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Abstract

This supplement consists of six appendixes. In Appendix C we report more simulation and

empirical analysis results to support the findings in Section 3 and 4. In Appendix D we check

the generic conditions of the theorems for some example models in Section 3. In Appendix E

we discuss the asymptotic theory for the time-variation adjusted data (see Remark 2 in the main

document) and how to relax the additional condition (17). In Appendix F we prove all the lemmas

used in the proof of main theorems. In Appendix G we prove Propositions 1 and 2 in Section 2.

Finally, in Appendix H, we provide the complete proof of Corollaries 1–6.

Appendix C. More simulation and empirical analysis results

Appendix C.1. Simulation results for
√
p/n = 0.1

We repeat the simulation study, for a larger order of
√
p/n = 0.1. We observe similar patterns

from Tables C.1 and C.2 as that in Section 3. The feasible and oracle tests have similar sizes over

all scenarios, and require robust corrections for the time-series predictors with large concentration

ratio p/n. They show similar power performances for small departures, but more different power

for larger departures. This is because the error variance estimator contains a larger finite-sample

upward bias under the alternatives.

Appendix C.2. Simulations results for the non-free dense alternatives in Goeman et al. (2006)

In this section, we revisit the simulations in Goeman et al. (2006). We use the same setup in

our simulation study in Section 3, but now generate the direction of regression coefficient, that is,

ξ adaptively as follows:
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Table C.1: Size and power (%) of the tests against uniform stochastic coefficient (i) at level α = 5% with p/n =
1
4
, 1
2
, 1, 2, 4 and

√
p/n = 0.1. The columns are for: (i) the feasible test using σ̂2

n and assuming ρ2n = 0, (io) the oracle

test using the true variance σ2
n and assuming ρ2n = 0, (i*) the robust test using σ̂2

n and ρ̂2n.

IID CSD MA1 AR1

p/n (i) (io) (i*) (i) (io) (i*) (i) (io) (i*) (i) (io) (i*)

H0 : ‖β‖2 = 0

6/25 4.6 5.1 5.7 5.3 5.4 6.4 4.6 4.9 6.0 4.8 4.6 6.0

25/50 5.2 4.9 5.6 5.4 5.6 5.9 5.2 5.5 6.0 5.5 5.5 6.6

100/100 5.6 5.6 6.0 5.8 6.0 6.1 5.0 5.1 6.2 6.2 6.0 7.3

400/200 6.2 6.3 6.3 5.6 5.8 5.8 4.1 4.3 5.8 4.8 4.9 7.1

1600/400 5.7 5.7 5.8 5.5 5.6 5.6 3.2 3.5 5.7 3.2 3.4 6.4

H1
a : ‖β‖2 = 1×

√
p
n

6/25 17.4 19.8 20.1 17.3 19.6 19.6 17.4 19.2 20.0 17.9 19.2 20.6

25/50 19.6 23.8 21.1 21.8 23.8 23.1 21.5 23.4 23.6 21.8 23.7 24.1

100/100 22.1 27.5 22.9 24.2 27.2 24.9 20.5 23.8 23.4 22.4 25.1 25.3

400/200 22.9 27.9 23.4 23.6 26.7 23.9 19.2 22.5 22.6 19.3 22.2 24.2

1600/400 23.9 30.1 24.1 23.6 28.4 23.9 14.4 18.1 21.5 13.1 16.6 21.3

H2
a : ‖β‖2 = 2×

√
p
n

6/25 30.0 35.9 33.6 29.2 33.1 32.2 28.4 32.5 32.2 29.1 33.0 33.3

25/50 37.3 44.8 39.3 38.0 42.8 39.4 36.6 42.5 39.4 36.5 41.9 39.8

100/100 42.6 53.7 43.8 43.4 51.3 44.2 39.7 46.4 42.9 40.4 47.9 44.2

400/200 45.4 57.3 45.9 47.1 56.4 47.7 39.1 48.4 44.6 38.1 46.9 44.8

1600/400 46.7 59.9 47.1 48.9 58.7 49.2 33.0 42.6 42.8 29.7 39.2 41.7

H3
a : ‖β‖2 = 5×

√
p
n

6/25 56.0 68.4 59.7 50.2 59.4 53.7 49.0 57.8 53.3 50.8 60.2 55.4

25/50 70.3 83.5 72.0 67.1 76.1 68.8 64.8 74.7 67.6 65.4 74.5 68.4

100/100 79.8 91.7 80.6 78.7 88.1 79.5 75.3 85.2 77.9 74.9 84.6 77.7

400/200 85.0 94.5 85.3 86.6 94.5 86.8 79.9 90.6 83.5 78.2 89.1 82.8

1600/400 87.5 96.3 87.7 90.0 96.7 90.1 78.7 90.5 84.9 74.8 88.5 83.8

(iii) ξ =
UnΛ

s/2
n 1p∥∥∥UnΛ
s/2
n 1p

∥∥∥ with s = 0, 0.5, 1, 1.5,

where Un = (u1, . . . , un) and Λn = diag (λ1, . . . , λp) contain the eigenvectors and eigenvalues of

the sample covariance matrix Sn respectively. We only consider the regular case with s ≥ 0, where

the large variance principal components contains more information in forecasting the response

variables; see the aforementioned paper for more discussions. Following the setup therein we use

p = 52 and n = 294, leading to a contraction ratio p/n ≈ 0.177 and an order of alternatives
√
p/n ≈ 0.025.
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Table C.2: Size and power (%) of the tests against deterministic coefficient (ii) at level α = 5% with p/n = 1
4
, 1
2
, 1, 2, 4

and
√
p/n = 0.1. The columns are for: (ii) the feasible test using σ̂2

n and assuming ρ2n = 0, (iio) the oracle test using

the true variance σ2
n and assuming ρ2n = 0, (ii*) the robust test using σ̂2

n and ρ̂2n.

IID CSD MA1 AR1

p/n (ii) (iio) (ii*) (ii) (iio) (ii*) (ii) (iio) (ii*) (ii) (iio) (ii*)

H0 : ‖β‖2 = 0

6/25 4.6 4.3 5.5 4.6 4.8 5.8 5.7 5.6 7.1 5.2 5.6 6.3

25/50 4.9 5.0 5.4 5.8 6.1 6.5 5.4 5.8 6.4 5.9 5.8 7.3

100/100 5.5 5.8 5.9 5.9 5.8 6.2 4.3 5.1 5.7 5.6 5.3 6.8

400/200 6.0 6.1 6.2 5.8 5.7 5.9 4.7 4.6 6.1 4.8 4.7 6.7

1600/400 4.9 5.1 4.9 6.5 6.4 6.6 3.2 3.7 6.0 3.3 3.3 6.6

H1
a : ‖β‖2 = 1×

√
p
n

6/25 16.4 19.0 18.9 18.4 20.4 20.9 19.5 20.5 22.0 18.5 19.8 21.5

25/50 19.7 23.0 21.2 21.4 23.9 22.8 21.7 23.7 24.0 21.3 24.0 24.0

100/100 22.6 26.8 23.5 23.6 27.0 24.4 20.8 24.0 23.3 20.8 23.8 23.9

400/200 22.8 27.8 23.3 23.6 27.6 24.2 18.6 22.7 22.9 18.6 22.2 24.0

1600/400 22.9 29.2 23.2 25.0 29.5 25.3 14.6 18.4 21.8 13.8 17.4 21.8

H2
a : ‖β‖2 = 2×

√
p
n

6/25 29.3 34.7 33.1 31.4 35.1 34.8 31.9 35.1 35.7 30.6 35.1 34.9

25/50 35.4 43.8 37.2 38.2 44.4 39.7 37.8 43.1 40.6 37.1 43.2 40.7

100/100 41.9 52.2 42.9 43.8 51.0 44.6 39.4 46.5 42.3 39.0 45.8 42.6

400/200 45.4 57.0 46.2 47.1 55.7 47.6 39.0 47.8 44.8 37.9 46.6 45.0

1600/400 46.2 59.9 46.6 51.0 60.9 51.3 32.6 42.4 42.8 30.4 39.3 41.6

H3
a : ‖β‖2 = 5×

√
p
n

6/25 56.3 69.1 60.3 58.1 68.0 61.9 57.0 67.1 61.7 57.6 67.3 61.4

25/50 66.8 79.6 68.6 71.4 80.9 73.0 66.9 77.8 69.5 67.2 77.5 70.2

100/100 78.9 90.7 79.8 81.1 89.7 81.7 75.9 86.0 78.5 74.7 85.7 77.9

400/200 85.2 95.2 85.6 87.5 94.7 87.7 79.7 90.7 83.5 79.8 90.1 84.1

1600/400 88.2 96.9 88.4 91.5 97.3 91.6 78.4 90.5 84.7 74.9 88.3 83.4

Note that the regression coefficient vector is not free except the case with s = 0. We use the

general asymptotic departure $n = $n(s) given in Remark 1, rather the one for free alternatives,

to generate the variance of regression errors σ2
n = $n(s)/

√
2. Hence, the asymptotic size and power

only depends on the length of β under regular scenarios.

Table C.3 reports the results for the adaptive direction (iii) for different values of s. Again we

report the size and power for three different tests: the feasible test using the estimated variance σ̂2
n

for regular scenarios (i.e. assuming ρ2
n = 0), the oracle test using the true variance σ2

n for regular

scenarios (i.e. assuming ρ2
n = 0), and the robust test using the estimated variance σ̂2

n and the
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Table C.3: Size and power (%) of the tests against adaptive direction (iii) at level α = 5% with p = 52 and n = 294.

The columns are for: (iii) the feasible test using σ̂2
n and assuming ρ2n = 0, (iiio) the oracle test using the true variance

σ2
n and assuming ρ2n = 0, (iii*) the robust test using σ̂2

n and ρ̂2n.

IID CSD MA1 AR1

s (iii) (iiio) (iii*) (iii) (iiio) (iii*) (iii) (iiio) (iii*) (iii) (iiio) (iii*)

H0 : ‖β‖2 = 0

0 5.7 5.7 5.9 6.1 6.0 6.3 5.9 5.9 6.1 6.3 6.1 6.6

0.5 5.4 5.5 5.4 6.2 6.5 6.3 5.6 5.6 5.7 5.6 5.8 5.8

1 5.9 6.3 6.1 5.5 5.9 5.7 6.7 6.3 6.9 6.5 6.4 6.8

1.5 6.2 6.2 6.2 6.0 5.9 6.1 6.0 6.0 6.2 6.7 6.8 7.0

H1
a : ‖β‖2 = 1×

√
p
n

0 25.9 26.3 26.1 25.6 26.5 25.9 26.2 26.8 26.8 26.0 26.1 26.6

0.5 26.6 27.7 26.8 27.3 27.4 27.4 26.6 26.5 27.2 25.8 26.1 26.4

1 26.7 27.6 27.0 26.0 26.1 26.2 27.6 27.7 28.2 27.6 27.7 28.5

1.5 26.8 27.1 27.2 26.3 26.9 26.4 26.8 27.1 27.3 28.2 28.3 28.8

H2
a : ‖β‖2 = 2×

√
p
n

0 53.0 55.6 53.4 52.3 53.9 52.6 51.5 53.0 52.1 51.7 53.3 52.6

0.5 53.9 55.8 54.1 52.6 53.3 52.7 51.5 52.9 52.2 51.1 52.8 51.9

1 53.8 55.8 54.2 51.8 52.4 52.2 52.4 53.5 53.2 51.4 52.5 52.5

1.5 55.0 56.4 55.3 52.5 53.2 52.7 52.4 52.8 53.0 53.0 53.6 53.7

H3
a : ‖β‖2 = 5×

√
p
n

0 95.9 97.2 96.0 94.4 95.5 94.4 93.3 94.6 93.4 93.5 95.0 93.7

0.5 95.9 97.3 96.0 93.9 94.9 94.0 93.6 94.7 94.0 93.6 94.7 93.8

1 96.0 97.2 96.1 93.6 94.7 93.7 93.0 94.3 93.1 93.1 94.0 93.4

1.5 95.5 96.8 95.5 93.6 94.4 93.7 93.6 94.7 93.8 92.8 94.1 93.1

estimated irregularity coefficient ρ̂2
n for both regular and irregular scenarios. We observe that, for

each departure value h, the size and power are stable over all scenarios. This clearly suggests the

good performance of our general asymptotic approximations in Remark 1.

