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Abstract

This supplement consists of six appendixes. In Appendix C we report more simulation and
empirical analysis results to support the findings in Section 3 and 4. In Appendix D we check
the generic conditions of the theorems for some example models in Section 3. In Appendix E
we discuss the asymptotic theory for the time-variation adjusted data (see Remark 2 in the main
document) and how to relax the additional condition (17). In Appendix F we prove all the lemmas
used in the proof of main theorems. In Appendix G we prove Propositions 1 and 2 in Section 2.

Finally, in Appendix H, we provide the complete proof of Corollaries 1-6.

Appendix C. More simulation and empirical analysis results

Appendiz  C.1. Simulation results for \/p/n = 0.1

We repeat the simulation study, for a larger order of /p/n = 0.1. We observe similar patterns
from Tables C.1 and C.2 as that in Section 3. The feasible and oracle tests have similar sizes over
all scenarios, and require robust corrections for the time-series predictors with large concentration
ratio p/n. They show similar power performances for small departures, but more different power
for larger departures. This is because the error variance estimator contains a larger finite-sample

upward bias under the alternatives.

Appendiz C.2. Simulations results for the non-free dense alternatives in Goeman et al. (2006)

In this section, we revisit the simulations in Goeman et al. (2006). We use the same setup in
our simulation study in Section 3, but now generate the direction of regression coefficient, that is,

& adaptively as follows:
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Table C.1: Size and power (%) of the tests against uniform stochastic coefficient (i) at level @ = 5% with p/n =

1,3.1,2,4 and \/p/n = 0.1. The columns are for: (i) the feasible test using &; and assuming p; = 0, (i) the oracle

test using the true variance o> and assuming p2 = 0, (i*) the robust test using 5= and p2.

11D CSD MA1 AR1
p/n () () % O ) ™ 6 ) % O )
Hy : |8 =0
6/25 4.6 5.1 5.7 5.3 5.4 6.4 4.6 4.9 6.0 4.8 4.6 6.0
25/50 5.2 4.9 5.6 5.4 5.6 5.9 5.2 5.5 6.0 5.5 5.5 6.6
100/100 5.6 56 6.0 58 6.0 6.1 50 5.1 6.2 6.2 6.0 7.3
400/200 6.2 6.3 6.3 5.6 5.8 5.8 4.1 4.3 5.8 4.8 4.9 7.1
1600/400 5.7 5.7 5.8 5.5 5.6 5.6 3.2 3.5 5.7 3.2 3.4 6.4
HY [P =1 x 2
6/25 174 19.8 20.1 173 196 196 174 19.2 20.0 179 19.2 20.6
25/50 19.6 23.8 21.1 21.8 238 23.1 21.5 234 23.6 21.8 23.7 24.1
100/100 22.1 275 229 242 272 249 205 238 234 224 251 253
400/20() 229 279 234 236 26.7 239 19.2 225 22.6 193 222 24.2
160()/400 23.9 30.1 24.1 23.6 284 239 144 18.1 21.5 13.1 16.6 21.3
H2: |8 =2x &
6/25 30.0 359 336 29.2 331 322 284 325 322 29.1 33.0 333
25/50 37.3 44.8 39.3 38.0 42.8 394 36.6 425 394 36.5 419 39.8
100/100 42.6 53.7 43.8 434 51.3 442 39.7 46.4 429 404 479 442
400/200 45.4 57.3 459 47.1 56.4 47.7 39.1 484 446 38.1 46.9 44.8
1600/400 46.7 59.9 47.1 489 58.7 49.2 33.0 426 42.8 29.7 39.2 41.7
H :||8]° =5 x L
6/25 56.0 684 59.7 50.2 594 53.7 49.0 57.8 53.3 50.8 60.2 554
25/50 70.3 835 720 67.1 76.1 68.8 64.8 747 67.6 654 745 684
100/100 79.8 91.7 80.6 787 88.1 79.5 753 852 779 749 846 T77.7
400/200 85.0 94.5 85.3 86.6 94.5 86.8 79.9 90.6 835 782 89.1 82.8
1600/400 87.5 96.3 87.7 90.0 96.7 90.1 78.7 90.5 849 748 88.5 83.8

s/2

U,

WAL,
iii) &€ = ——=2z=2- with s =0,0.5,1, 1.5,
W= o]
where U, = (u1,...,u,) and A, = diag(A1,...,),) contain the eigenvectors and eigenvalues of

the sample covariance matrix S,, respectively. We only consider the regular case with s > 0, where
the large variance principal components contains more information in forecasting the response
variables; see the aforementioned paper for more discussions. Following the setup therein we use

p = 52 and n = 294, leading to a contraction ratio p/n & 0.177 and an order of alternatives
V/P/n ~ 0.025.



Table C.2: Size and power (%) of the tests against deterministic coefficient (ii) at level « = 5% with p/n = 1,1,1,2,4
and /p/n = 0.1. The columns are for: (ii) the feasible test using 5 and assuming pj, = 0, (ii®) the oracle test using

the true variance o2 and assuming p2 = 0, (ii*) the robust test using 52 and p2.

11D CSD MA1 AR1
p/n () () @ @) @) @) () @) (% () () @
Ho : 18I =0

6/25 4.6 4.3 5.5 4.6 4.8 5.8 5.7 5.6 7.1 5.2 5.6 6.3
25/50 4.9 5.0 5.4 5.8 6.1 6.5 5.4 5.8 6.4 5.9 5.8 7.3
100/100 5.5 5.8 59 59 5.8 6.2 43 5.1 57 5.6 5.3 6.8
400/200 6.0 6.1 6.2 5.8 5.7 5.9 47 4.6 6.1 4.8 4.7 6.7
1600/400 4.9 5.1 4.9 6.5 6.4 6.6 3.2 3.7 6.0 3.3 3.3 6.6
HY [P =1 x 2
6/25 16.4 19.0 189 184 204 209 19.5 205 220 185 19.8 21.5
25/50 19.7 23.0 21.2 214 239 228 21.7 237 240 21.3 24.0 24.0
100/100 22.6 26.8 23.5 23.6 27.0 244 208 24.0 233 20.8 23.8 239
400/200 22.8 27.8 233 23.6 276 242 18.6 22.7 229 186 22.2 24.0
1600/400 229 29.2 232 250 295 253 146 184 21.8 138 174 21.8
H2: |8 =2x &
6/25 29.3 34.7 33.1 314 351 348 31.9 351 357 30.6 351 349
25/50 354 43.8 37.2 38.2 444 39.7 37.8 43.1 40.6 37.1 43.2 40.7
100/100 419 522 429 438 51.0 446 394 46.5 423 39.0 458 42.6
400/200 45.4 57.0 46.2 47.1 55.7 47.6 39.0 47.8 44.8 379 46.6 45.0
1600/400 46.2 59.9 46.6 51.0 60.9 51.3 32.6 424 428 304 39.3 41.6
H :||8]° =5 x L
6/25 56.3 69.1 60.3 58.1 68.0 619 57.0 67.1 61.7 576 67.3 61.4
25/50 66.8 79.6 68.6 71.4 809 73.0 66.9 77.8 69.5 672 775 70.2
100/100 78.9 90.7 79.8 81.1 89.7 81.7 759 86.0 785 747 8.7 77.9
400/200 85.2 95.2 85.6 87.5 94.7 87.7 79.7 90.7 835 79.8 90.1 84.1
1600/400 88.2 96.9 88.4 91.5 973 91.6 784 90.5 84.7 749 88.3 83.4

Note that the regression coefficient vector is not free except the case with s = 0. We use the
general asymptotic departure w, = wy,(s) given in Remark 1, rather the one for free alternatives,
to generate the variance of regression errors o2 = wy,(s)/v/2. Hence, the asymptotic size and power
only depends on the length of 8 under regular scenarios.

Table C.3 reports the results for the adaptive direction (iii) for different values of s. Again we

2

report the size and power for three different tests: the feasible test using the estimated variance o,

for regular scenarios (i.e. assuming p? = 0), the oracle test using the true variance o2 for regular

scenarios (i.e. assuming p2 = 0), and the robust test using the estimated variance 2 and the
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Table C.3: Size and power (%) of the tests against adaptive direction (iii) at level a = 5% with p = 52 and n = 294.
The columns are for: (iii) the feasible test using 52 and assuming p2 = 0, (iii) the oracle test using the true variance

o2 and assuming p2 = 0, (iii*) the robust test using 52 and p2.

