unlike [1],
we directly evaluate the performance on the task of detecting on-
topic subjectivity at the sentence level, not on sentiment retrieval
with entire documents. Unlike [2], our method does not use a seed
set for a given topic: we only need a general purpose subjectivity
lexicon, a topic and a set of (presumably) relevant documents.

2. METHOD
We start with a topic T (a textual description) and a set R =
{d1, . . . , dN} of documents deemed relevant to T . The method
uses a general-purpose list of subjectivity clues L (in our exper-
iments, the well-known MPQA lexicon [9]). We will also use a
large background corpusBG of documents of a similar genre, cov-
ering many topics beside T . We use the Stanford syntactic parser
to extract dependency relations in all sentences in all documents.
Our method outputs a set of triples {(ci, ri, ti)}, where ci is a sub-
jective clue, ti a subjectivity target and ri a dependency relation
between the two words. We interpret an occurrence of such a triple
in a document as an indication of sentiment relevant to T , specifi-
cally directed at ti.

Our method operationalizes a number of intuitions. First, we as-
sume that a given topic can be associated with a number of related
targets (e.g., opinions about a sportsman may cover such targets as
performance, reaction, serve, etc.) and each target has a number
of possible clues expressing attitude towards it (e.g., solid perfor-
mance). We assume that clues and targets are typically syntacti-
cally related (e.g., the target serve can be a direct object of clue to
like), and every clue has syntactic relations connecting it to possi-
ble targets (e.g., for to like only the direct object can be a target, but
not the subject, a adverbial modifier, etc.).

Step 1: Initial clue scoring. For every possible clue c ∈ L
and every type of syntactic relation r that can originate from it in
the background corpus, we compute a clue score sclue(c, r) as the
entropy of words at the other endpoint of r in BG (normalized
between 0 and 1 for all c and r). The clue score gives an initial
estimate of how well (c, r) may work as a subjectivity clue. Here,
we follow the intuition of [1]: targets are more diverse than other
syntactic neighbours of clues.

Step 2: Target scoring. For every word t ∈ R we determine
its target score that tells us how likely t is an opinion target related
to topic T . Our main intuition here is that targets are words that
occur unusually often in subjective contexts in relevant documents.
First, we compute CR(t) =

∑
sclue(c, r) for all occurrences of

the syntactic relation r between words c and t in corpus R. Sim-
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Method P R F1

method of [1] 0.23 0.31 0.26
R K N M
r + 100 4 10 50 0.42 0.13 0.20
r + 100 4 20 50 0.45 0.17 0.25
r + 100 4 30 50 0.35 0.26 0.28
r + 100 4 40 50 0.32 0.29 0.30
r + 100 4 50 50 0.20 0.30 0.24
r + 100 4 60 50 0.19 0.32 0.24
r + 100 4 70 50 0.14 0.35 0.20
r + 100 4 40 30 0.32 0.21 0.25
r + 100 4 40 40 0.32 0.23 0.27
r + 100 4 40 50 0.32 0.29 0.30
r + 100 4 40 60 0.30 0.29 0.29
r + 100 4 40 70 0.29 0.30 0.29
r + 100 4 40 50 0.32 0.29 0.30
100 4 40 50 0.27 0.22 0.24
r 4 40 50 0.21 0.17 0.19

ilarly, we compute CBG(t) for the background corpus BG. We
view CR(·) and CBG(·) as (weighted) counts, and compute a par-
simonious language model pR(·) using a simple EM algorithm [5].
We also compute a language model pBG(·) from counts CBG(·)
by simple normalization. Finally, we define the target score of a
word t as the likelihood that the occurrence of t in R comes from
pR(·) rather than pBG(·):

stgt(t) =
γ · ptgt(t)

γ · ptgt(t) + (1− γ) · pBG(t)
.

Step 3: Clue scoring. Mirroring Step 2, we now use target
scores to compute better estimates for clue scores. Here, our intu-
ition is that good subjectivity clues are those that occur unusually
often near possible opinion targets for a given topic. The computa-
tion is similar to Step 2, with sclue(c, r) and stgt(t) interchanged:
we compute weighted counts, a parsimonious model and, finally,
the updated sclue(c, r). Now, we iterate Step 2 and Step 3, each
time updating stgt(·) and sclue(·, ·), respectively, based on the val-
ues at the previous iteration. AfterK iterations we selectN targets
and M pairs (clue, relation) with the highest scores. We check
which of the N targets co-occur with which of the M clues in R.

3. EXPERIMENTS AND RESULTS
We evaluate different versions of our method on the following

sentence classification task: for a given topic and a list of docu-
ments relevant to the topic, we need to identify sentences that ex-
press opinions relevant the topic. We compute precision, recall and
F-score for detection of relevant opinionated sentences.

In our experiments, we use the NTCIR-6 [7] and NTCIR-7 [8]
Opinion Analysis datasets, containing judgements for 45 queries
and 12,000 sentences.

In order to understand how the quality of relevant documents af-
fects the performance of the method, we selected R to be (1) R100:
top 100 document retrieved from the NTCIR-6/7 English collec-
tion using Lucene, (2) Rr: only documents with at least one rele-
vant (not necessarily opinionated) sentence as identified by NTCIR
annotators, and (3) Rr+100 the union of (1) and (3).

We also ran the method with different numbers of iterations (K),
different number of selected targets (N ) and selected clues (M ). In
all settings, the overall performance stabilizes at K ≤ 5. Table 3
shows the evaluation results:

As one might expect, we see that reducing the number of se-

lected targets (N ) improves precision but harms recall. Chang-
ing the number of selected clues (M ) has little effect on precision:
since for detecting opinionatedness we combine clues with targets,
noise in clues does not necessarily lead to drop in precision.

Overall, we notice that with in the best setting (K = 4, N = 40,
M = 50) the method outperforms [1] (significantly, at p=0.05, us-
ing t-test). Performance of the method varies substantially per topic
(F1 between 0.13 and 0.48), but the optimal values for parameters
are stable for high-performing topics (with F1 > 0.26).

4. CONCLUSIONS
We have described a method for automatically generating sub-

jectivity clues for a specific topic and a set of (relevant) document,
evaluating it on the task of classification of sentences w.r.t. subjec-
tivity, demonstrating improvements over previous work. We plan
to incorporate more complex syntactic patterns in our clues (going
beyond word-word relations) and study the effect of user feedback
(which extracted targets are correct? which clues are indeed sub-
jective?) with the view of implementing an interactive system.
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