Appendix C.3. Simulation results under contemporary correlations

In this subsection we provide some additional simulations results to illustrate the power of our

robust test when there are non-trivial contemporary (and lag) correlations between the nuisance

variable zt and the high-dimensional aggregate variable xTt β.

For simplicity we consider an univariate nuisance variable zt ∈ R, but the results are similar

with multiple nuisance variables. We consider the regression model given by

yt = θ0 + ztθ1 + xTt β + εt
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Table C.4: Empirical size and power (%) against uniform stochastic coefficient at level α = 5% with p/n = 1
4
, 1
2
, 1, 2, 4

and
√
p/n = 0.05, using the least-squares variance estimator σ̂2

n. The columns are for: (0) no contemporary depen-

dence with ρ = 0 (+) positive contemporary dependence with ρ = 0.2 (-) negative contemporary dependence with

ρ = −0.2.

IID CSD MA1 AR1

p/n (0) (+) (−) (0) (+) (−) (0) (+) (−) (0) (+) (−)

H0 : ‖β‖2 = 0

25/100 5.8 5.8 5.8 6.0 6.0 6.0 6.4 6.4 6.4 6.3 6.3 6.3

100/200 5.8 5.8 5.8 5.7 5.7 5.7 5.0 5.0 5.0 5.7 5.7 5.7

400/400 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 4.9 4.9 4.9

1600/800 5.1 5.1 5.1 5.4 5.4 5.4 5.3 5.3 5.3 5.6 5.6 5.6

6400/1600 5.2 5.2 5.2 5.6 5.6 5.6 5.2 5.2 5.2 5.6 5.6 5.6

H1
a : ‖β‖2 = 1×

√
p
n

25/100 24.7 23.0 22.6 25.3 23.9 24.2 26.6 24.6 25.9 24.8 22.4 23.8

100/200 25.1 23.5 23.2 26.6 25.0 24.5 25.1 22.4 24.3 25.2 22.0 24.4

400/400 24.9 23.0 22.8 25.6 23.7 23.4 24.3 20.0 24.0 25.0 20.5 25.2

1600/800 24.0 21.6 21.8 25.8 23.4 23.4 24.6 18.0 26.9 24.7 18.5 27.1

6400/1600 23.7 21.6 21.6 25.6 23.4 23.4 24.4 15.6 30.7 24.8 14.7 32.3

H2
a : ‖β‖2 = 2×

√
p
n

25/100 46.1 43.4 42.9 46.8 43.6 44.2 45.3 42.5 43.4 45.2 42.1 43.0

100/200 51.6 47.9 47.0 51.1 47.6 47.3 49.8 44.6 48.0 50.1 45.1 48.1

400/400 51.7 47.3 47.8 52.7 48.9 49.0 52.0 44.6 50.8 52.6 44.5 51.6

1600/800 53.7 48.7 48.6 54.3 50.0 49.5 55.4 43.3 57.6 54.5 42.0 57.4

6400/1600 51.9 47.1 47.8 56.2 51.5 51.5 56.9 37.2 66.5 57.2 36.8 67.2

H3
a : ‖β‖2 = 5×

√
p
n

25/100 86.4 83.8 82.6 80.5 77.8 77.4 79.4 76.8 77.3 79.0 76.0 76.4

100/200 92.3 89.7 89.6 89.5 86.9 87.0 89.4 86.2 87.6 89.7 86.5 87.8

400/400 95.4 93.2 93.3 94.5 92.2 92.1 95.1 91.3 94.2 94.4 90.9 93.7

1600/800 97.1 95.2 95.3 97.2 95.5 95.9 96.9 93.0 97.2 97.8 93.7 97.9

6400/1600 97.7 95.9 95.7 97.8 96.5 96.7 98.5 93.0 99.2 98.7 92.4 99.5

where the intercept θ0 = 0 and θ1 = 1 without loss of generality; note that these values do not

change the distribution of our test statistic. However, the true values are unknown to the statisti-

cian who always demeans the predictors in each sample and estimate the nuisance parameters. We

generate the same regression errors εt = σnηt and the high-dimensional covariates {xt} from the

DGPs 1–4 as in the main document. To save space, we only report the results for coefficient vector

β = ‖β‖ ξn with the direction ξn generated uniformly over the Rp unit sphere, that is, the case (i)

in the main document; the results for the directions in case (ii) are similar and therefore omitted.
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We choose the same pairs of (p, n) ∈ {(25, 100), (100, 200), (400, 400), (1600, 800), (6400, 1600)} and

same signal length h2
n = n√

p ‖β‖ ∈ {0, 1, 2, 5} as in the main document.

We generate the nuisance variable zt from the linear model given by

zt = ψ1x
T
t−1β + ψ1εt−1 + ψ0 · xTt β + vt,

where the errors vt = σ̃nη̃t with η̃t
iid∼ N(0, 1) independent of {xt} and {εt}. We set ψ1 = 0.3 and

vary the value of

ψ0 =

ρ
√

var(zt)

var(xTt β)
− ψ1corr(xTt−1β, x

T
t β) β 6= 0p

0 β = 0p,

for each DGP to ensure that the contemporary correlation

ρ := corr
(
zt, x

T
t β
)
∈ {0, 0.2,−0.2}.

Finally, we choose the standard deviation σ̃n such that var(zt) = 1 for each DGP.

Table C.4 reports the empirical size and power of our feasible robust test (14) in our main

document. Our test maintains good sizes and non-trivial powers overall, whereas the power per-

formance depends on the sign of the contemporary correlation ρ. In the regular cases with time

independent covariates (IID and CSD), we observe a slight loss of finite-sample testing power re-

gardless of the sign of the contemporary correlation ρ. In the irregular scenarios where the power

bias term bn become non-negligible (see Remark 6 in the main document), we observe that our

test becomes less powerful when ρ > 0 but the power is (partially) recovered or even boosted when

ρ < 0. The difference is particularly significant in higher dimensions with larger concentration

ratio p/n according to our findings in Remark 6.

Appendix C.4. Robustness checks for our empirical analysis

We first report the rolling-window p-values, without robust corrections, for both the unadjusted

and the time-variation adjusted data respectively in Figures C.1 and C.2. All the plots show very

similar patterns to that in Section 4.

To illustrate how our test outcomes may explain the time-varying predictive gain by using

the high-dimensional covariates, we compare the autoregressive forecasts with the ridge estimators

which usually shows the best predictive performance among competitors in our empirical analysis;

see, e.g., De Mol et al. (2008). Our conclusions remain qualitatively the same for lasso and principal

component estimators. To keep the estimators comparable, we jointly estimate the nuisance pa-

rameter θ and the coefficient vector β, but penalize the L2 norm of β only in our ridge estimation.

We choose the optimal penalty coefficient by using the bias-corrected 10-fold cross-validation with

the autoregressive residuals; see Liu and Dobribabn (2020). Following Stock and Watson (2002),

in every month we use the observations over the last n = 120 months as our training data, and

forecast the next-month industrial production growth ahead.
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For every given d ∈ {0, 1, . . . , 5}, in Figure C.3 we plot the time series of the relative out-of-

sample R2, beginning from December 1979, which is given by

Relative Out-of-sample R2 =

∑m
t=m−119(ŷt − yt)2∑m
t=m−119(ŷAR

t − yt)2
,

for the rolling window ending in month m, where ŷt denotes the ridge forecasts (or other forecasts

of interest) and ŷAR
t denotes the autoregressive forecasts which are both available at time t − 1.

Overall, we observe a non-trivial reduction in forecast errors by using the covariates during the

periods our tests are significant, whereas little gain or even a (large) loss in predictive accuracy

when our tests are insignificant. Consistent with Figure 1 in the main document, our results

suggest that the covariates become less useful when more lagged target values are included since

early 2000.

We also report the rolling-window relative out-of-sample R2 for LASSO and principal com-

ponents estimators in Figure C.4. Like for the ridge estimator, we jointly estimate the nuisance

parameter θ and the coefficient vector β, but penalize the L1 norm of β only in our lasso estimation.

We choose the optimal penalty coefficient by using the bias-corrected 10-fold cross-validation with

the autoregressive residuals. For principal component regression, we report the results for using 3

principal components.
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Figure C.1: Ten years (n = 120) rolling windows monthly unadjusted p values between March, 1969 and February,

2020 for different number of lags d = 0, 1, 2, 3, 4, 5.
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Figure C.2: Ten years (n = 120) rolling windows monthly time-variation adjusted p values between March, 1969 and

February, 2020 for different number of lags d = 0, 1, 2, 3, 4, 5.
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Figure C.3: Relative out-of-sample mean squared forecast errors for the ridge estimator (solid line) against the

autoregressive forecasts (dotted reference line) in rolling windows of n = 120 months.
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Figure C.4: Relative out-of-sample mean squared forecast errors for the LASSO estimator (solid line) and the

principal component estimator (dashed line) against the autoregressive forecasts (dotted reference line) in rolling

windows of n = 120 months.
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Appendix D. Checking technical conditions for example models

For all examples in this part we consider the standard asymptotic regime that p/n→ c ∈ (0,∞)

in random matrix theory. Unless specified otherwise, all the inequalities hold with probability 1

and we do not repeat this argument for presentation convenience.

Appendix D.1. Time-independent model

Consider the time-independent model in Proposition 2, where xt = Σ1/2vt where {vt,i : t =

1, . . . , n, i = 1, . . . , p} is a double array of i.i.d. random variables with zero mean, unit variance and

finite kurtosis bounded in n. Assume further than Σ has a bounded spectral norm in n.

First, we verify the condition (ii) and condition (iii) of Theorem 1. Let Sn = 1
nΣ1/2XTXΣ1/2.

By Bai and Silverstein (1998) we know that λmax(Sn) = O(1). Then

λmax(Sn) = λmax(Sn) = λmax(Sn − x̄x̄T ) ≤ λmax(Sn) = O(1).

It follows that

‖An‖sp = ‖Sn − diag (Sn)‖sp ≤ ‖Sn‖sp + ‖diag (Sn)‖sp ≤ 2 ‖Sn‖sp = O(1).

On the other hand, ‖An‖2 = tr
(
S2
n

)
− tr

(
(diag (Sn))2

)
≤ tr

(
S2
n

)
− 1

n tr2 (Sn). Recall that FSn

tends to a non-degenerate limit F with probability 1, and thus

1

n
tr
(
S2
n

)
− 1

n2
tr2 (Sn) =

∫
x2dFSn −

(∫
xdFSn

)2
a.s.−−→

∫
x2dF −

(∫
xdF

)2

> 0.

Hence, ‖An‖2sp / ‖An‖
2 = O(n−1) → 0. The condition (ii) then follows; see our arguments in

Section 2. For condition (iii) it suffices to check condition (5). Let ` ∈ {1, 2, . . . , n}. Note that

An(t+ `, t) =
1

n
(xt+` − x̄)T (xt − x̄) .

By Cauchy–Schwarz inequality, it is easy to show that, for some absolute constant M

A2
n(t+ `, t) ≤M

{
1

n2
(xTt+`xt)

2 +
1

n2
xTt xt · x̄T x̄+

1

n2
xTt+`xt+` · x̄T x̄+

1

n2
x̄T x̄

}
.

Recall from above that 1/ ‖An‖2 = O(n−1). It remains to show that

1

n3

n∑
t=1

(
xTt+`xt

)2
= oP(1),

1

n3

n∑
t=1

xTt xt · x̄T x̄ = OP(1), and
1

n2
x̄T x̄ = oP(1).

By a direct calculation and the trace inequality (Lemma 3),

E

[
1

n3

n∑
t=1

(
xTt+`xt

)2]
=

tr(Σ2)

n2
≤ λmax(Σ)

tr(Σ)

n2
→ 0.