11D CSD MA1 AR1
s (i) (ii°) (%) () () @) (i) (Hi0) (@) () (1ii0) (i)
Hy: |B)*=0

0 5.7 5.7 5.9 6.1 6.0 6.3 5.9 5.9 6.1 6.3 6.1 6.6
0.5 5.4 5.5 5.4 6.2 6.5 6.3 5.6 5.6 5.7 5.6 5.8 5.8
1 5.9 6.3 6.1 5.5 5.9 5.7 6.7 6.3 6.9 6.5 6.4 6.8
1.5 6.2 6.2 6.2 6.0 5.9 6.1 6.0 6.0 6.2 6.7 6.8 7.0
Hy - [1B]° =1 x 4P
0 259 263 26.1 256 265 259 26.2 268 268 26.0 26.1 26.6
0.5 26.6 27.7 268 273 274 274 26.6 26.5 27.2 258 26.1 264
1 26.7 276 270 260 261 262 276 277 282 276 27.7 285
1.5 26.8 27.1 272 263 269 264 268 27.1 273 282 283 288
H2: |B|° =2 x 2
0 53.0 556 534 523 539 526 515 53.0 52.1 51.7 533 526
0.5 539 558 54.1 52.6 53.3 527 51.5 529 522 51.1 528 519
1 53.8 558 54.2 51.8 524 522 524 535 53.2 514 525 525
1.5 55.0 56.4 553 525 532 527 524 528 53.0 53.0 5H3.6 537
H :|B)° =5 x 2
0 959 972 96.0 944 955 944 933 946 93.4 93.5 95.0 93.7
05 959 973 96.0 939 949 94.0 93.6 94.7 94.0 93.6 94.7 93.8
1 96.0 972 96.1 93.6 94.7 93.7 93.0 94.3 93.1 93.1 940 934
1.5 955 96.8 955 93.6 944 93.7 93.6 94.7 93.8 928 94.1 93.1

estimated irregularity coefficient p2 for both regular and irregular scenarios. We observe that, for
each departure value h, the size and power are stable over all scenarios. This clearly suggests the

good performance of our general asymptotic approximations in Remark 1.

Appendiz C.3. Simulation results under contemporary correlations

In this subsection we provide some additional simulations results to illustrate the power of our
robust test when there are non-trivial contemporary (and lag) correlations between the nuisance
variable z; and the high-dimensional aggregate variable =} 3.

For simplicity we consider an univariate nuisance variable z; € R, but the results are similar

with multiple nuisance variables. We consider the regression model given by

Yt = 90 +Zt¢91 +$?6+Et
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Table C.4: Empirical size and power (%) against uniform stochastic coefficient at level « = 5% with p/n = 1,1,1,2,4
and /p/n = 0.05, using the least-squares variance estimator 52. The columns are for: (0) no contemporary depen-
dence with p = 0 (+) positive contemporary dependence with p = 0.2 (-) negative contemporary dependence with

p=-0.2.

11D CSD MA1 AR1
p/n_(0) () (=) O ) =) 0 ) =) O ) )
Ho: B> =0

25/100 5.8 5.8 5.8 6.0 6.0 6.0 6.4 6.4 6.4 6.3 6.3 6.3
100/200 5.8 5.8 58 5.7 57 57 50 50 5.0 5.7 57 5.7
400/400 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 4.9 4.9 4.9

1600/800 5.1 5.1 5.1 5.4 5.4 5.4 5.3 5.3 5.3 5.6 5.6 5.6
6400/1600 5.2 5.2 5.2 5.6 5.6 5.6 5.2 5.2 5.2 5.6 5.6 5.6
HY )87 =1x 4

25/100 24.7 23.0 226 253 239 242 26.6 24.6 259 248 224 238
100/200 25.1 23.5 23.2 26.6 25.0 24.5 251 224 243 252 22.0 244
400/400 249 23.0 228 256 23.7 234 243 20.0 24.0 25.0 20.5 25.2

1600/800 240 216 21.8 258 234 234 246 18.0 26.9 24.7 185 27.1
6400/1600 23.7 21.6 21.6 25.6 234 234 244 156 30.7 248 14.7 323
H2: |8 =2 x £

25/100 46.1 43.4 429 46.8 43.6 44.2 453 425 434 452 42.1 43.0
100/200 51.6 479 47.0 51.1 476 47.3 49.8 44.6 480 50.1 45.1 48.1
400/400 51.7 47.3 47.8 52.7 489 49.0 52.0 44.6 50.8 52.6 44.5 51.6

1600/800 53.7 48.7 48.6 54.3 50.0 49.5 554 433 57.6 54.5 42.0 574
6400/1600 51.9 47.1 478 56.2 51.5 51.5 569 372 66.5 572 36.8 67.2
H :|B)° =5 x 2

25/100 86.4 83.8 82.6 80.5 77.8 774 794 768 773 79.0 76.0 76.4
100/200 92.3 89.7 89.6 89.5 86.9 87.0 89.4 86.2 87.6 89.7 86.5 87.8
400/400 95.4 93.2 93.3 94.5 922 921 951 91.3 94.2 94.4 909 93.7

1600/800 97.1 95.2 953 97.2 955 959 96.9 93.0 97.2 978 93.7 979

6400/1600 97.7 95.9 957 97.8 96.5 96.7 98.5 93.0 99.2 98.7 924 99.5

where the intercept 6y = 0 and 6; = 1 without loss of generality; note that these values do not
change the distribution of our test statistic. However, the true values are unknown to the statisti-
cian who always demeans the predictors in each sample and estimate the nuisance parameters. We
generate the same regression errors &, = 0,7 and the high-dimensional covariates {z;} from the
DGPs 14 as in the main document. To save space, we only report the results for coefficient vector
B = ||8]| & with the direction &, generated uniformly over the RP unit sphere, that is, the case (i)

in the main document; the results for the directions in case (ii) are similar and therefore omitted.
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We choose the same pairs of (p,n) € {(25,100), (100, 200), (400, 400), (1600, 800), (6400, 1600) } and

same signal length h2 = | €{0,1,2,5} as in the main document.

- i8]

We generate the nuisance variable z; from the linear model given by

2 = P1ap_1 B+ Pree—1 + o - x1 B+ vy,

where the errors v, = 7,7 with 7; d N(0,1) independent of {z;} and {g;}. We set ¢; = 0.3 and

vary the value of

v = | Vs — ol B2l 8) B0,

0 B =0,

for each DGP to ensure that the contemporary correlation
p = corr (zt,a?tTﬁ) € {0,0.2,—-0.2}.

Finally, we choose the standard deviation 7, such that var(z;) = 1 for each DGP.

Table C.4 reports the empirical size and power of our feasible robust test (14) in our main
document. Our test maintains good sizes and non-trivial powers overall, whereas the power per-
formance depends on the sign of the contemporary correlation p. In the regular cases with time
independent covariates (IID and CSD), we observe a slight loss of finite-sample testing power re-
gardless of the sign of the contemporary correlation p. In the irregular scenarios where the power
bias term b,, become non-negligible (see Remark 6 in the main document), we observe that our
test becomes less powerful when p > 0 but the power is (partially) recovered or even boosted when
p < 0. The difference is particularly significant in higher dimensions with larger concentration

ratio p/n according to our findings in Remark 6.

Appendix C.4. Robustness checks for our empirical analysis

We first report the rolling-window p-values, without robust corrections, for both the unadjusted
and the time-variation adjusted data respectively in Figures C.1 and C.2. All the plots show very
similar patterns to that in Section 4.

To illustrate how our test outcomes may explain the time-varying predictive gain by using
the high-dimensional covariates, we compare the autoregressive forecasts with the ridge estimators
which usually shows the best predictive performance among competitors in our empirical analysis;
see, e.g., De Mol et al. (2008). Our conclusions remain qualitatively the same for lasso and principal
component estimators. To keep the estimators comparable, we jointly estimate the nuisance pa-
rameter 6 and the coefficient vector 8, but penalize the Ls norm of 5 only in our ridge estimation.
We choose the optimal penalty coefficient by using the bias-corrected 10-fold cross-validation with
the autoregressive residuals; see Liu and Dobribabn (2020). Following Stock and Watson (2002),
in every month we use the observations over the last n = 120 months as our training data, and

forecast the next-month industrial production growth ahead.
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For every given d € {0,1,...,5}, in Figure C.3 we plot the time series of the relative out-of-

sample R?, beginning from December 1979, which is given by

m o~ 2
Relative Out-of-sample R? = zif:m‘”f*g; ) 5
2tmm-119W T = Yt)

for the rolling window ending in month m, where y; denotes the ridge forecasts (or other forecasts

of interest) and 7*® denotes the autoregressive forecasts which are both available at time t — 1.
Overall, we observe a non-trivial reduction in forecast errors by using the covariates during the
periods our tests are significant, whereas little gain or even a (large) loss in predictive accuracy
when our tests are insignificant. Consistent with Figure 1 in the main document, our results
suggest that the covariates become less useful when more lagged target values are included since
early 2000.