12



Moreover,

E

[
1

n3

n∑
t=1

xTt xt

]
=

tr(Σ)

n2
→ 0, and E

[
x̄T x̄

]
=

tr(Σ)

n
= O(1).

The rest follows easily from the Markov inequality (Lemma 1).

Next, we verify conditions (i)–(iii) in Theorem 2. Condition (i) follows immediately from above

and we omit the details. Condition (ii) follows as our model is a special case of that in Proposition

1. Let κ denote the kurtosis of vt,i, and a := (a1, . . . , ap) := Σ1/2ξn. It is easy to check that, for

some large M

E
(
xTt ξn

)4
= E

(
vTt Σ1/2ξn

)4
=κ ·

p∑
i=1

a4
i + 3

p∑
i 6=j

a2
i a

2
j

≤M

(
p∑
i=1

a2
i

)2

= M
(
ξTnΣξn

)2
= O(λ2

max(Σ)) = O(1).

This is condition (iii).

Appendix D.2. High dimensional MA(1) model

Consider the first-order moving average model given by

xt = ψwt−1 + wt

where ψ ∈ (−1, 1) is a scalar lagged coefficient and wt = Σ1/2vt follows the time-independent model

in the last section. With a slight abuse of notation, here Σ denotes the population covariance matrix

of wt rather that of xt.

We first check the condition (ii) in Theorem 1. We skip the condition (iii) therein as it may

not hold in general according to our simulations, but this is not an issue for our robust test. Using

the same arguments (and the limiting spectral distribution in Jin et al., 2009) as that for the

time-independent model, it suffices to show that

λmax (Sn) = O(1).

Observe that

Sn :=
1

n

n∑
t=1

xtx
T
t =

1

n

n∑
t=1

(ψwt−1 + wt) (ψwt−1 + wt)
T

= ψ2 1

n

n∑
t=1

wt−1w
T
t−1 + ψ

1

n

n∑
t=1

(
wt−1w

T
t + wtw

T
t−1

)
+

1

n

n∑
i=1

wtw
T
t

=: ψ2Sn,1 + ψSn,2 + Sn,3.

From the last section, we already know that λmax (Sn,1) = O(1), and λmax (Sn,3) = O(1). Using

the triangle inequality for spectral norms, it remains to show that

‖Sn,2‖sp = O(1).
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Let ξ ∈ Rp be an arbitrary unit vector.

∣∣ξTSn,2ξ∣∣ ≤ 1

n

n∑
t=1

2
∣∣ξTwt−1w

T
t ξ
∣∣ ≤ 1

n

n∑
t=1

ξTwt−1w
T
t−1ξ +

1

n

n∑
t=1

ξTwtw
T
t ξ

=ξTSn,1ξ + ξTSn,3ξ ≤ λmax (Sn,1) + λmax (Sn,3) .

Note that the last upper bound does not depend on ξ. Then using the fact that Sn,2 is symmetric,

‖Sn,2‖sp = sup‖ξ‖=1

∣∣ξTSn,2ξ∣∣ ≤ λmax (Sn,1) + λmax (Sn,3) = O(1).

Next, we verify conditions (i)–(iii) in Theorem 2. We can deduce from above that λmax(Sn) ≤
λmax (Sn) = O(1) and λmax

(
E
[
xtx

T
t

])
= (ψ2 + 1)λmax(Σ) = O(1). For condition (i), it remains to

show that λmax

(
E[x̄x̄T ]

)
= O(1). By a direct calculation,

E[x̄x̄T ] =
1

n
E
(
xtx

T
t

)
+

1

n
E
(
xtx

T
t−1

)
+

1

n
E
(
xt−1x

T
t

)
=

1

n

(
ψ2 + 1

)
Σ + ψ

1

n
Σ + ψ

1

n
Σ =

1

n
(ψ + 1)2 Σ.

Hence,

λmax

(
E[x̄x̄T ]

)
=

1

n
(ψ + 1)2 λmax(Σ)→ 0.

The condition (ii) follows from Proposition 1 directly, by rewriting

xt =
[
ψIp, Ip

] [wt−1

wt

]
=
[
ψΣ1/2,Σ1/2

] [vt−1

vt

]
.

Regarding the condition (iii), for some absolute constant M ,

E(xTt ξn)4 ≤M
{
ψ4E(wTt−1ξn)4 + E(wTt ξn)4

}
= M(ψ4 + 1)E(wTt ξn)4,

where the right-hand-side is bounded in n as wt follows our time-independent model above.

Appendix D.3. High dimensional AR(1) model

Consider the autoregressive model given by

xt = φxt−1 + wt

where φ ∈ (−1, 1) is a scalar autoregressive coefficient and wt = Σ1/2vt follows the time-independent

model in the first section. With a slight abuse of notation, again here Σ denotes the population

covariance matrix of wt rather that of xt. Inverting the autoregressive process, we can represent

xt as an infinite-order moving average process given by

xt =
∞∑
`=0

φ`wt−`. (D.1)
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We first check the condition (ii) in Theorem 1. Like in the above section, it suffices to show

that λmax(Sn) = O(1). We can expand that

Sn =
1

n

n∑
t=1

xtx
T
t =

1

n

n∑
t=1

( ∞∑
`=0

φ`wt−`

)( ∞∑
l=0

φ`wt−`

)T

=

∞∑
`=0

φ2` 1

n

n∑
t=1

wt−`w
T
t−` +

∑
0≤`1 6=`2

φ`1+`2 1

n

n∑
t=1

(
wt−`1w

T
t−`2 + wt−`1w

T
t−`2

)
=: Sn,1 + Sn,2.

Now note that λmax

(
1
n

∑n
t=1wt−`w

T
t−`
)
≤ C with probability 1 where the constant C does not

depend on `, and the set of non-negative integers is countable. It follows that

λmax (Sn,1) =
∞∑
l=0

|φ|2` ·O(1) = O(1).

Moreover, using similar argument in the last section, we can show that

λmax (Sn,2) =λmax

 ∑
0≤`1 6=`2

φ`1+`2 1

n

n∑
t=1

(
wt−`1w

T
t−`1 + wt−`2w

T
t−`2

)
≤2

∞∑
`=0

|φ|`
(

1

1− |φ|
− |φ|`

)
λmax

(
1

n

n∑
t=1

(
wt−`w

T
t−`
))

=

{ ∞∑
`=0

|φ|`
(

1

1− |φ|
− |φ|`

)}
·O(1) = O(1).

The condition then follows.

Next, we verify conditions (i)–(iii) in Theorem 2. We can deduce from above that λmax(Sn) ≤
λmax (Sn) = O(1), and λmax

(
E
[
xtx

T
t

])
= 1

1−φ2λmax(Σ) = O(1). For condition (i), it remains to

show that λmax

(
E[x̄x̄T ]

)
= O(1). It is easy to verify that

E
(
xtx

T
t−`
)

= E
(
xt−`x

T
t

)
=

φ`

1− φ2
Σ, l = 0, 1, . . . .

Then

E[x̄x̄T ] =
1

n
E(xtx

T
t ) +

2

n2

n−1∑
`=1

(n− `)E(xtx
T
t−`)

=
1

n

(
1

1− φ2
+

2

n

n−1∑
`=1

(n− `) φ`

1− φ2

)
Σ.

Hence,

λmax

(
E[x̄x̄T ]

)
=

1

n

(
1

1− φ2
+

2

n

n−1∑
`=1

(n− `) φ`

1− φ2

)
λmax (Σ)

≤ 1

n

(
1

1− φ2
+

2|φ|
(1− φ2)2

)
λmax (Σ)→ 0.
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Observe that it also implies that E
(
x̄T x̄

)
= OP

(
tr(Σ)
n

)
. Then invoking the proof of Proposition 1

and note that 1
nx

T
t xt ≤ λmax(Sn) = O(1), for condition (ii) it suffices to prove that∣∣∣∣ 1nxTt xt − 1

n
E
[
xTt xt

]∣∣∣∣ P−→ 0, for each t. (D.2)

Now take a diverging sequence K = K(n) ∈ {1, 2, . . .} → ∞. Truncate the moving average form

(D.1) at order K to get the approximation

x̂t =

K∑
`=0

φ`wt−` =
[
φKΣ1/2, . . . , φΣ1/2,Σ1/2

]
vt−K

...

vt

 .
Now following the proof of Proposition 1,∣∣∣∣ 1nx̂Tt x̂t − 1

n
E
[
x̂Tt x̂t

]∣∣∣∣ P−→ 0.

Let Rt = xt − x̂t =
∑∞

`=K+1 φ
`wt−`. Using Cauchy–Schwarz inequality, it is easy to show that∣∣∣∣ 1nxTt xt − 1

n
x̂Tt x̂t

∣∣∣∣ ≤ 2

n

√
RTt Rt · x̂Tt x̂t +

1

n
x̂Tt x̂t.

Using Jensen’s inequality and independence between Rt and x̂t,

E
∣∣∣∣ 1nxTt xt − 1

n
x̂Tt x̂t

∣∣∣∣ ≤ 2

n

√
E
[
RTt Rt

]
· E
[
x̂Tt x̂t

]
+

1

n
E
[
RTt Rt

]
=

tr(Σ)

n


√√√√ ∞∑

l=K+1

φ2l ·
K∑
l=0

φ2l +
∞∑

l=K+1

φ2l

→ 0.

Then (D.2) follows by the triangle inequality. This completes the proof for condition (ii). Recall

from the first subsection that E
(
vTt Σ1/2ξn

)4
= O(λ2

max(Σ)). Finally, recalling the moving average

form (D.1) again, for all unit vector ξn

E
(
xTt ξn

)4
=E

( ∞∑
l=0

φlvTt Σ1/2ξn

)4

=

( ∞∑
l=0

φ4l

)
E
(
vTt Σ1/2ξn

)4
+ 3

 ∑
0≤l1 6=l2

φ2l1+2l2

(ξTnSnξn)2
=OP

(
λ2

max(Σ)
)

+OP
(
λ2

max(Σ)
)
,

which is clearly bounded in n.
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Appendix E. Additional asymptotic theory

Appendix E.1. Testing a non-zero null value

Our theory generalizes for testing any given direction of β, say, ξ
(0)
n with the composite null

hypothesis

H0 : β ∝ ξ(0)
n , that is, H0 : β = θ̃ξ(0)

n , for some θ̃ ∈ R, (E.1)

where ∝ means ‘is proportional to’ and the constant θ̃ ∈ R can be unspecified. Now, if we

decompose the aggregate variable xTt β under the alternatives as given by

xTt β = θ̃xTt ξ
(0)
n + xTt β̃,

where xTt β̃ is uncorrelated with the high-dimensional projection xTt ξ
(0)
n for every n. The regression

model (2) in the main document can be rewritten as

yt = zTt θ + xTt (θ̃ξ(0)
n + β̃) + εt = zTt θ + xTt β̃ + εt, (E.2)

where the extended nuisance input vector zt = (zTt , x
T
t ξ

(0)
n )T ∈ Rd+2 satisfies the general decom-

position (3), with the extended nuisance coefficient vector given by θ = (θT , θ̃)T . Hence, testing

a non-zero null hypothesis (E.1) is equivalent to testing the zero null H0 : β̃ = 0 under the re-

parameterized model (E.2). One may apply the results for the universal model in Section 2.3 when

testing a non-zero null. The correlation conditions are trivial given the orthogonality between xTt β̃

and xTt ξ
(0)
n .

Appendix E.2. Adjusting for time variations

In this section, we continue the discussions in Remark 2 for the time-variation adjusted data.

Define the adjusted design matrix as

X̃adj = [x̃1,adj, . . . , x̃n,adj]
T = D−1/2

n X̃, with Dn = diag

(
‖x̃1‖2

tr(Sn)
, . . . ,

‖x̃n‖2

tr(Sn)

)
,

and the adjusted preliminary weighting matrix as

Sn,adj =
1

n
X̃adjX̃

T
adj =

1

n
D−1/2
n X̃X̃TD−1/2

n .

Observe that the diagonal element

Sn,adj(t, t) =
1

n
x̃Tt,adjx̃t,adj =

1

n
tr(Sn), ∀t = 1, . . . , n.

However, as the true coefficient vector β is associated with raw data xt rather than x̃t,adj, the

expression of the asymptotic power changes in general. More specifically, if β is also free against

the cross-product matrix Šn := 1
nX̃

T X̃adj = 1
nX̃

TD
−1/2
n X̃ , it is not very hard to show that

$n =

∫
x2dF Šn(x)− p

n

(∫
xdFSn(x)

)2√∫
x2dFSn,adj(x)− p

n(
∫
xdFSn,adj(x))2

,
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where Sn,adj = 1
nX̃

T
adjX̃adj = 1

nX̃
TD−1

n X̃ is the adjusted sample covariance matrix. Now, when

‖Dn − In‖sp = max1≤t≤n

∣∣∣ x̃Tt x̃ttr(Sn) − 1
∣∣∣ P−→ 0, by Lemma 1 in El Karoui (2009) we can show that

$n reduces to that for the free models asymptotically. In the most general case, the asymptotic

departures depends on the time variations such as for the elliptical model in the aforementioned

paper; see also Zheng and Li (2011).

Appendix E.3. Relaxing condition (i) of Theorem 7

In this last section, we discuss how to relax condition (i) of Theorem 7 in two different senses.

The first way is to generalize the asymptotic theory in the absence of the condition. The second way

is to show that the condition is fulfilled for the design matrix with separable covariance structure

under Assumption 3. Besides, we note that the condition is also satisfied for non-separable design

matrix if the entries of β = (β1, . . . , βp)
T are independently generated with zero mean, a (nonzero)

common variance and a bounded kurtosis by a direct application of the concentration inequality

for quadratic forms such as Lemma B.26 in Bai and Silverstein (2010).

First, we comment on the generalization of Theorem 7 in the absence of condition (17) by

allowing the asymptotic power to be dependent on the unknown direction of the regression coeffi-

cients. By carefully checking the proof of the theorem, it is easy to substitute the ρn(δ, 1) in the

numerator of the asymptotic departure by

ρ̌n(δ, 1) = µ̌Tnµn(δ),

where

µ̌n =
1

n1/2
∥∥∥Ãn∥∥∥Ω−1/2

[
0,
p

n
ξTn X̃

TΨT
1 X̃ξn, . . . ,

p

n
ξTn X̃

TΨT
d X̃ξn

]T
.

and ξn denotes the direction of the regression coefficients. Note that the above statistics may

depend on δ, if we use Ãn(δ) rather than Ãn everywhere. That is,

Qn(δ)

σ2
n

√
1− ρ2

n(δ)
− h2

√
2σ2

n

$n(δ)− ρ̌n(δ, 1) ·$n√
1− ρ2

n(δ)

d−→ N (0, 1) .

We may replace $n(δ) by the general form in Remark 1, if we relax the freeness Assumption 3 as

well. We omit the proofs. As we argued, the asymptotic limit becomes intractable to produce an

interesting theory here, and thus we leave more detailed analysis for future study.

Next, we show that condition (i) of Theorem 7 is implied by Assumption 3 if the data matrix X

has a separable covariance structure. In particular, we consider X = Υ1/2FΣ1/2 where Υ ∈ Rn×n

and Σ ∈ Rp×p are the temporal and cross-sectional matrices with bounded spectral norms. The

latent random matrix F = [f1, . . . , fn]T = {ft,i} has independent entries with Eft,i = 0, Ef2
t,i = 1,

and supt,i Ef4
t,i ≤ ν4. Let C ∈ Rn×n denote the centering matrix and Γn := 1

nX̃
TΨT

i X̃. It suffices

to show that:

∆ :=

{
ξTnΓnξn −

1

p
tr Γn

}
−

tr
(
Υ1/2CΨT

i CΥ1/2
)

tr
(
Υ1/2CΥ1/2

) {
ξTnSnξn −

1

p
tr(Sn)

}
P−→ 0,
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because ξTnSnξn − 1
ptr(Sn)

P−→ 0 by Assumption 3 and

∣∣∣∣ tr(Υ1/2CΨTi CΥ1/2)
tr(Υ1/2CΥ1/2)

∣∣∣∣ ≤ ∥∥ΨT
i

∥∥
sp

= O(1) by

Lemma 3 in the main document.

By a direct calculation,

E∆ =tr
(

Υ1/2CΨT
i CΥ1/2

)(
ξTnΣξn −

1

p
trΣ

)
−

tr
(
Υ1/2CΨT

i CΥ1/2
)

tr
(
Υ1/2CΥ1/2

) · tr
(

Υ1/2CΥ1/2
)(

ξTnΣξn −
1

p
trΣ

)
= 0.

It suffices to show that var(∆)→ 0 or to show that:

var(ξTnΓnξn), var

(
1

p
trΓn

)
, var(ξTnSnξn), var

(
1

p
trSn

)
→ 0.

We only prove the first two parts, and the proofs for the last two are completely analogous (by

replacing ΨT
i with identity matrix everywhere). Observe that

ξTnΓnξn =
1

n
ξTnΣ1/2F TΥ1/2CΨT

i CΥ1/2FΣ1/2ξn = V TAV, (E.3)

where A = Υ1/2CΨT
i CΥ1/2 and V = [V1, . . . , Vn]T with Vt = 1√

n
fTt Σ1/2ξn. Note that Vi are

independent, with EVt = 0 and EV 2
t = 1

nξ
T
nΣξn. Because Vt is a quadratic form of ft, applying

Lemma B.26 in Bai and Silverstein (2010), or Lemma 2 in our main document, yields that

EV 4
i =(EV 2

i )2 + E(V 2
i − EV 2

i )2

≤
(

1

n
ξTnΣξn

)2

+Mν4

(
1

n
ξTnΣξn

)2

≤ M

n2
(ξTnΣξn)2 ≤Mn−2 ‖Σ‖2sp ,

where M is some absolute constant not depending n nor ξn. Applying Lemma B.26 in Bai and

Silverstein (2010), or Lemma 2 in our main document, again but to the quadratic form (E.3),

var
(
ξTnΓnξn

)
≤MEV 4

i · trA2 ≤Mn−2 ‖Σ‖2sp · p ‖A‖
2
sp = O(p/n2)→ 0,

where we recall that ‖Σ‖sp = O(1) and ‖A‖sp ≤ ‖Υ‖sp ‖C‖
2
sp

∥∥ΨT
i

∥∥
sp

= O(1) in the last equality

and M is a possibly different absolute constant. This completes the proof of var(ξTnΓnξn) → 0.

Note that the proofs above hold for any given unit vector ξn. It means that, for every standard

basis vector ei = (0, . . . , 1, . . . , 0)T of Rp, we also have that

var
(
eTi Γnei

)
≤Mn−2 ‖Σ‖2sp · p ‖A‖

2
sp , i = 1, . . . , p.

It follows that

var

(
1

p
trΓn

)
≤ 1

p

p∑
i=1

var(e′iΓnei) ≤Mn−2 ‖Σ‖2sp · p ‖A‖
2
sp = O(p/n2)→ 0.
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Appendix F. Proof of Lemmas 1 – 14

Appendix F.1. Proof of Lemmas 1–3

Proof of Lemma 1. The lemma is straightforward by combining Markov inequality and the law of

iterated expectations. We omit the details.

Proof of Lemma 2. Let A = {A(s, t) : s, t = 1, . . . , n}, where A(s, t) denotes the entry of A in its

s-th row and t-th column. Expanding the quadratic form,

εTAε− tr(A) =

n∑
t=1

(ε2
t − 1)A(t, t) +

∑
1≤s<t≤n

εsεt (A(s, t) +A(t, s)) =: T1 + T2.

By Burkholder’s inequality (e.g., Theorem 2.10 in Hall and Heyde, 1980), for some constant M

E
[
|T1|1+ι | Fn,0

]
≤M

n∑
t=1

E
[
|ε2
t − 1|1+ι|Fn,0

]
|A(t, t)|1+ι ≤Mκn ·

n∑
t=1

|A(t, t)|1+ι.

Moreover, by a direct calculation and applying Cauchy–Schwarz inequality,

E
[
T 2

2 |Fn,0
]

=
∑

1≤s<t≤n
(A(s, t) +A(t, s))2 ≤2

∑
1≤s<t≤n

(
A2(s, t) +A2(t, s)

)
=2 ‖A− diag(A)‖2 ≤ 2 ‖A‖2 .

Hence, using Jensen’s inequality,

E
[
|εTAε− tr(A)|1+ι|Fn,0

]
≤ME

[
|T1|1+ι + |T2|1+ι|Fn,0

]
≤ME

[
|T1|1+ι|Fn,0

]
+M

(
E
[
|T2|2|Fn,0

])(1+ι)/2

≤Mκn ·
n∑
t=1

|A(t, t)|1+ι +M ‖A‖1+ι ,

where the constant M may be different in different inequalities. This is the first part of the lemma.

For the rest we invoke Lemma 1 to get

∣∣εTAε− tr(A)
∣∣1+ι

= OP

(
κn

n∑
t=1

|A(t, t)|1+ι + ‖A‖1+ι

)
,

or equivalently ∣∣εTAε− tr(A)
∣∣ = OP

κ 1
1+ι
n

(
n∑
t=1

|A(t, t)|1+ι

) 1
1+ι

+ ‖A‖

 .

The rest follows from the obvious inequality |A(t, t)|1+ι ≤ |A(t, t)| · max
1≤t≤n

|A(t, t)|ι and the triangle

inequality.
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Proof of Lemma 3. Slightly abusing the notation, let UΛUT be a spectral decomposition ofA where

Λ = diag(λ1, . . . , λp) is a diagonal matrix consists of the eigenvalues and U = [u1, . . . , up] is an

orthogonal matrix with columns being the corresponding eigenvectors. Hence, A =
∑p

j=1 λjuju
T
j ,∑p

j=1 uju
T
j = UUT = I and ‖A‖sp = maxj |λj |. Then, noting that B is nonnegative definite,

|tr(AB)| =

∣∣∣∣∣∣
p∑
j=1

λju
T
j Buj

∣∣∣∣∣∣
≤

p∑
j=1

|λj |uTj Buj ≤ ‖A‖sp
p∑
j=1

uTj Buj = ‖A‖sp tr

B p∑
j=1

uju
T
j

 = ‖A‖sp tr (B) .

When B = B′ is symmetric, the lemma holds for arbitrary matrix A because

tr(AB) =
1

2

(
tr (AB) + tr

(
BA′

))
= tr

((
1

2
(A+A′)

)
B

)
.

The lemmas follows by replacing A with the symmetric matrix 1
2(A+A′).

Appendix F.2. Proof of Lemma 4

Let bt = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rn denote the unit vector with t-th entry equaling to 1 and

all other entries equaling to 0. Rewrite the conditional variance into a quadratic form given by

E
[
∆2
t | Fn,t−1

]
=

2

‖An‖2

(
t−1∑
s=1

εsA(s, t)

)2

=
1∥∥∥Ãn∥∥∥2 ε

T ÃTn btb
T
t Ãnε.

It suffices to show that max1≤t≤n ε
T ÃTn btb

T
t Ãnε = oP

(∥∥∥Ãn∥∥∥2
)

. From Lemma 2,

E
[∣∣∣εT ÃTn btbTt Ãnε− bTt ÃnÃTn bt∣∣∣1+ι

| Fn,0
]

≤M

(
κn

t−1∑
s=1

|An(s, t)|2(1+ι) + (bTt ÃnÃ
T
n bt)

1+ι

)
.