We also report the rolling-window relative out-of-sample R? for LASSO and principal com-
ponents estimators in Figure C.4. Like for the ridge estimator, we jointly estimate the nuisance
parameter 6 and the coefficient vector 3, but penalize the L1 norm of 5 only in our lasso estimation.
We choose the optimal penalty coefficient by using the bias-corrected 10-fold cross-validation with
the autoregressive residuals. For principal component regression, we report the results for using 3

principal components.



Figure C.1: Ten years (n = 120) rolling windows monthly unadjusted p values between March, 1969 and February,

2020 for different number of lags d =0, 1,2, 3,4, 5.
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Figure C.2: Ten years (n = 120) rolling windows monthly time-variation adjusted p values between March, 1969 and

February, 2020 for different number of lags d =0,1,2,3,4,5.
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Figure C.3: Relative out-of-sample mean squared forecast errors for the ridge estimator (solid line) against the

autoregressive forecasts (dotted reference line) in rolling windows of n = 120 months.
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Figure C.4: Relative out-of-sample mean squared forecast errors for the LASSO estimator (solid line) and the

principal component estimator (dashed line) against the autoregressive forecasts (dotted reference line) in rolling

windows of n = 120 months.

1980 1985 1990 1995 2000 2005 2010 2015 2020 1980 1985 1990 1995 2000 2005 2010 2015 2020
(a) No lag variable (b) lagd=1
06 06
0s L s s s s s s s L esb s s s s s s s s
1980 1985 1990 1995 2000 2005 2010 2015 2020 1980 1985 1990 1995 2000 2005 2010 2015 2020
(c) lagd =2 (d) lagd =13
131 131
12 12+
«h 1
y i
11 F R )
I 1
1 s IR e 1 At
» - !
) - ! AN [
09 o oo 09
v e~
<l
08 08
07k 07k
0.6 06
1980 1985 1990 1995 2000 2005 2010 2015 2020 1980 1985 1990 1995 2000 2005 2010 2015 2020
(e) lagd =14 (f)lagd =5

11



Appendix D. Checking technical conditions for example models

For all examples in this part we consider the standard asymptotic regime that p/n — ¢ € (0, 00)
in random matrix theory. Unless specified otherwise, all the inequalities hold with probability 1

and we do not repeat this argument for presentation convenience.

Appendiz D.1. Time-independent model

Consider the time-independent model in Proposition 2, where x; = »1/2y, where {ve; : t =
1,...,n,i=1,...,p} is a double array of i.i.d. random variables with zero mean, unit variance and
finite kurtosis bounded in n. Assume further than ¥ has a bounded spectral norm in n.

First, we verify the condition (ii) and condition (iii) of Theorem 1. Let S,, = %Zl/ 2XTxxl/2,
By Bai and Silverstein (1998) we know that Apmax(S,) = O(1). Then

)\max(ﬁn) - )\maX(Sn) - Amax(Sn - -f-/Z'T) S AI‘IlaX(S’fl) = O<1)
It follows that

[Anlgp = 15, — diag ()l < [1Snllsp + lIdiag (S5l < 21180l = O(1)

sp

On the other hand, ||A,||> = tr (82) —tr ((diag (ﬁn))2) < tr (S2) — 2% (S,,). Recall that FS»
tends to a non-degenerate limit £’ with probability 1, and thus

1 1 ? s 2
ﬁtr (ﬁgz) —ﬁtTQ (Sn)z/xQdFSn— (/mdFSn> —'—'—>/:L'2dF— (/a:dF> > 0.

Hence, HAanp /|A4|? = O(n™') = 0. The condition (i) then follows; see our arguments in
Section 2. For condition (iii) it suffices to check condition (5). Let £ € {1,2,...,n}. Note that

1
An(t+£,8) = — (200 = D)7 (22— 7).

By Cauchy—-Schwarz inequality, it is easy to show that, for some absolute constant M
2 L 7 2, 1 7 1 iz L 7
An(t+0,t) <M (xtH:nt) + ST Tt Tz + :UtHng T+ ST T
Recall from above that 1/ |4, = O(n~"). It remains to show that
=N U, o5 a7 = 0p1), and 5o = o)
— x ) =o — Tz = and —z° 7 = op(1).
3 — t+/¢ t ]P 7 3 — P 9 n2 P

By a direct calculation and the trace inequality (Lemma 3),

n2 n2

’ [n13 Zn: (xtT+eﬂft)2] - o = /\maX(Z)@ — 0.
t=1
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Moreover,

[z7z] = =0(1).

n
1y xTx] - o)
t=1
The rest follows easily from the Markov inequality (Lemma 1).
Next, we verify conditions (i)—(iii) in Theorem 2. Condition (i) follows immediately from above
and we omit the details. Condition (ii) follows as our model is a special case of that in Proposition

1. Let x denote the kurtosis of v ;, and a := (a1, ...,ap) = ©1/2¢, . Tt is easy to check that, for

some large M

E(g;tTgn)“:E(vle/?gn) = Za —l—SZa

7]
P
a (Sat) a1 (€56 - 00 - 00,
This is condition (iii).

Appendiz  D.2. High dimensional MA (1) model

Consider the first-order moving average model given by
Ty = Pwp—1 + wy

where ¢ € (—1,1) is a scalar lagged coefficient and w; = »1/2y, follows the time-independent model
in the last section. With a slight abuse of notation, here ¥ denotes the population covariance matrix
of w; rather that of x;.

We first check the condition (ii) in Theorem 1. We skip the condition (iii) therein as it may
not hold in general according to our simulations, but this is not an issue for our robust test. Using
the same arguments (and the limiting spectral distribution in Jin et al., 2009) as that for the

time-independent model, it suffices to show that
Amax (Sp) = O(1).

Observe that

n

Z (Ywi—y + wy) (Pw—1 +wy) "

t=1 [t
21 T BN T T IR T
=1 - g wt_lwt,1+1/}ﬁ E (we—rwy + wpwy_) —i—; E wrwy,
t=1 t=1 =1

= ¢2Sn,1 + TZJSn,Q + Sn,?)-

S, =

1 n
n

From the last section, we already know that Amax (Sp,1) = O(1), and Amax (Sn,3) = O(1). Using

the triangle inequality for spectral norms, it remains to show that

ISnzll,, = O(1):
13



Let £ € RP be an arbitrary unit vector.

n

1 1 & 1 o
€Sy 2¢] < - Z 2 |¢Mwy—wf €| = Zfthflth_ﬁ +o Zfththf
t=1 t=1

t=1
:gTSn,lg + gTSn,3€ < )\max (Sn,l) + )\max (Sn,?)) .

Note that the last upper bound does not depend on £. Then using the fact that S, 2 is symmetric,
ISn2ll4, = supjej=1 [€7Sn 26| < Amax (Sn1) + Amax (Sn,3) = O(1).

Next, we verify conditions (i)—(iii) in Theorem 2. We can deduce from above that Aymax(Sn) <
Amax (Sp) = O(1) and Apax (IE [:Utth]) = (¥ + 1) Amax () = O(1). For condition (i), it remains to
show that Amax (E[ZZT]) = O(1). By a direct calculation,

1 1 1
E[zzT] :EE (ze2]) + EE (zexl 1) + EE (ze-127)

1

== (¢2+1)2+w%2+w%2: (¢ +1)°%.

1
n
Hence,
1
Amax (E[727]) = — (¢ + 1)* Amax(Z) — 0.

n

The condition (ii) follows from Proposition 1 directly, by rewriting

Ty = {T/pr,jp} [w;_ll _ [¢21/2,21/2} [Ut—l] .

¢ Ut
Regarding the condition (iii), for some absolute constant M,
E(z; &) < MW E(w16)" + E(w €)'} = M+ DE(w; €)",
where the right-hand-side is bounded in n as w; follows our time-independent model above.