Summing up over t and recalling the assumption that κn = OP(1), it follows that

n∑
t=1

E
[∣∣∣εT ÃTn btbTt Ãnε− bTt ÃnÃTn bt∣∣∣1+ι

| Fn,0
]

= OP

(
n∑
t=1

(bTt ÃnÃ
T
n bt)

1+ι

)
,

where we have also used the Jensen’s inequality

n∑
t=1

t−1∑
s=1

|An(s, t)|2(1+ι) ≤
n∑
t=1

(
t−1∑
s=1

A2
n(s, t)

)1+ι

=
n∑
t=1

(bTt ÃnÃ
T
n bt)

1+ι.
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Note that bTt ÃnÃ
T
n bt is the t-th diagonal element of the matrix ÃnÃ

T
n , t = 1, . . . , n and they are

majorized by the eigenvalues (see, e.g., Theorem 4.3.45 in Horn and Johnson, 2012). Combining

with the trace inequality (Lemma 3) and condition (ii) yields that

n∑
t=1

(bTt ÃnÃ
T
n bt)

1+ι ≤ tr
(
ÃnÃ

T
n

)1+ι

= tr
(
ÃTn Ãn

)1+ι
≤ λιmax

(
ÃTn Ãn

)
tr
(
ÃTn Ãn

)
= oP

(∥∥∥Ãn∥∥∥2ι+2
)
.

Hence,

E
[

max
1≤t≤n

∣∣∣εT ÃTn btbTt Ãnε− bTt ÃnÃTn bt∣∣∣1+ι
| Fn,0

]
≤

n∑
t=1

E
[∣∣∣εT ÃTn btbTt Ãnε− bTt ÃnÃTn bt∣∣∣1+ι

| Fn,0
]

= oP(‖An‖2ι+2).

It then follows from Lemma 1 that

max
1≤t≤n

∣∣∣εT ÃTn btbTt Ãnε− tr
(
ÃTn btb

T
t Ãn

)∣∣∣1+ι
= oP

(
‖An‖2ι+2

)
,

or equivalently

max
1≤t≤n

∣∣∣εT ÃTn btbTt Ãnε− bTt ÃnÃTn bt∣∣∣ = oP

(
‖An‖2

)
.

Using the definition of spectral norm,

max
1≤t≤n

∣∣∣bTt ÃnÃTn bt∣∣∣ ≤ λmax

(
ÃnÃ

T
n

)
= oP(‖An‖2).

The rest follows by the triangular inequality.

Appendix F.3. Proof of Lemma 5

By Lemma 2 and recalling that κn = OP(1),

E

∣∣∣∣∣∣ 2

‖An‖2
n∑
t=1

(
t−1∑
s=1

εs
1

n
x̃Ts x̃t

)2

− 1

∣∣∣∣∣∣
1+ι

| Fn,0


= E

[∣∣∣∣ 2

‖An‖2
εT ÃTn Ãnε− 1

∣∣∣∣1+ι

| Fn,0

]
≤M


∑n

t=1

(
ÃTn Ãn(t, t)

)1+ι

‖An‖2(1+ι)
+

∥∥∥ÃTn Ãn∥∥∥1+ι

‖An‖2(1+ι)

 ,

where ÃTn Ãn(t, t) denotes the t-th diagonal element of ÃTn Ãn. Using the majority property of

eigenvalues against the diagonal elements and the trace inequality (Lemma 3),

n∑
t=1

(
ÃTn Ãn(t, t)

)1+ι
≤ tr

(
ÃTn Ãn

)1+ι
≤ λιmax tr

(
ÃTn Ãn

)
= oP

(∥∥∥Ãn∥∥∥2(1+ι)
)
.
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On the other hand, using the the trace inequality (Lemma 3) again,∥∥∥ÃTn Ãn∥∥∥ =

√
tr
(
ÃTn Ãn

)2
≤
√
λmax

(
ÃTn Ãn

)
tr
(
ÃTn Ãn

)
= oP

(∥∥∥Ãn∥∥∥2
)
.

Using Lemma 1,

∣∣∣∣ 2
‖An‖2

∑n
t=1

(∑t−1
s=1 εs

1
n x̃

T
s x̃t

)2
− 1

∣∣∣∣1+ι
P−→ 0 and lemma follows.

Appendix F.4. Proof of Lemma 6

Without loss of generality, we may assume that Ez2
t,i = 1 by proper marginal scaling. Expanding

the quadratic form,

1

n
εTZZT ε =

1

n

n∑
t=1

ε2
t z
T
t zt +

1

n

∑
t6=s

εtεsz
T
t zs.

Taking the expectation on both sides and using the law of iterated expectations,

E
[

1

n
εTZZT ε

]
=

1

n

n∑
t=1

E
[
zTt zt

]
=

d∑
i=1

E
[
z2
t,i

]
= O(d).

It follows from Lemma 1 that 1
nε
TZZT ε = OP(d). Finally,

εTPZε =
1

n
εTZΩ̂−1ZT ε ≤ λ−1

min(Ω̂) · 1

n
εTZZT ε = OP(1/λmin(Ω̂)) ·OP(d),

using the definition of spectral norm.

Appendix F.5. Proof of Lemma 7

Let ζ := (ζ1, . . . , ζd+1)T := ZT Ãnε. It suffices to show that ζi = oP

(√
n
∥∥∥Ãn∥∥∥) for each i. We

invert the autoregressive process (under the null) into a moving average form given by

yt = α+
∞∑
j=0

ψjεt−j , (F.1)

where α = θ0 ·
∑∞

j=0 ψj and the sequence {ψj} is absolutely summable, that is,
∑∞

j=0 |ψj | <∞ by

Proposition 6.3 in Hayashi (2000). Now, for i = 1, . . . , d, let the vector of lagged observations be

y−i = [y1−i, . . . , yt−i, . . . , yn−i]
T = α1n + Ψiε+ vi, (F.2)

where, like equation (13) in the main document,

Ψi =
∞∑
j=0

ψjL
i+j
n =

n−i∑
j=0

ψjL
i+j
n (F.3)

and Ln is the n× n lower shift matrix with ones on the subdiagonal and zeros elsewhere, and the

entries of vi = (v1,i, . . . , vn,i) have bounded variances in n and, as a result, vTi vi = OP(
∑n

i=1 v
2
n,i) =

OP(n).
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Now, by a direct expansion, ζ1 = 1Tn Ãnε and

ζi+1 = yT−iÃnε = αζ1 + εTΨT
i Ãnε+ εT ÃTnvi =: αζ1 + J1 + J2.

Using Lemma 1 and a direct calculation yields that

ζ2
1 = OP

(
E
[
ζ2

1 | Fn,0
])

= OP

(
1Tn ÃnÃ

T
n1n

)
= OP

(
nλmax

(
ÃTn Ãn

))
. (F.4)

Taking square root of both sides and using condition (ii) gives ζ1 = oP

(√
n
∥∥∥Ãn∥∥∥). To bound J1,

we first use the last part of Lemma 2 (taking ι = 0 therein) to get that

J1 = OP

{
n∑
t=1

|di,t|+
∥∥∥ΨT

i Ãn

∥∥∥} =: OP (J1,1 + J1,2) ,

where di,t :=
∑n−t−i

j=0 ψjAn(t + i + j, t) is the t-th diagonal element of ΨT
i Ãn =

∑n−i
j=0 ψjL

i+j
n Ãn.

By the triangle inequality and exchanging the order of summations,

n∑
t=1

|di,t| ≤
n∑
t=1

n−t−i∑
j=0

|ψj | |An(t+ i+ j, t)| =
n−i∑
j=0

|ψj |
n−i−j∑
t=1

|An(t+ i+ j, t)| . (F.5)

Let ς > 0. By choosing a sufficiently large K and for a large constant M not depending on K nor

n, we have

n∑
t=1

|di,t| ≤
K∑
j=0

|ψj | ·
n−i−j∑
t=1

|An(t+ i+ j, t)|+
n−i∑

j=K+1

|ψj | ·
n−i−j∑
t=1

|An(t+ i+ j, t)|

≤M max
1≤`≤K+i

n−∑̀
t=1

|An(t+ `, t)|+ ς ·max
`>K

n−∑̀
t=1

|An(t+ `, t)| .

Furthermore, by Cauchy–Schwarz inequality,

max
`>K

n−∑̀
t=1

|An(t+ `, t)| ≤
√
n− `

√√√√max
`>K

n−∑̀
t=1

A2
n(t+ `, t) ≤

√
n ‖An‖ .

Using condition (iii) and noting that ς can be arbitrarily small, we can show that

J1,1 =

n∑
t=1

|di,t| = oP(n1/2 ‖An‖). (F.6)

Next, applying the trace inequality (Lemma 3) and the triangle equality,

J2
1,2 ≤

∥∥ΨiΨ
T
i

∥∥
sp
· tr
(
ÃnÃ

T
n

)
≤

n−i∑
j=0

|ψj |

2

· 1

2
‖An‖2 = OP

(
‖An‖2

)
. (F.7)

24



Combining the bounds of ζ1, J1,1 and J1,2, we can immediately conclude that

J1 = oP(
√
n ‖An‖) + oP(

√
n ‖An‖) + oP(‖An‖) = oP(

√
n ‖An‖).

Finally, using the square summability of vi and condition (ii),

E
[
J2

2 | Fn,0
]

= vTi ÃnÃ
T
nvi ≤ vTi vi · λmax

(
ÃTn Ãn

)
= oP

(
n
∥∥∥Ãn∥∥∥2

)
. (F.8)

It follows from Lemma 1 that J2 = oP

(∥∥∥Ãn∥∥∥). Our proof is now complete.

Appendix F.6. Proof of Lemma 8

The proof is very similar to that of Lemma 7, and hence we only sketch the differences. Under

the alternatives, we replace (F.2) by

y−i = [y1−i, . . . , yt−i, . . . , yn−i]
T = α1n + Ψiε+ ΨiXβ + vi, i = 1, . . . , d, (F.9)

where Ψi is the same as in (F.3), and vi = (vi,1, . . . , vi,n) depending on both {xTt β : t ≤ 0} and

{εt : t ≤ 0}. This introduces an additional term J3 := 1√
n‖Ãn‖β

TXΨT
i Ãnε in ζi+1, and it remains

to show that, for any i,

J3 = oP

(
‖β‖2

)
.

By a direct calculation,

E
[
J2

3 | X
]

=
1

n
∥∥∥Ãn∥∥∥2β

TXTΨT
i ÃnÃ

T
nΨiXβ ≤

λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2

∥∥ΨT
i Ψi

∥∥
sp
βTSnβ.

Note that ∥∥ΨT
i Ψi

∥∥
sp
≤

 ∞∑
j=0

|ψj |

2

<∞. (F.10)

On the other hand, βTSnβ = βTSnβ − βT x̄x̄Tβ = OP

(
‖β‖2

)
because

βTSnβ = ‖β‖2
∫
xdFSn(x;β) = ‖β‖2

(∫
xdFSn(x) + oP(1)

)
= OP

(
‖β‖2

)
, (F.11)

and, by Lemma 1,

βT x̄x̄Tβ = OP
(
βTE

[
x̄x̄T

]
β
)

= O
(
‖β‖2

)
. (F.12)

This completes the proof.

25



Appendix F.7. Proof of Lemma 9

Decompose that

βT X̃TZZT X̃β =
d∑
i=1

(
yT−iX̃β

)2
=:

d∑
i=1

ζ2
i ,

with the vector y−i = [y1−i, . . . , yn−i]
T . It suffices to prove that, for each i

ζ2
i = Op

(
n ‖β‖2 + n2 ‖β‖4

)
.

Plugging in the expansion (F.9),

ζi = εTΨT
i X̃β + βT X̃TΨT

i X̃β + βT x̄1TnΨT
i X̃β + vTi X̃β =: ζi,1 + ζi,2 + ζi,3 + ζi,4.

Now, invoking (F.10),

E
[
ζ2
i,1 | X

]
= βT X̃TΨT

i ΨiX̃β ≤ n
∥∥ΨT

i Ψi

∥∥
sp
βTSnβ = OP

(
n ‖β‖2

)
.