Appendiz  D.3. High dimensional AR(1) model

Consider the autoregressive model given by
Ty = PTi—1 + Wy

where ¢ € (—1,1) is a scalar autoregressive coefficient and w; = $1/2, follows the time-independent
model in the first section. With a slight abuse of notation, again here 3 denotes the population
covariance matrix of wy rather that of x;. Inverting the autoregressive process, we can represent

x; as an infinite-order moving average process given by

Ty = Zgbewt_g. (D.1)
=0

14



We first check the condition (ii) in Theorem 1. Like in the above section, it suffices to show
that /\maX(Sn) = O(1). We can expand that

e B (B

t 1

1
:Z(b% Zwt Zwt o+ Z ¢@1+€2 Z(wt,elwf_zz—i—wt,glwf_@)

0<l1#L> t 1
= Sn,l + Snyg.

Now note that Apax (% oy wt_gwffg) < (C with probability 1 where the constant C' does not
depend on ¢, and the set of non-negative integers is countable. It follows that

A ( Z 61 -0(1) = 0(1).

Moreover, using similar argument in the last se(:tlon7 we can show that

n

1

{1+ T T

Amax (Sn,2) =Amax E , Pt 25 E : (wt—€1wt—€1 + wt—fzwt—éz)
0<t10s =1

szgwf( = W) . (ii(wwh))

t=1

={iw( — w)} 0(1) = 0.

The condition then follows.

Next, we verify conditions (i)—(iii) in Theorem 2. We can deduce from above that Ayax(Sn) <

Amax (Sp) = O(1), and Apax (E [xtx;f]) = ﬁ)\maX(E) = O(1). For condition (i), it remains to
show that Amax (E[ZZT]) = O(1). It is easy to verify that

14
E (xtxtT,g) =E (J:t,gxtT) = ¢ ¥, 1=0,1,....

1 — ¢2
Then
n—1
Ezz"] =—E(zz]) + — Y _(n— OE(za] )
=1
1{ 1 22 ¢
=1
Hence,
I N A T R, ¢’
>\max (E[ZL‘ZL‘ ]) —E <1 _ ¢2 + E 2= (n f)l — ¢2> >\maX (2)
1 1 2|¢|



Observe that it also implies that E (:Z‘Ta_:) = Op (@) Then invoking the proof of Proposition 1
and note that 2272, < Anax(S,) = O(1), for condition (ii) it suffices to prove that

L 7

P
‘nxt Ty — EE [x?mt] — 0, for each ¢. (D.2)

Now take a diverging sequence K = K(n) € {1,2,...} — oco. Truncate the moving average form

(D.1) at order K to get the approximation

K Vt—K
=) olwe = [¢KD, L eut2, 212
=0
Ut

Now following the proof of Proposition 1,

P

— 0.

1o 1 e
‘nxipxt - —E [:L’fxt]

Let Re =2t — 2t = > 2 pe iy #‘w;_y. Using Cauchy-Schwarz inequality, it is easy to show that

2 PO U
< Z\/RIR, - 273+ ~2] 2.
n n

Using Jensen’s inequality and independence between R; and Zy,

1 1 .
B
t t

n n

1 1 | 2 SUN 1
E ExtT:ct — Extht SE\/E [RtTRt] -E [m?mt] + EE [RtTRt]
K
:tr(z) io: ¢2[ . Z¢21 + i ¢2l 0.
" I=K+1 =0 I=K+1

Then (D.2) follows by the triangle inequality. This completes the proof for condition (ii). Recall
from the first subsection that E (vthl/Qﬁn)4 = O(\2

max

(X)). Finally, recalling the moving average

form (D.1) again, for all unit vector &,

o 4
E (xfgn)4 =K (Z ¢lvtTEl/2£n>
=0

=(fj¢4l>E(v?21/25n)4+3 >0 M| (€hSgn)”
1=0 0<l1#lo

=0p (\2,1(%)) + Op (\2(D))

which is clearly bounded in n.
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Appendix E. Additional asymptotic theory

Appendiz E.1. Testing a non-zero null value
Our theory generalizes for testing any given direction of 3, say, 57(10) with the composite null

hypothesis
Hy: (8 x 57(10), that is, Hy: 8 = 5{7(10), for some 0 € R, (E.1)

where o means ‘is proportional to’ and the constant 6 € R can be unspecified. Now, if we

decompose the aggregate variable z} 3 under the alternatives as given by
xj B =0y &0 + i B,

where :I:tTE is uncorrelated with the high-dimensional projection a:tT@(LO) for every n. The regression

model (2) in the main document can be rewritten as
ye =20+ 2] (060 +B) +er =20+l B+ey, (E.2)

where the extended nuisance input vector z, = (2}, xtTfﬁLO))T € R¥2 satisfies the general decom-
position (3), with the extended nuisance coefficient vector given by 6 = (67 5)T Hence, testing
a non-zero null hypothesis (E.1) is equivalent to testing the zero null Hy : B = (0 under the re-
parameterized model (E.2). One may apply the results for the universal model in Section 2.3 when
testing a non-zero null. The correlation conditions are trivial given the orthogonality between a:tTN
and a;tTg,(P).

Appendiz E.2. Adjusting for time variations

In this section, we continue the discussions in Remark 2 for the time-variation adjusted data.

Define the adjusted design matrix as

~ 12 ~ 12
7 ~ ~ T 12 o o ( ll [1Zn |
Xadj = [ﬁl,adja - 7a:n’adj] =D, / X, with D,, = diag (tr(Sn) N tr(g’n) s
and the adjusted preliminary weighting matrix as
ls < 1 s or e
Spadj = EXadeg:ij - ;Dn 1/2XXTDn 1/2.

Observe that the diagonal element

S

En,adj

| 1
(t,t) = E*TZadjfUt,adj = tr(Sy), Vt=1,...,n.

However, as the true coefficient vector 5 is associated with raw data x; rather than ¥ ,qj, the
expression of the asymptotic power changes in general. More specifically, if 3 is also free against
the cross-product matrix S, := %)N(T)N(adj = %XTDﬁl/z)N( , it is not very hard to show that

[ 22dF5(z) — B ([ zdFSn (x))2
Wy =
\/ [ 22dFSnaai(z) — 2( [ zdFSnadi(z))2
17
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where S), aq; = %ngandj = %X TD; 1X is the adjusted sample covariance matrix. Now, when

g{% — 1‘ 5o, by Lemma 1 in El Karoui (2009) we can show that

wy, reduces to that for the free models asymptotically. In the most general case, the asymptotic

HDn - InHSp = MmaXji<t<n

departures depends on the time variations such as for the elliptical model in the aforementioned

paper; see also Zheng and Li (2011).

Appendiz E.3. Relaxing condition (i) of Theorem 7

In this last section, we discuss how to relax condition (i) of Theorem 7 in two different senses.
The first way is to generalize the asymptotic theory in the absence of the condition. The second way
is to show that the condition is fulfilled for the design matrix with separable covariance structure
under Assumption 3. Besides, we note that the condition is also satisfied for non-separable design
matrix if the entries of § = (S, ..., Bp)T are independently generated with zero mean, a (nonzero)
common variance and a bounded kurtosis by a direct application of the concentration inequality
for quadratic forms such as Lemma B.26 in Bai and Silverstein (2010).

First, we comment on the generalization of Theorem 7 in the absence of condition (17) by
allowing the asymptotic power to be dependent on the unknown direction of the regression coeffi-
cients. By carefully checking the proof of the theorem, it is easy to substitute the p,(d,1) in the

numerator of the asymptotic departure by

Pn (67 1) = ﬂgﬂn((s)a

where ) .
3 - P rsTgT v P T3yl ¥
fn = —— = V2 [0, 2T RTWT R, BT RTUT R |
wela) "
and &, denotes the direction of the regression coefficients. Note that the above statistics may

depend on 4, if we use ﬁn(é) rather than A, everywhere. That is,

@n(0) K2 @, (8) = pn(8,1) - @n 4
0%\/%_ V202 1—p2(0) =N (0,1).

We may replace w,(0) by the general form in Remark 1, if we relax the freeness Assumption 3 as

well. We omit the proofs. As we argued, the asymptotic limit becomes intractable to produce an
interesting theory here, and thus we leave more detailed analysis for future study.

Next, we show that condition (i) of Theorem 7 is implied by Assumption 3 if the data matrix X
has a separable covariance structure. In particular, we consider X = TY/2F¥1/2 where T € R"*"
and Y € RP*P are the temporal and cross-sectional matrices with bounded spectral norms. The
latent random matrix F = [f1,..., fu]7 = {fi:} has independent entries with Ef;; = 0, Eft%i =1,
and sup; ; £ ft47i < vy. Let C € R™™ denote the centering matrix and I'y, := %)} T\IIZT)? . It suffices
to show that:

1 } tr (Y/2CwlCrY/?)

1 P
)T _ = T _ -

18



tr(Y1/2CwTCrl/?)
tr(Y1/2CT1/2)

because £15,&, — %tr(Sn) 50 by Assumption 3 and

< |[ef],, = o) by
Lemma 3 in the main document.

By a direct calculation,
_ 1/2 gy T e1/2 T 1
EA =tr (T cvley ) €Iye, — ~tr
p

tr (Y200l orY/?)
tr (Y1/2071/2)

1

tr <T1/QCT1/2) <g§zgn - trz> — 0.
p

It suffices to show that var(A) — 0 or to show that:

var(ﬁgf‘nfn), var <1trfn> , var(ggSnfn), var <1tr8n> — 0.
p p

We only prove the first two parts, and the proofs for the last two are completely analogous (by

replacing \I!ZT with identity matrix everywhere). Observe that
1
T, = ﬁgg s12pTyl2oelert2pst/2e, = vT AV, (E.3)

where A = YY2CUTCYY?2 and V = [Vi,..., V)T with V; = ﬁfle/%n. Note that V; are

independent, with EV; = 0 and EV;? = %EZ ¥&,. Because V; is a quadratic form of f;, applying

Lemma B.26 in Bai and Silverstein (2010), or Lemma 2 in our main document, yields that
EV;' =(EV})” + E(V? - EV}?)?
1 2 1 > M _
< (Refme,) + 2 (1else,) < Telse) < a2,

where M is some absolute constant not depending n nor &,. Applying Lemma B.26 in Bai and

Silverstein (2010), or Lemma 2 in our main document, again but to the quadratic form (E.3),
var (60 Tén) < MEV) - trA% < Mn =2 |22, - p[lA]3, = O(p/n*) =0,

where we recall that [|X[|;, = O(1) and [|A|,, < [|T], HCHip H\I/Z-THSP = O(1) in the last equality
and M is a possibly different absolute constant. This completes the proof of var(¢1T,&,) — 0.
Note that the proofs above hold for any given unit vector &,. It means that, for every standard
basis vector e; = (0,...,1,... ,O)T of RP, we also have that

var (e Tes) < Mn 2 ||S|2, - p AP, i=1,....p.

It follows that

1 1< _
var (ptan> < > var(elne;) < Mn 2|2, - p[|A]12, = O(p/n?) — 0.
=1
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Appendix F. Proof of Lemmas 1 — 14

Appendiz F.1. Proof of Lemmas 1-3

Proof of Lemma 1. The lemma is straightforward by combining Markov inequality and the law of

iterated expectations. We omit the details. O

Proof of Lemma 2. Let A = {A(s,t) : s,t =1,...,n}, where A(s,t) denotes the entry of A in its
s-th row and ¢-th column. Expanding the quadratic form,

n

el Ae — tr(A) = Z(e? —1)A(t,t) + Z eset (A(s,t) + A(t,s)) = Th + T.

t=1 1<s<t<n
By Burkholder’s inequality (e.g., Theorem 2.10 in Hall and Heyde, 1980), for some constant M
n n
E (|0 | Fao] < MY E[lef = 1| Fo] [AG O < Mrn - Y |A® 8]
t=1 t=1
Moreover, by a direct calculation and applying Cauchy—Schwarz inequality,

E[T5|Foo) = Y. (A(s,t) + At,s))? <2 ) (A%(s,t) + A%(t,9))

1<s<t<n 1<s<t<n

=2|A — diag(A)|* < 2|4
Hence, using Jensen’s inequality,

E [|e7 Ae — tr(A)|"T| Fro] <ME [|T"+ + | To|"*| Fo)
<ME [[Ty[1| Fo o] + M (E [|T5*|Fo])
<My - AL D]+ M A
t=1

where the constant M may be different in different inequalities. This is the first part of the lemma.

For the rest we invoke Lemma 1 to get

[T A — (4| = 0p <mn STIA® O+ ||A||1+L) ,

t=1

or equivalently

1
1+

1 n
|7 Ae — tr(A)| = Op [ ra™ <Z|A(t,t)|”b> + [14]]
t=1

The rest follows from the obvious inequality |A(t, )1 < |A(¢, )] - max |A(t,t)|* and the triangle
Stsn

inequality. O
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Proof of Lemma 3. Slightly abusing the notation, let UAU” be a spectral decomposition of A where
A = diag(A1,...,\p) is a diagonal matrix consists of the eigenvalues and U = [u1,...,up] is an
orthogonal matrix with columns being the corresponding eigenvectors. Hence, A = Z?Zl )\jujuf,
Z? Lujul =UUT =T and |Al[5, = max; [A;]|. Then, noting that B is nonnegative definite,

p
tr(AB)| =) \ju] Bu,
j=1

p
<> I |uTBuJ<HA||spZuTBu] A, tr BZu] = || Al tr (B).
Jj=1 Jj=1 j=1

When B = B’ is symmetric, the lemma holds for arbitrary matrix A because
tr(AB) = 1 (tr (AB) +tr (BA)) =tr 1(A +A))B).
2 2
The lemmas follows by replacing A with the symmetric matrix %(A + A). O

Appendiz F.2. Proof of Lemma 4
Let by = (0,...,0,1,0,...,0)7 € R” denote the unit vector with ¢-th entry equaling to 1 and

all other entries equaling to 0. Rewrite the conditional variance into a quadratic form given by

1 - -
E [A? "Fn,t 1 = ”A || <Z€S S t) = ﬁeTAgbtb;‘FAne.

|

2
>. From Lemma 2,

It suffices to show that maxi<i<, engbtbggne = op (’ A

~ ~ ~ ~ 1+
E UeTAththAne - thAnAth‘ | fn,o}
t—1 o
<M (Fvn S [Au(s, P00 4 6] AnAZbol“) .
s=1
Summing up over ¢t and recalling the assumption that x,, = Op(1), it follows that

Zn:E “Jﬁgbtb;f’lne— bzﬁnggbt\l“ | Fmo} = (Z A ALp)1+ L) :
t=1

where we have also used the Jensen’s inequality

n t—1 n 1+ n
35 e <35 (Son) =St

t=1 s=1
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Note that th/Tnﬁgbt is the t-th diagonal element of the matrix A’J{, t=1,...,n and they are
majorized by the eigenvalues (see, e.g., Theorem 4.3.45 in Horn and Johnson, 2012). Combining

with the trace inequality (Lemma 3) and condition (ii) yields that

zn: W A ATb) <t (A, AT>1+L

t=1

—tr (A74,) 7 < Ny (A1) tr (A14,) = o <Hﬁn

2L+2)

Hence,

E {max

1<t<n

~, ~ ~ ~ 1+

T AT, b7 Ae — thAnAth‘ | fn,o]
n ~ ~ ~ o~ 1+

<) E UETAththAne — b AnAth‘ | ]-"n,o} = op([|4n|**?).
=1

It then follows from Lemma 1 that

max

1+
TV Ty T §
Jax el AT o btb; Ape —tr <A bb; A )

— op (I14]72),

T ATp,bT Ae — bT A, ATbt’ —oﬂm(HAnH?).

or equivalently

max
1<t<n

Using the definition of spectral norm,

max
1<t<n

b A ALt < A (AT ) = 02140 ).
The rest follows by the triangular inequality.

Appendiz F.3. Proof of Lemma 5
By Lemma 2 and recalling that ,, = Op(1),

2 1+
n 1~ _
4, |2Z<ZESWT ) e

14
1+

S (AL A t) ‘
14,20+ HA (R

ETEZ.ZLZE -1

‘ Jrn,()] S M
[EME

where Zgﬁn(t,t) denotes the t-th diagonal element of Zgﬁn Using the majority property of

2(1+L)>

eigenvalues against the diagonal elements and the trace inequality (Lemma 3),

S (A Ae0) " <o (A2 < Nt (A4,) = oz (HE”
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On the other hand, using the the trace inequality (Lemma 3) again,

H~ = /tr ATA \/max AT A tr(ATA>—01p (H

1+
Using Lemma 1,

)

—> 0 and lemma follows.

t—1 1T
||A ”2 Zt 1(25 18sp® s$t> -1

Appendix F.J. Proof of Lemma 6

Without loss of generality, we may assume that Eth ; = 1 by proper marginal scaling. Expanding

the quadratic form,

1
TZZTe = E z—:tzt zt + - E etesz;fzs.
t#s

Taking the expectation on both sides and using the law of iterated expectations,

n d
EFJ?W%:iXﬁP%@:XEPM:O@.
t=1 =1

n

It follows from Lemma 1 that 1e7ZZ7e = Op(d). Finally,
' Pye = ﬁ 2071 2Te <AL () - — - Lty gme - Op(1/Amin(Q)) - Op(d),

using the definition of spectral norm.