It follows from Lemma 1 that ζ2
i,1 = OP

(
n ‖β‖2

)
. Similarly, by Cauchy–Schwarz inequality and

the definition of spectral norm,

ζ2
i,2 ≤ n2

∥∥ΨT
i Ψi

∥∥
sp

(
βTSnβ

)2
= OP

(
n2 ‖β‖4

)
,

and

ζ2
i,3 ≤ n2

(
x̄Tβ

)2 ∥∥ΨT
i Ψi

∥∥
sp
βTSnβ = OP

(
n2 ‖β‖4

)
,

where in the last step we invoke (F.12) as well. Finally, by Cauchy–Schwarz inequality,

ζ2
i,4 ≤ βT X̃T X̃β · vTi vi = nβTSnβ ·OP(1) = OP

(
n ‖β‖2

)
, (F.13)

by recalling that vTi vi = OP(1) because the entries {vt,i} in expansion (F.9) satisfy the linear

difference equation vt,i =
∑d

`=1 θ`vt−`,i.

Appendix F.8. Proof of Lemma 10

By the definition of spectral norm,

µTnµn ≤
(λmin(Ω))−1 ·

∑d
i=1

(
tr2(ΨT

i Ãn)
)

n
∥∥∥Ãn∥∥∥2 . (F.14)

Similar to (F.5), exchanging order of summations and using triangle inequality,∣∣∣tr(ΨT
i Ãn

)∣∣∣ =

∣∣∣∣∣
n∑
t=1

n−t∑
`=1

ψi(`)An(t+ `, t)

∣∣∣∣∣ ≤
n−t∑
l=1

|ψi(`)|

∣∣∣∣∣
n−∑̀
t=1

An(t+ `, t)

∣∣∣∣∣
Following the proof of statement (F.6) and using condition (12), we can show that∣∣∣tr(ΨT

i Ãn

)∣∣∣ = oP

(
n1/2

∥∥∥Ãn∥∥∥) ,
that is, tr2(ΨT

i Ãn)/

(
n
∥∥∥Ãn∥∥∥2

)
P−→ 0. Summing over i and combining with (F.14) completes the

proof.
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Appendix F.9. Proof of Lemma 11

It suffices to show that every entry of ζ := 1√
n‖An‖Z

T Ãnε − Ω1/2µn ∈ Rd+1 converges to 0 in

probability. Denote the observations for the i-th predictor, i = 1, . . . , d by

zi := (z1,i, . . . , zn,i)
T = αi1n + Ψiε+ vi, (F.15)

where Ψi is given in equation (13) in the main document. Denote the i-th entry of ζ by ζi, and

then a direct calculation yields that ζ1 = 1√
n‖Ãn‖1

T
n Ãnε and for i = 1, . . . , d

ζi+1 =
1

√
n
∥∥∥Ãn∥∥∥

(
zTi Ãnε− tr

(
ΨT
i Ãn

))
=αiζ1 +

1
√
n
∥∥∥Ãn∥∥∥

(
εTΨT

i Ãnε− tr
(

ΨT
i Ãn

))
+

1
√
n
∥∥∥Ãn∥∥∥vTi Ãnε =: αiζ1 + ζi+1,1 + ζi+1,2.

Recall from (F.4) that

E
[
ζ2

1 | Fn,0
]
≤
nλmax

(
ÃTn Ãn

)
n
∥∥∥Ãn∥∥∥2 = oP(1),

and here

E
[
ζ2
i+1,2 | Fn,0

]
=

vTi ÃnÃ
T
nvi

n
∥∥∥Ãn∥∥∥2 ≤

vTi viλmax

(
ÃTn Ãn

)
n
∥∥∥Ãn∥∥∥2 =

OP

(
nλmax

(
ÃTn Ãn

))
n
∥∥∥Ãn∥∥∥2

P−→ 0,

where we also use vTi vi = OP
(
E
[
vTi vi

])
= OP(n). Therefore, ζ1 = oP(1) and ζi+1,2 = oP(1) by

Lemma 1. It remains to prove that ζi+1,1 = oP(1). Applying the last part of Lemma 2, we know

ζi+1,1 = OP

 1
√
n
∥∥∥Ãn∥∥∥

(
n∑
t=1

|di,t|

) 1
1+ι

max
1≤t≤n

|di,t|
ι

1+ι +

∥∥∥ΨT
i Ãn

∥∥∥
√
n
∥∥∥Ãn∥∥∥


=: OP (ζi+1,1,1 + ζi+1,1,2) ,

where di,t :=
∑n−t

`=1 ψi(`)An(t + `, t) is the t-th diagonal element of ΨT
i Ãn =

∑n
`=1 ψi(`)L

`
nÃn.

Following the proof of statement (F.6) without using the condition (iii) in Theorem 1, we can show

that
n∑
t=1

|di,t| = oP(n(1+ι)/2 ‖An‖),

as by Cauchy–Schwarz inequality

n−∑̀
t=1

|An(t+ `, t)| ≤ n1/2

√√√√n−∑̀
t=1

A2
n(t+ `, t) ≤ n1/2 ‖An‖ = oP(n(1+ι)/2 ‖An‖).
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On the other hand, for any constant M >
∑∞

`=1 |ψi(`)|

max
1≤t≤n

|di,t| ≤
n∑
`=1

|ψi(`)| max
1≤t<s≤n

|An(s, t)|

≤
n∑
`=1

|ψi(`)| ·
∥∥∥Ãn∥∥∥

sp
≤M ·

(
λmax

(
ÃTn Ãn

))1/2
= oP (‖An‖) .

It follows that

ζi+1,1,1 = oP

(
1√

n ‖An‖

(
n(1+ι)/2 ‖An‖

) 1
1+ι · ‖An‖

ι
1+ι

)
= oP (1) .

Finally, we recall from (F.7) that

ζ2
i+1,1,2 ≤

1

n ‖An‖2
∥∥ΨiΨ

T
i

∥∥
sp
· tr
(
ÃnÃ

T
n

)
=

1

n ‖An‖2
·OP

(
‖An‖2

)
P−→ 0,

as
∥∥ΨiΨ

T
i

∥∥
sp
≤ (
∑n

`=1 |ψi(`)|)
2 < M2.

Appendix F.10. Proof of Lemma 12

Like (F.9), in general we can extend the expansion (F.15) and decompose that

zi = (z1,i, . . . , zn,i)
T = α1n + Ψiε+ ΨiXβ + vi + ri, i = 1, . . . , d, (F.16)

where vi = (v1,i, . . . , vn,i)
T with

vt,i =

∞∑
`=t

ψi(`)wt−` =

∞∑
`=t

ψi(`)x
T
t−`β +

∞∑
`=t

ψi(`)εt−`,

and ri = (r1,i, . . . , rn,i)
T . We need an auxiliary lemma:

Lemma D.1. vTi vi = oP(n1/2) for every i = 1, . . . , d.

Proof. Applying Cauchy-Schwarz inequality,

vTi vi ≤2
n∑
t=1

( ∞∑
`=t

ψi(`)x
T
t−`β

)2

+ 2
n∑
t=1

( ∞∑
`=t

ψi(`)εt−`

)2

=: 2Tn

Taking expectation on the right-hand-side yields that

ETn =O

 n∑
t=1

∞∑
`,`′=t

ψi(`)ψi(`
′)corr(xTt−`β, x

T
t−`′β) · βTΣβ +

n∑
t=1

∞∑
`=t

ψ2
i (`)


=O

 n∑
t=1

∞∑
`,`′=t

|ψi(`)||ψi(`′)| · βTΣβ +
n∑
t=1

∞∑
`=t

ψ2
i (`)

 .
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We claim that
∑n

t=1

∑∞
`,`′=t |ψi(`)||ψi(`′)| = o(n). For any ι ∈ (0, 1),

n∑
t=1

∞∑
`,`′=t

|ψi(`)||ψi(`′)| =
n∑
t=1

( ∞∑
`=t

|ψi(`)|

)2

=
nι∑
t=1

( ∞∑
`=t

|ψi(`)|

)2

+
n∑

t=nι+1

( ∞∑
`=t

|ψi(`)|

)2

≤nι ·

( ∞∑
`=1

|ψi(`)|

)2

+ (n− nι)

( ∞∑
`=nι+1

|ψi(`)|

)2

=O(nι) + o(n) = o(n).

Similarly, for any ι ∈
(

1
2+4q ,

1
2

)
n∑
t=1

∞∑
`=t

ψ2
i (`) =

nι∑
t=1

∞∑
`=t

ψ2
i (`) +

n∑
t=nι+1

∞∑
`=t

ψ2
i (`)

≤nι
∞∑
`=1

ψ2
i (`) + (n− nι)

∞∑
`=nι+1

ψ2
i (`)

=O(nι) + (n− nι) ·O
(
n(−2(1+q)+1)ι

)
= o(nι) + o(n1−(2q+1)ι) = o(n1/2).

Now we can conclude that ETn = o(nβTΣβ+n1/2) = o(n1/2), and therefore Tn = oP(n) by Markov

inequality. It follows that vTi vi = OP(Tn) = oP(n1/2).

Now we are ready to prove Lemma 12. Observe that

∥∥∥ZT X̃β∥∥∥2
=

d∑
i=1

(
zTi X̃β

)2
.

It suffices to show that
(
zTi X̃β

)2
= OP

(
n ‖β‖2 + n2 ‖β‖4

)
+ OP

(
n3/2 ‖β‖2

)
for each i. Let

i ∈ {1, . . . , d}. Invoking the decomposition (F.16),

zTi X̃β =εTΨT
i X̃β + βT X̃ΨT

i X̃β + βT x̄1TnΨT
i X̃β + vTi X̃β + rTi X̃β

=: ζi,1 + ζi,2 + ζi,3 + ζi,4 + ζi,5.

From the proof of Lemma 9 we have that ζ2
i,1 = OP(n ‖β‖2), ζ2

i,2 = OP(n2 ‖β‖4), and ζ2
i,3 =

OP(n2 ‖β‖4). Furthermore, using the asymptotic bound vTi vi = oP(n1/2) from Lemma D.1 in

equation (F.13) yields that ζ2
i,4 = oP(n3/2 ‖β‖2). Furthermore, we can decompose that

ζi,5 = rTi Xβ − rTi 1nx̄
Tβ =: ζi,5,1 + ζi,5,2.

It remains to check that ζ2
i,5,1 = OP(n3/2 ‖β‖2) and ζ2

i,5,2 = OP(n3/2 ‖β‖2).
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First, we show that ζ2
i,5,1 = OP(n3/2 ‖β‖2). Observe that

ζ2
i,5,1 =

(
n∑
t=1

rt,iγn,t

)2

‖β‖2 .

Taking expectation on both sides yields that

Eζ2
i,5,1 = (nE[rt,iγn,t])

2 ‖β‖2 + var

(
n∑
t=1

rt,iγn,t

)
‖β‖2

=O(n3/2 ‖β‖2) +

nvar(rt,iγn,t) +
∑

1≤s<t≤n
cov(rt,iγn,t, rs,iγn,s)

 ‖β‖2
=O(n3/2 ‖β‖2) +O(n3/2 ‖β‖2) = O(n3/2 ‖β‖2).

The rest follows by Markov inequality.

Finally, we show that ζ2
i,5,2 = OP(n3/2 ‖β‖2). Observe that

ζ2
i,5,2 =

(
rTi 1n

)2
(x̄T ξn)2 ‖β‖2 .

By a direct calculation,

E
(
rTi 1n

)2
= nEr2

t,i +
∑

1≤s<t≤n
cov(rt,i, rs,i) = O(n) +

∑
1≤s<t≤n

cov(rt,i, rs,i).

On the other hand, using the definition of spectral norm we have that

E
(
ξTn x̄x̄

T ξn
)

= ξTnE
[
x̄x̄T

]
ξn ≤ λmax

(
E
[
x̄x̄T

])
.

Now applying Markov inequality together with the last two equations yields that

ζ̃2
i,5,2 =OP

nλmax

(
E
[
x̄x̄T

])
+

 ∑
1≤s<t≤n

cov(rt,i, rs,i)

λmax

(
E
[
x̄x̄T

]) ‖β‖2
=OP

(
n+ n3/2

)
· ‖β‖2 = OP(n3/2 ‖β‖2)

This completes the proof.