Appendiz F.5. Proof of Lemma 7
Let ¢ := (C1,...,Cap1)T = ZTAne. It suffices to show that (; = op (\/ﬁugn ) for each i. We

invert the autoregressive process (under the null) into a moving average form given by

ye=a+ Y Ve, (F.1)

=0

where a = 0 - 3372 ; and the sequence {1;} is absolutely summable, that is, > 7% [¢);| < co by
Proposition 6.3 in Hayashi (2000). Now, for ¢ = 1,...,d, let the vector of lagged observations be

y_; = [yl—ia O T PN yn_i]T =al, +V;e+ Vi, (FQ)

where, like equation (13) in the main document,

00 n—i
Wi = wL =) L (F.3)
Jj=0 Jj=0
and L, is the n x n lower shift matrix with ones on the subdiagonal and zeros elsewhere, and the
entries of v; = (v14,...,vp,) have bounded variances in n and, as a result, viTvz Oor(>i, vg )=
Op(n).
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Now, by a direct expansion, (1 = 1252”6 and
Civ1 = yZiAvnE = a1 + ET\IJZTAVHE + ETAVZVZ' =:af + J1 + Jo.
Using Lemma 1 and a direct calculation yields that

2= 0p (E[C2 | Fuol) = Op (15 Znﬁﬂn) — Op (mmax (/H’An)) . (F.4)

Taking square root of both sides and using condition (ii) gives (1 = op <\/ﬁ HZ" > To bound Ji,

we first use the last part of Lemma 2 (taking ¢ = 0 therein) to get that

Ji1 =Op {z”: |d; | + H\I]ZTK”H} =:0p (J11+ J1.2),
=1

where d;; := 3777 b An(t 4+ j,t) is the t-th diagonal element of \Iszﬁn = Z?;é %ijjzz{n.

By the triangle inequality and exchanging the order of summations,

>l
t=1

Let ¢ > 0. By choosing a sufficiently large K and for a large constant M not depending on K nor

n n—t—i n—i—j

<Yl AR i+ 4, t) I—ZMI > An(t+i+4,t)]. (F.5)
7=0 t=1

t=1 5=0

n, we have
n K n—i—j n—i n—i—j
Doldiel <D bl D JAat i+ 401+ D [l D [An(t+i+4,1)]
t=1 §=0 t=1 j=K+1 t=1
n—~_ n—~{
<M Ap(t+ £, An(t+ £,
ot g, S o) ot ).

Furthermore, by Cauchy—Schwarz inequality,

maXZ|A (t+0,8) <Vn— maxZA2 t+0,8) < Vi An| .
Using condition (iii) and noting that ¢ can be arbitrarily small, we can show that

Jia =Y ldie] = op(n'/? || A,]). (F.6)

t=1
Next, applying the trace inequality (Lemma 3) and the triangle equality,
2

n—i

T < Tt (ALY < [ Y1l | - 5 14alP = 06 (J14.07) (F.7)

J=0
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Combining the bounds of (i, Ji,1 and Ji 2, we can immediately conclude that

Ji = op(Vn|[An)) + op(vVn | Anl)) + op([|Anll) = op(v/n || Anl]).

2) | (F.8)

Finally, using the square summability of v; and condition (ii),

E [J22 | ]:n,O] = VZTEWZSVZ < VZ-TVZ‘ * Amax (EZZO = op (n HZX”

It follows from Lemma 1 that Js = op (Hgn)D Our proof is now complete.

Appendiz F.6. Proof of Lemma 8

The proof is very similar to that of Lemma 7, and hence we only sketch the differences. Under

the alternatives, we replace (F.2) by
y_i = [yl—ia R T I ,yn_i]T =al, +V,e+ ¥V, X0+v;, i=1,...,d, (Fg)

where ¥; is the same as in (F.3), and v; = (v;1,...,v;,) depending on both {zf3 : ¢t < 0} and

{e1 : t <0}. This introduces an additional term Js := mBTX‘II;TFZne in (11, and it remains
to show that, for any i,
J3 = op (llﬁHQ) :
By a direct calculation,
2 1 TvTqgl i AT Amax (AZETL) T T
E[J5 | X] =B X' A AL X B < —— > || | B7S,B.
g 4.
Note that )
[o¢]
Jofwll,, < [ D lwsl] <o (F.10)
j=0

On the other hand, 87S,5 = 1S,5 — TzzT 3 = Op <Hﬁ|]2) because

515,0 = 1917 [ adrSe(ai ) = 1617 [ adrSe(o)+ o)) = 0 (18IF) . @)

and, by Lemma 1,
B35 = Op (B7E [227] 8) = O (|181) - (F.12)

This completes the proof.
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Appendiz F.7. Proof of Lemma 9

Decompose that

d d
- - - \2
BTXTZZTRe =Y (YIXB) = Y ¢
i=1 i=1
with the vector y_; = [y1_4,...,Yn—i! . It suffices to prove that, for each i
¢ =0, (nlIBIP +n218]").

Plugging in the expansion (F.9),

G =W XB+ BTXTUIXG + BTa1 U XB + v XB = G + Gia + Gis + Gia.
Now, invoking (F.10),

E[¢ | X] = " XTU wiXB <n | W], 67,8 = O (n]18]7)

It follows from Lemma 1 that (21 = Op (n 18 H2> Similarly, by Cauchy—Schwarz inequality and

the definition of spectral norm,
Gy < n? [ OT W], (675.8)" = Op (n?[16]")
and
2y < n? (276)" | WT Wi, 87508 = Op (w2 I8]I") .
where in the last step we invoke (F.12) as well. Finally, by Cauchy—Schwarz inequality,
Gy < BTXTXBvIvi = nBT 8,8 Op(1) = Oz (n]18]). (F.13)

7
by recalling that v} v; = Op(1) because the entries {v;;} in expansion (F.9) satisfy the linear

difference equation v;; = Zgzl Opve—_g ;.

Appendix F.8. Proof of Lemma 10

By the definition of spectral norm,

Cain(@) ™" L, (0207 4,))

/lz;,un < 9 (F'14)
n HAn
Similar to (F.5), exchanging order of summations and using triangle inequality,
_ n n—t n—t n—~{
tr (W7 4,) | = |30 D w0 An(t + 6,6)] < 30 [0S Anlt + £,1)
t=1 =1 I=1 t=1

Following the proof of statement (F.6) and using condition (12), we can show that

tr (07| = o0 (212 | 4]}

that is, tﬂ(q;?’jn)/ <n H‘Z”
proof.

2
) 5o Summing over ¢ and combining with (F.14) completes the
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Appendiz F.9. Proof of Lemma 11

It suffices to show that every entry of ¢ := 1 ZTAne — Ql/2un € R¥1 converges to 0 in

T VnllAal
probability. Denote the observations for the i-th predictor, i =1,...,d by

Z; = (2171', c. ,Zn,i)T =o;1, + Ve + vy, (F15)

where W; is given in equation (13) in the main document. Denote the i-th entry of ¢ by (;, and

then a direct calculation yields that (; = mlzgne and fori=1,...,d
Git1 = — (z,iTgne —tr (\IlzTﬁn»
Vit |4
1 ~ ~ 1 ~
=q;(1 + — (GT\IQTAnE —tr (W?An)> + 7~V1TA”6 =1 ;1 + Git1,1 + Gig1,2-
Va4, v 4|

Recall from (F.4) that
NAmax (Zggn)
2 = O]P(l)u

E[C% ‘ Fn,O] <

e

and here

V?Avng%;vl . VZ-TVi)\max ({ZE,O _ Op (n)\max ({gﬁ,&) e 0

E [Ci2+1,2 | ]:n,O] = Hg
n n

where we also use v v; = Op (E [viTvi]) = Op(n). Therefore, (; = op(1) and (412 = op(1) by

i

Lemma 1. It remains to prove that ;411 = op(1). Applying the last part of Lemma 2, we know