Appendix F.11. Proof of Lemma 13

Invoking the proof of Lemma 11, under the alternatives, we need to add an additional term

into (F.15) to get:

zi := (z1,i, . . . , zn,i)
T = αi1n + Ψiε+ ΨiXβ + vi, i = 1, . . . , d. (F.17)

This introduces an additional term in the entry ζi+1 given by

ζi+1,3 :=
1

√
n
∥∥∥Ãn∥∥∥βTXTΨT

i Ãnε.
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By a direct calculation,

E
[
ζ2
i+1,3|X

]
=

1

n
∥∥∥Ãn∥∥∥2β

TXTΨT
i ÃnÃ

T
nΨiXβ ≤

λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2 ·

∥∥ΨT
i Ψi

∥∥
sp
βTSnβ.

Note that
∥∥ΨT

i Ψi

∥∥
sp
≤ (
∑∞

`=1 |ψi(`)|)
2 < ∞, and recall that βTSnβ = OP(‖β‖2) by (F.11) and

(F.12). Hence, using Lemma 1, ζ2
i+1,3 = oP

(
‖β‖2

)
P−→ 0. This completes the proof.

Appendix F.12. Proof of Lemma 14

Recall from the proof of Theorem 3 that, for δ(x) ≡ 1,
∥∥∥Ãn∥∥∥ /√p = ‖An‖ /

√
2p = $n/

√
2 +

oP(1). Then substituting $n/
√

2 by
∥∥∥Ãn∥∥∥ /√p, substituting h2 by n√

p ‖β‖
2, and using the addi-

tional freeness assumption in the theorem, we only need to show that

1√
n
ZT X̃β − 1√

n

[
0, βT X̃TΨT

1 X̃β, . . . , β
T X̃TΨT

d X̃β
]

P−→ 0,

that is,

zTi X̃β − βT X̃TΨT
i X̃β = oP(n1/2), for each i = 1, . . . , d.

Let i ∈ {1, . . . , d}. Invoking the decomposition (F.16),

zTi X̃β − βT X̃ΨT
i X̃β =εTΨT

i X̃β + βT x̄1TnΨT
i X̃β + vTi X̃β + rTi X̃β

=: ζi,1 + ζi,3 + ζi,4 + ζi,5.

Recall from the proof of Lemma 12 we already know that ζi,1 = OP(n1/2 ‖β‖) = oP(n1/2),

ζi,4 = oP(n3/4 ‖β‖) = oP(n1/2). Furthermore, following the proof Lemma 12 therein but using the

conditions λmax(E[x̄x̄T ]) = oP(1) and E[rt,iγn,t] = oP(n−1/4), we can show that ξi,3 = oP(n ‖β‖2) =

oP(n1/2) and ζi,5 = oP(n3/4 ‖β‖) = oP(n1/2).

Appendix G. Proof of Propositions 1 and 2

Appendix G.1. Proof of Proposition 1

We shall first show that the proposition holds for the oracle matrix Sn, and then we substitute

it by the observed matrix Sn. Note that

Sn(t, t) =
1

n
xTt xt =

1

n
fTt ΦTΦft
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Noting that Sn(t, t) are identically distributed (not necessarily independent) and following the proof

of Lemma 2,

E

[
1

n

n∑
t=1

∣∣∣∣Sn(t, t)− 1

n
tr
(
ΦTΦ

)∣∣∣∣2
]

=E
∣∣∣∣Sn(t, t)− 1

n
tr
(
ΦTΦ

)∣∣∣∣2

≤M

(
1

n2

k∑
i=1

‖φi‖4 +
1

n2

∥∥ΦTΦ
∥∥2

)

=M

(
1

n2

k∑
i=1

‖φi‖4 +
1

n2
‖Σ‖2

)
.

Then, as the mean minimizes the mean squared error,

1

n

n∑
t=1

∣∣∣∣∣Sn(t, t)− 1

n

n∑
t=1

Sn(t, t)

∣∣∣∣∣
2

≤ 1

n

n∑
t=1

∣∣∣∣Sn(t, t)− 1

n
tr
(
ΦTΦ

)∣∣∣∣2

=OP

(
1

n2

k∑
i=1

‖φi‖4 +
1

n2
‖Σ‖2

)
,

where in the last step we use Lemma 1. Observe that the last term is OP(n−1) as ‖Σ‖2 ≤ n ‖Σ‖2sp =

O(n) and
∑k

i=1 ‖φi‖
4 =

∥∥diag(ΦTΦ)
∥∥2 ≤

∥∥ΦTΦ
∥∥2

= ‖Σ‖2 = O(n).

Using the identity that x̃t = xt − x̄, we can calculate that

Sn(t, t)− Sn(t, t) =: − 2

n
x̄Txt +

1

n
x̄T x̄,

and remove the last perturbation term in the demeaned diagonals to get that

Sn(t, t)− 1

n

n∑
t=1

Sn(t, t) =

{
Sn(t, t)− 1

n

n∑
t=1

Sn(t, t)

}
− 2

n
x̄Txt.

Then, by Cauchy–Schwarz inequality, we can show that∣∣∣∣∣Sn(t, t)− 1

n

n∑
t=1

Sn(t, t)

∣∣∣∣∣
2

≤ 2

∣∣∣∣∣Sn(t, t)− 1

n

n∑
t=1

Sn(t, t)

∣∣∣∣∣
2

+

∣∣∣∣ 2nx̄Txt
∣∣∣∣2


Averaging over t yields that

1

n

n∑
t=1

∣∣∣∣∣Sn(t, t)− 1

n

n∑
t=1

Sn(t, t)

∣∣∣∣∣
2

≤2

 1

n

n∑
t=1

∣∣∣∣∣Sn(t, t)− 1

n

n∑
t=1

Sn(t, t)

∣∣∣∣∣
2

+
1

n

n∑
t=1

∣∣∣∣ 2nx̄Txt
∣∣∣∣2
 .

The proposition then follows as

1

n

n∑
t=1

∣∣∣∣ 2nx̄Txt
∣∣∣∣2 =

4

n2
x̄TSnx̄ =

1

n2
‖Sn‖sp ‖x̄‖

2 = OP(n−1).
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Appendix G.2. Proof of Proposition 2

Our first lemma follows from the same arguments for equation (3.2) in Bai and Silverstein

(1998) by combining Lemma 2.7 and Lemma 2.9 therein. Note that we have also used Jensen’s

inequality (E|f1|4)α/2 ≤ E|f1|2α for any α ≥ 2. We omit the details of the proof.

Lemma E.1 (Concentration inequality for quadratic forms). For A being a n×n matrix (complex),

we have, for any α ≥ 2

E
∣∣fTAf − tr(A)

∣∣α ≤ME|f1,1|2α ‖A‖α

where M is some absolute constant depending only on α.

Lemma E.2. xTt xt/p
a.s.−−→

∫
xdH(x).

Proof. Applying Lemma E.1 with α = 2 + ι/2 and noting that E|f1,1|4+ι is bounded, for some

large constant M

E
∣∣∣∣1pxTt xt − tr(Σ)

p

∣∣∣∣2+ι/2

=E
∣∣∣∣1pfTt Σft −

tr(Σ)

p

∣∣∣∣2+ι/2

≤Mp−(1+ι/4)

(
tr(Σ2)

p

)1+ι/4

= O(n−(1+ι/4)).

By Markov inequality and Borel–Cantelli lemma, we can show that

1

p
xTt xt −

tr(Σ)

p

a.s.−−→ 0.

We complete the proof by checking that tr(Σ)
p =

∫
xdHn(x) →

∫
xdH(x) using the dominated

convergence theorem.

Lemma E.3. Let Sn(t) = Sn − 1
nxtx

T
t be the sample covariance matrix dropping xt.

1

n
xTt (Sn(t)− zI)−1xt

a.s.−−→ −1− 1

m(z)z
,

where m(z) =
∫

1
λ−zdF (λ) and F = (1− c) I[0,∞) + cF is the limiting spectral distribution of Sn.

Proof. Note that xt is independent of Sn(t). Let z = a + bi, where i denotes the imaginary unit

and b > 0. From the proof of Theorem 1 in Bai et al. (2007), e.g equation (2.9) therein, we know

that
1

xTt xt
xTt (Sn(t)− zI)−1xt −

1

xTt xt
xTt (−zm(z)Σ− zI)−1 xt

a.s.−−→ 0

Combining with Lemma E.2 yield that

1

n
xTt (Sn(t)− zI)−1xt −

1

n
xTt (−zm(z)Σ− zI)−1 xt

a.s.−−→ 0.
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Applying Lemma E.1 with α = 2 + ι/2 and noting that E|f1,1|4+ι is bounded, for some large

constant M

E
∣∣∣∣ 1nxTt (−zm(z)Σn − zI)−1 xt −

1

n
tr
(

Σ (−zm(z)Σn − zI)−1
)∣∣∣∣2+ι/2

≤Mn−(2+ι/2)
∥∥∥Σ (−zm(z)Σn − zI)−1

∥∥∥2+ι/2

=Mn−(2+ι/2) |z|−2
∥∥∥Σ (m(z)Σn + I)−1

∥∥∥2+ι/2

≤Mn−(2+ι/2) |z|−2 ‖Σ‖2+ι/2
∥∥∥(m(z)Σ + I)−1

∥∥∥2+ι/2

sp

Recall from Silverstein (1995), the last paragraph in page 338, that
∥∥∥(m(z)Σ + I)−1

∥∥∥
sp

is bounded,

and |z| ≥ b2 > 0 by construction. Hence, for some possibly different constant M , the last upper

bound is further bounded by

Mn−(2+ι/2) ‖Σ‖2+ι/2 = Mn−(1+ι/4)
( p
n

)1+ι/4
(

tr(Σ2)

p

)1+ι/4

= O(n−(1+ι/4)).

Then, using Markov inequality and Borel–Cantelli lemma,

1

n
xTt (Sn(t)− zI)−1xt −

1

n
tr
(

Σ (−zm(z)Σ− zI)−1
)

a.s.−−→ 0.

Finally,

1

n
tr
(

Σ (−zm(z)Σ− zI)−1
)

=− p

n

1

z

∫
λ

1 +mλ
dHn(λ)

a.s.−−→− 1

cz

∫
λ

1 +mλ
dH(λ) = −1− 1

m(z)z
.

Proof of Proposition 2. Let δ1(x) = δ(x) · x, x ∈ [0,∞). It suffices to show that

1

n

∥∥∥∥diag(Wn(δ))− 1

n
tr(Wn(δ))In

∥∥∥∥2

=
1

n

n∑
t=1

(
1

n
x̃Tt δ(Sn)x̃t −

1

n
tr δ1(Sn)

)2
P−→ 0.

Using the fact that the sample mean minimizes the sample mean squared error, it suffices to show

that there exists some constant µ = µ(δ) ∈ R depending only on the function δ,

1

n

n∑
t=1

(
1

n
x̃Tt δ(Sn)x̃t − µ

)2
P−→ 0.

We shall show that we only need to prove that, for each t,

1

n
x̃Tt δ(Sn)x̃t

P−→ µ(δ). (G.1)
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Note that 1
n x̃

T
t δ(Sn)x̃t is the t-diagonal element of Wn(δ) = δ1 (Sn). Applying Weierstrass theorem

with the continuity of δ1 yields that

max
1≤t≤n

1

n
x̃Tt δ(Sn)x̃t ≤ ‖δ1(Sn)‖sp = ‖δ1(Sn)‖sp = OP(1). (G.2)

Take an arbitrary constant ε > 0, with a slight abuse of notation. Using Markov inequality and

the exchangeablity between {x̃t} in terms of distribution,

P

(
1

n

n∑
t=1

(
1

n
x̃Tt δ(Sn)x̃t − µ

)2

> ε

)
≤
E
[

1
n

∑n
t=1

(
1
n x̃

T
t δ(Sn)x̃t − µ

)2 | En]
ε

+ P(Ecn)

=
E
[(

1
n x̃

T
t δ(Sn)x̃t − µ

)2 | En]
ε

+ P(Ecn).

for the event En =
{

max1≤t≤n
1
n x̃

T
t δ(Sn)x̃t ≤M

}
. Taking M and n large enough, it follows from

equation (G.2) that P(Ecn) can be arbitrarily small. Moreover, using the dominated convergence

theorem and equation (G.1), the first term E
[(

1
n x̃

T
t δ(Sn)x̃t − µ

)2 | En] can also be arbitrarily

small.