1 ‘ e L H\lffﬁn
Ci+1,1 = O]P’ = Z |d¢’t| max |di,t|1T” + —
t=1

=: Op (Cit+1,1,1 + Git1,1,2)

where d;; = ?:—115 Yi(0)Ap(t + £,t) is the t-th diagonal element of ‘I/ZT;LL = wi(Z)Lﬁgn.
Following the proof of statement (F.6) without using the condition (iii) in Theorem 1, we can show
that

> ldiy| = 0p (/2 |4,
t=1

as by Cauchy—Schwarz inequality

n—~0 n—~{
> An(t+ 4, t) < n'l? A2(t+£,t) <02 Ap|| = op(nU I | Ay))),
t=1 t=1
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On the other hand, for any constant M > > 72, [¢:(¢)|

max [dig| < [i(0)] max [An(s,t)]
(=1

1<t<n 1<t<s<n

SO E NPT (N C2A) ()

sp

It follows that

1
s =oe (w72 A1) ™ 1445 ) = 00 1),

1
V|| An||
Finally, we recall from (F.7) that

1 ~ o~ 1 2\ P
Grine < ——— 0T, - tr (LAT) = —— - 0p (J4u)7) S,
n || An|? P n || Anl°

as || @07 | < (00, [Wa(0))* < M2,

Appendix F.10. Proof of Lemma 12

Like (F.9), in general we can extend the expansion (F.15) and decompose that
Z; = (Zl,i7 ey Zmi)T =al, +V,e+ ¥V, XB+v;+r;, i=1,...,d, (F16)

where v; = (v14,. .. ,vn’i)T with
oo oo oo
v = bilOwie =Y Oz B+ i)ers,
(=t (=t =t
and r; = (11,4, .. ,TM)T. We need an auxiliary lemmas:
Lemma D.1. v]v; = op(n'/?) for everyi=1,...,d.
Proof. Applying Cauchy-Schwarz inequality,

n 00 2 n 00 2
vivi<2) (Z wmhg) +2) (Z zpi(e)w> =: 2T,

t=1 \¢=t t=1 \{=t

Taking expectation on the right-hand-side yields that

ET, =0 | > Y (0wt )corr(z{ (B, 2] yB) - BTEB+D Y ()

t=1£0,0'=t t=1 (=t
=0 (D> WaOllwa(?)] - B7SB+ DD wi0)
t=10,0'=t t=1 (=t
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We claim that Y 1, > =7%—; [¥i(€)[|i(¢))| = o(n). For any ¢ € (0,1),

t=10,0'=t t=1

YD WOl = < [4i(0)]

Similarly, for any ¢ € (ﬁ, %)

L

I AGED S IR ES DR A()
t=1 /=t t=1 /=t t=nt+1 =t
<n' Y PO+ (n—nt) Y B0
/=1 l=n*+1

=0(n*) + (n—n") -0 (n(_2(1+Q)+1)‘> = o(n*) 4+ o(n'~ ety = o(nl/?).
Now we can conclude that ET),, = o(n87 %8 +n'/?) = o(n'/?), and therefore T), = op(n) by Markov
inequality. Tt follows that v}v; = Op(Ty,) = op(n'/?). O
Now we are ready to prove Lemma 12. Observe that

|zrs - 3 (s %5)’

1=

< \2
It suffices to show that (z?XB) = Op (nHBHQ +n? ||B||4> + Op <n3/2 ||,6’H2) for each i. Let
i €{1,...,d}. Invoking the decomposition (F.16),

2V XB =" VX3 + BTXUIXB+ 87217 0T X3+ vIXB+ 1l X
= G1+ G2+ Ga+Gat G

From the proof of Lemma 9 we have that 41'2,1 = Op(n|B]?), CZQ = Op(n?|8||*), and ng =
Op(n?||8||*). Furthermore, using the asymptotic bound v!v; = op(n'/?) from Lemma D.1 in

equation (F.13) yields that (7, = op(n3/2||8||*). Furthermore, we can decompose that
Gis =1, XB—r] 1,37 B=:(is1+ G52

It remains to check that CZ-275’1 = Op(n®/?||B8]|*) and Ci27572 = Op(n3/2|8]1%).
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First, we show that Ci27571 = Op(n3/2||B8]|*). Observe that

2
n
¢35y = (Z 7) 18117

t=1

Taking expectation on both sides yields that

n
E?s,1 = (nElrend)* | 8] + var (Z 7) 181
t=1

=0(m*? [|BI1”) + | nvar(reivme) + Y cov(reivns Tsivns) | 1817
1<s<t<n

=0(*2 BI*) + O*2 ||5]*) = O(* | B]).

The rest follows by Markov inequality.
Finally, we show that (75, = Op(n3/2||8]|*). Observe that

2, _
(5o = (ri1a)" (@ &) 1IBI7.
By a direct calculation,

2
E (rlrln) = nErZi + Z cov(rei,rsi) = O(n) + Z cov(Te,isTsi)-

1<s<t<n 1<s<t<n

On the other hand, using the definition of spectral norm we have that

n

E(¢fzz7¢,) = & E [227] & < Amax (E [227]).
Now applying Markov inequality together with the last two equations yields that

51-275’2 =0p | NAmax (E [j:j:T]) + Z cov(re,isTsi) | Amax (E [:i:i’T]) ||/6’H2

1<s<t<n
=0 (n+n%2) - 8] = Os(n™* 817)

This completes the proof.

Appendiz F.11. Proof of Lemma 13

Invoking the proof of Lemma 11, under the alternatives, we need to add an additional term
into (F.15) to get:

Z; = (Zl,i7 ey Znyi)T =l + Ve + VUV, XB+v;, i=1,...,d. (Fl?)

This introduces an additional term in the entry (;+1 given by

1
v |4
30
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By a direct calculation,

1 ~ o~ )\max (A?;;{n>
B XA AN < —— e [ U | BTS
|

nl|4,
Note that [[ U7 @[] < (322, [¢i(6)))* < oo, and recall that 57'S,3 = Op(||8]*) by (F.11) and
(F.12). Hence, using Lemma 1, CZ-2+173 = op (||ﬁ||2> 5 0. This completes the proof.

E [Ci2+1,3|X] =

Appendiz F.12. Proof of Lemma 1)
Recall from the proof of Theorem 3 that, for d(z) = 1, ||A, /P = |4nll /2P = wn/V2 +

op(1). Then substituting @, /v/2 by ‘ A, ‘ /+/P, substituting h? by % |8]]?, and using the addi-

tional freeness assumption in the theorem, we only need to show that

1

~ 1 ~ ~ ~ -
\/ﬁZTXB - [O,BTXT\IJ{X[&, o 5TXTx1/dTX5} L)

N4D
that is,
ziT)Z'ﬁ — BT)?T\IQT)Z'ﬂ = o[p(nl/Q), foreachi=1,...,d.

Let i € {1,...,d}. Invoking the decomposition (F.16),
2IXB— BTXUIXB =L U X B+ fT517 0T X3 +vIX B+ X
= Gi1+Gi3+ Gt Gise

Recall from the proof of Lemma 12 we already know that ¢;i; = Op(n'/?||B]]) = op(n'/?),
Cia = op(n®/*||B])) = op(n'/?). Furthermore, following the proof Lemma 12 therein but using the
conditions Apmax (E[ZZ"]) = op(1) and E[rtiym+] = op(n~/%), we can show that & 3 = op(n ||8]|*) =
op(n'/?) and Gi5 = op(n®/*[|]]) = op(n'/?).

Appendix G. Proof of Propositions 1 and 2

Appendiz G.1. Proof of Proposition 1

We shall first show that the proposition holds for the oracle matrix S,,, and then we substitute
it by the observed matrix S,,. Note that

1 1
S, (t,t) = E-"EtTth = EfltT(I)Tq)ft
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of Lemma 2,

Noting that S,, (¢, t) are identically distributed (not necessarily independent) and following the proof
1 2
Sp(t,t) — —tr (@7 )
n

-
SUESNIRETETY
>

1
= <2 loill* + — IIEI>

Then, as the mean minimizes the mean squared error,

1 & 1 &
E Z Sn(tat) - E ZSn(t7t)
t=1 t=1

E [; zn: Sa(t,t) — %tr (2" ®)

t=1

2
= tr (27 ®)

:op< QZHM o uzn)

where in the last step we use Lemma 1. Observe that the last term is Op(n~!) as | Z[|* < n ||2H§p =
k 4 . 2 2 2
O(n) and 327, [|loi]* = [|diag(@T®)[|” < [|@T @[] = |3 = O(n).