Hence, it remains to prove equation (G.1) for each t. Using the identity x̃t = xt − x̄, we can

decompose the left-hand-side therein as

1

p
x̃Tt δ(Sn)x̃t =

1

p
xTt δ(Sn)xt +

1

p
x̄T δ(Sn)x̄− 2

p
xTt δ(Sn)x̄.

Note that
1

p
x̄T δ(Sn)x̄ ≤ ‖δ(Sn)‖sp

1

p
x̄T x̄

P−→ 0,

as x̄T x̄ = OP
(
E
[
x̄T x̄

])
=
(

1
n tr (Σ)

)
= (p/n) . By Cauchy–Schwarz inequality,∣∣∣∣1pxTt δ(Sn)x̄

∣∣∣∣ ≤√1

p
xTt δ(Sn)xt ·

1

p
x̄T δ(Sn)x̄.

It suffices to prove that
1

p
xTt δ(Sn)xt

P−→ µ(δ). (G.3)

Now, similar to FSn(x;β), define an unproper weighted empirical spectral distribution

Gnt (x) :=
1

p

p∑
i=1

(uTi xt)
21(λi ≤ x).

Like in Bai et al. (2007), one can verify that the Stieltjes transform of Gnt (x) is given by

mGnt
(z) =

∫
1

x− z
dGnt (x) =

1

p
xTt (Sn − zI)−1 xt
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for every z ∈ C+ = {z ∈ C : =z > 0}. Using the expansions that Sn = Sn − x̄x̄T and the

Sherman–Morrison formula,

mGnt
(z) =

1

p
xTt (Sn − zI − x̄x̄T )−1xt

=
1

p
xTt (Sn − zI)−1xt +

1

p

(x̄T (Sn − zI)−1xt)
2

1− x̄T (Sn − zI)−1x̄
=: T1 + T2.

Recall that Sn = Sn(t) + 1
nxtx

T
t and applying Sherman–Morrison formula,

T1 =
n

p

(
1− 1

1 + 1
nx

T
t (Sn(t)− zI)−1xt

)
.

Applying Lemma E.3 yields that, for each t,

T1
a.s.−−→ 1

c
(1 + zm(z)) = 1 + zm(z).

We shall show later that T2
a.s.−−→ 0, and therefore mGnt

(z)
a.s.−−→ 1 + zm(z), where the limit does

not depend on t. By the equivalence between Stieltjes transform and the associated measure,

e.g., Theorem B.9 in Bai and Silverstein (2010), and noting that Gnt has a bounded support with

arbitrarily large probability, it follows that

1

p
xTt δ(Sn)xt =

∫
δ(x)dGnt (x)

P−→
∫
δdG,

where the measure G has the Stieltjes transform mG(z) = 1 + zm(z). This is equation (G.3).

Finally, it remains to show that T2
a.s.−−→ 0. Let x̄t = x̄ − 1

nxt be the sample average dropping

xt and recall that Sn(t) = Sn − 1
nxtx

T
t . Using Sherman–Morrison formula again and by a direct

calculation yields that

x̄T (Sn − zI)−1xt =
(
x̄t +

xt
n

)T (
Sn(t) +

1

n
xtx

T
t − zI

)−1

xt

=
1

1 + 1
nxt(Sn(t)− zI)−1xt

{
x̄Tt (Sn(t)− zI)−1xt +

1

n
xTt (Sn(t)− zI)−1xt

}
.

Note that xt is independent of x̄t and Sn(t). From the proof of Theorem 2 in Pan (2014), by

substituting xt
‖xt‖ for the unit vector xn therein, we know that

x̄Tt (Sn(t)− zI)−1xt = o(‖xt‖) a.s.,

Recall from Lemma E.3 that the reminder term 1
nx

T
t (Sn(t)− zI)−1xt = O(1) almost surely in the

numerator, and furthermore the denominator

1 +
1

n
xt(Sn(t)− zI)−1xt

a.s.−−→ − 1

zm(z)
,
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where the limit is bounded away from 0. Therefore, almost surely

x̄T (Sn − zI)−1xt = o(‖xt‖) +O(1).

Let z = a + bi, where i denotes the imaginary unit and b > 0. Recall in the Theorem 2 in Pan

(2014), using equation (2.27) therein,∣∣∣∣ 1

1− x̄T (Sn − zI)−1x̄

∣∣∣∣ =
∣∣∣1 + x̄T (Sn − zI)−1 x̄

∣∣∣ ≤ 1 + x̄T x̄
∥∥∥(Sn − zI)−1

∥∥∥
sp
≤ 1 + x̄T x̄

1

b
.

On the other hand, for some large constant M , x̄T x̄ = f̄TΣf̄ ≤ Mf̄T f̄
a.s.−−→ Mc. It follows that,

almost surely ∣∣∣∣ 1

1− x̄T (Sn − zI)−1x̄

∣∣∣∣ = O(1).

Hence, almost surely

T2 =
1

p
·
(
o(‖xt‖2) + o(‖xt‖) +O(1)

)
·O(1) = o

(
xTt xt
p

)
→ 0,

by using Lemma E.2. Now the proof is complete.

Appendix H. Proof of Corollaries 1–6

Proof of Corollary 1. It suffices to prove the consistency of the variance estimator (7). A direct

calculation yields the matrix expression given by

σ̂2 =
1

n− (d+ 1)
εT (I − PZ) ε =

n

n− (d+ 1)

1

n
εT ε− 1

n− (d+ 1)
εTPZε =: T1 + T2.

Using the martingale law of large number and noting that d/n→ 0, we can show that T1
P−→ 1. It

remains to show that T2
P−→ 0, which follows from Lemma 6.

Proof of Corollary 2. Note that the support of FSn is bounded with probability tending to 1. It

follows from Portmanteau Theorem (e.g. Theorem 2.1 in Billingsley) that $n
P−→ $, where $ has

the same expression but uses F instead of FSn .

Proof of Corollaries 3 and 4. We only need to prove under the local alternatives (8) that σ̂2
n/σ

2
n

P−→
1. Expanding

1

n− (d+ 1)
yT (I − PZ) y

=
1

n− (d+ 1)
(Xβ + ε)T (I − PZ) (Xβ + ε)

=
1

n− (d+ 1)
βT X̃T (I − PZ) X̃β +

2

n− (d+ 1)
βT X̃T (I − PZ) e+

1

n− (d+ 1)
eT e

=:T1 + T2 + T3.
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Note that Lemma 6 holds under the alternatives as well, and then by carefully checking the proof

of Corollary 1, we already have T3
P−→ 1. Using the spectral norm inequality,

T1 ≤‖I − PZ‖sp ·
1

n− (d+ 1)
βT X̃T X̃β

≤1 · n

n− (d+ 1)
βTSnβ = OP

(
‖β‖2

)
P−→ 0.

Finally, by Cauchy–Schwarz inequality T 2
2 ≤ T1 · T3

P−→ 0.

Proof of Corollary 5. It suffices to show that ρ̂2
n − ρ2

n = ρ̂2
n − ‖µn‖

2 P−→ 0. Let

ρ̂2
n =

eT ÃTnPZÃne/
∥∥∥Ãn∥∥∥2

eT
(
ÃTn Ãn

)
e/
∥∥∥Ãn∥∥∥2 =:

∆1

∆2
.

It suffices to show that: (*) ∆1 − ‖µn‖2
P−→ 0; and (**) ∆2 − 1

P−→ 0.

We expand that

∆1 =
εT ÃTnPZÃnε∥∥∥Ãn∥∥∥2 − 2εTPZÃ

T
nPZÃnε∥∥∥Ãn∥∥∥2 +

εTPZÃ
T
nPZÃnPZε∥∥∥Ãn∥∥∥2 =: ∆1,1 − 2∆1,2 + ∆1,3.

By Lemma 11 and the assumption that Ω̂
P−→ Ω,

∆1,1 =

(
1√

n ‖An‖
ZT Ãnε

)T
Ω̂−1

(
1√

n ‖An‖
ZT Ãnε

)
=
(

Ω1/2µn + oP(1)
)T (

Ω−1 + oP(1)
) (

Ω1/2µn + oP(1)
)

= µTnµn + oP(1).

On the other hand, using the definition of spectral norms and Lemma 6,

0 ≤ ∆1,3 ≤ ‖PZ‖sp
λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2 · εTPZε = 1 · oP(1) ·OP(1)

P−→ 0.

Now applying Cauchy–Schwarz inequality we also have that

|∆1,2|2 ≤ ∆1,1∆1,3
P−→ 0.

This completes the proof of statement (*). The proof of statement (**) is similar. We expand that

∆2 =
εT ÃTn Ãnε∥∥∥Ãn∥∥∥2 − 2

εTPZÃ
T
n Ãnε∥∥∥Ãn∥∥∥2 +

εTPZÃ
T
n ÃnPZε∥∥∥Ãn∥∥∥2 =: ∆2,1 − 2∆2,2 + ∆2,3.
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Note that the diagonal elements of ÃTn Ãn are nonnegative and bounded by λmax

(
ÃTn Ãn

)
, and

their sum tr
(
ÃTn Ãn

)
=
∥∥∥Ãn∥∥∥2

. Using Lemma 2,

∆2,1 − 1 =OP


λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2


ι

1+ι

+

∥∥∥ÃTn Ãn∥∥∥∥∥∥Ãn∥∥∥2



=oP(1) +OP

λ
1/2
max

(
ÃTn Ãn

)
·
√

tr
(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2

 P−→ 0.

Finally, by the definition of spectral norm and Lemma 6,

0 ≤ ∆2,3 ≤
λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2 · εTPZε = oP(1) ·OP(1)

P−→ 0,

and by Cauchy–Schwarz inequality ∆2
2,2 ≤ ∆2,1∆2,3

P−→ 0. This completes the proof.

Proof of Corollary 6. We need to prove that ρ̂2
n − ρ2

n
P−→ 0 under the alternatives. Let

ρ̂2
n =

eT ÃTnPZÃne/
∥∥∥Ãn∥∥∥2

eT
(
ÃTn Ãn

)
e/
∥∥∥Ãn∥∥∥2 =:

∆̃1

∆̃2

.

It suffices to show that: (*) ∆̃1 − ρ2
n

P−→ 0; and (**) ∆̃2 − 1
P−→ 0.

By a direct calculation,

∆̃1 =
εT (I − PZ)ÃTnPZÃn(I − PZ)ε∥∥∥Ãn∥∥∥2 +

βT X̃T (I − PZ)ÃTnPZÃn(I − PZ)X̃β∥∥∥Ãn∥∥∥2

+ 2
βT X̃T (I − PZ)ÃTnPZÃn(I − PZ)ε∥∥∥Ãn∥∥∥2 =: ∆1 +R1 +R2.

Recall from the proof of Corollary 5 that ∆1 − ρ2
n

P−→ 0. For statement (*) it remains to show

that R1
P−→ 0, as then by Cauchy–Schwarz inequality we have R2

2 ≤ 4∆1R1
P−→ 0. Observe that

λmax(PZ) = λmax(I − PZ) = 1. Then, using the definition of spectral norm,

R1 ≤
λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2

/n
βTSnβ = OP

(
‖β‖2

)
P−→ 0,
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where we used the facts that λmax

(
ÃTn Ãn

)
≤ λ2

max(Sn) = OP(1) and
∥∥∥Ãn∥∥∥2

/n = ‖An‖2 /(2n) =
p

2n ($n + oP(1)) which is bounded away from 0 with probability tending to 1.

The proof of statement (**) is completely analogous, after replacing ÃTnPZÃn by ÃTn Ãn every-

where above. We omit the details.
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