Using the identity that 2; = 2, — Z, we can calculate that
2 =T 1 _T—
S, (1) = 8, (8, 1) = _ﬁx zy + E«T z,

and remove the last perturbation term in the demeaned diagonals to get that

tt——ZS t,t) { tt——ZS tt}—x ;.

Then, by Cauchy—Schwarz inequality, we can show that

1 & ’ 1 & P 2
EZ Syt <2{ [Saltt) =~ > S, (t1) —l—‘nx 7t
t=1 t=1
Averaging over t yields that
1 ¢ 1 ¢ ’
EZ ﬁn(tvt) - ﬁzﬁn(t t)
t=1 t=1
1 & 1 & 12 2
<24 — S, (t,t) — — S, (t,t — —T
= n;n(’) n;n(a) +ntz:; T Ty

The proposition then follows as

2 - P 4 . 1 9 _
=zl =ﬁwTSnw=ﬁHSanprll = Op(n™).
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Appendiz G.2. Proof of Proposition 2

Our first lemma follows from the same arguments for equation (3.2) in Bai and Silverstein
(1998) by combining Lemma 2.7 and Lemma 2.9 therein. Note that we have also used Jensen’s
inequality (E|fi|*)*/? < E|f1[>* for any o > 2. We omit the details of the proof.

Lemma E.1 (Concentration inequality for quadratic forms). For A being a nxn matriz (complez),
we have, for any a > 2
E|fTAf —tr(A)]" < ME|f11* || A"

where M is some absolute constant depending only on «.

Lemma E.2. 27 z/p *> [2dH(z).

Proof. Applying Lemma E.1 with o = 2 + ¢/2 and noting that E|f;1|*™ is bounded, for some

large constant M

2+1/2 2+1/2

tr(X)
p

tr(2)

1
E ‘J:tht —
p

1
:E‘ftTEft -
p

o\ 1+e/4
<My~ (/) (Wf)) — O(n~ /),

By Markov inequality and Borel-Cantelli lemma, we can show that

1 tr(X
*33311}- 1“( )&

0.

We complete the proof by checking that @ = [adH,(z) — [xdH(z) using the dominated

convergence theorem. O

Lemma E.3. Let S, (t) =S, — %xta:tT be the sample covariance matrix dropping x;.

1 T 1 a.s.
e (Sp(t) — 2I) "y 1 ()7

where m(2) = [ £ dF(X) and F = (1 —c¢) Ijg,00) + cF' is the limiting spectral distribution of S,,.

Proof. Note that z; is independent of S,,(¢). Let z = a + bi, where i denotes the imaginary unit
and b > 0. From the proof of Theorem 1 in Bai et al. (2007), e.g equation (2.9) therein, we know
that

thT(Sn(t) — )7ty — Lx? (—zm(2)% — 2I) t oy 2250

IL‘?SL’t $?$t

Combining with Lemma E.2 yield that

1 1 a.s.
;%T(Sn(t) — D)y — Eﬂ?f (—zm(2)% — 20) Loy 225 0.
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Applying Lemma E.1 with o = 2 + ¢/2 and noting that E|f;1|*™ is bounded, for some large

constant M

1 T » 1 N
E|— e (—zm(2)X, —2I)" x4 — - tr (Z (—zm(2)2, — zI) )
<Mn~(2+/2) HE (—zm(2)%, — 2I) 7 HQ—H/Q
=Mn~@He/2) |52 HZ S+ 1) H2+L/2
<Mn~2+/2) |z|’ ”E||2+L/2 H E+I) :m/2
Recall from Silverstein (1995), the last paragraph in page 338, that H )X+ 1) H is bounded,

and |z| > b? > 0 by construction. Hence, for some possibly different constant M, the last upper
bound is further bounded by

. o\ 1+e/4
Mn—(2+L/2) HEHZ-H/Q _ Mn—(1+L/4) (B)H_ /4 (tr(g)) _ O<n—(1+L/4))_
n p

Then, using Markov inequality and Borel-Cantelli lemma,

%xtT(Sn(t) —zD) "ty — %tr (Z (—2m(2)X — zI)_l) 2250.

Finally,

1+ mA

a.s. 1 A 1
= dH(\) = —1 — .
— cz / 1+ mA () m(z)z

Dt (2 (em(2)m - 2D 7) = - pl/ A dH,()

Proof of Proposition 2. Let §1(z) = d(z) -z, z € [0,00). It suffices to show that

2 n 2
_ %Z <15;f5(sn)ft e 51(sn)> .

n n
t=1

L diag((8)) — L (W ()1,

n

Using the fact that the sample mean minimizes the sample mean squared error, it suffices to show

that there exists some constant p = p(d) € R depending only on the function 4,

2
P
L Z ( 7T 6(S0)F u) o,
We shall show that we only need to prove that, for each t,

~aT6(Su)F 5 p(d). (G.1)



Note that 2Z7'§(5,); is the t-diagonal element of W;,(6) = 6, (S,,). Applying Weierstrass theorem
with the continuity of d; yields that

1 -
max — &y §(5,)T¢ < [11(S,) 15, = 161(Sn) 5, = Op(1). (G.2)

1<t<n n

Take an arbitrary constant € > 0, with a slight abuse of notation. Using Markov inequality and

the exchangeablity between {Z;} in terms of distribution,

n E|LS7  (L376(8,)T — n)’ | &
P (:L > <7ll§EtT5(Sn)ft - ,u>2 > 5) < [n 2ic (380 0(S)T — )" | } +P(EY)
t=1

B[ 6(8@;@ —1)? | & e

S|=

for the event &, = {maxlgtgn %50’{5 (Sp)xy < M } Taking M and n large enough, it follows from
equation (G.2) that P(ES) can be arbitrarily small. Moreover, using the dominated convergence
theorem and equation (G.1), the first term E [(%53/{(5(5’”)@ — u)2 | En] can also be arbitrarily
small.

Hence, it remains to prove equation (G.1) for each t. Using the identity z; = x; — Z, we can

decompose the left-hand-side therein as

1. . 1 2
~7T6(8,)T = —al'6(Sp)x + 5$T5(Sn)3_;‘ — Z2T6(8,)z
Note that . )
EiTé(Sn)a_: < [16(Su)lls, Ef% Bo,

as 7z = Op (E [272]) = (L tr (X)) = (p/n) . By Cauchy-Schwarz inequality,

1 7 3 \/1 1_ _
—x: 8(8,)Z| < 1/ =xL6(Sy)xy - —FL5(S,)T.
TS| < | SaTS(S e 1aT6(S,)

It suffices to prove that
St (Sn)ae = u(0). (G.3)

Like in Bai et al. (2007), one can verify that the Stieltjes transform of G} (x) is given by

marp(2) = / 1 dG}(z) = ;mtT (Sn — zI)_1 Ty

r— =z
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for every z € C* = {2 € C : 3z > 0}. Using the expansions that S, = S, — zz7 and the

Sherman—Morrison formula,

1
mar (2) :;Oa:;r(Sn — 2l — 230ty

1 7 1 1 (2 (Sp — 2I) 7 tay)?
_LaT(S, — 2T -
pzt ( 21) mt—i_pl—:ET(Sn—ZI)*lsft

=T+ T5.

Recall that S,, = S,,(¢) + %xt:rtT and applying Sherman—Morrison formula,

n 1
="(1- .
T ( 1+ 22T (Sp(t) — zI)_lxt>

Applying Lemma E.3 yields that, for each t,

T+ %(1 +zm(2)) =1+ zm(z2).

We shall show later that 7o <% 0, and therefore mar (2) 2% 1 + zm(z), where the limit does
not depend on t. By the equivalence between Stieltjes transform and the associated measure,
e.g., Theorem B.9 in Bai and Silverstein (2010), and noting that G} has a bounded support with
arbitrarily large probability, it follows that

1 n P
ExtTé(Sn)a:t = / §(2)dG (x) — / §dG,

where the measure G has the Stieltjes transform meg(z) = 1+ zm(z). This is equation (G.3).
Finally, it remains to show that Tp = 0. Let &y = & — %xt be the sample average dropping
x¢ and recall that S, (t) = S, — %xtxtT Using Sherman—Morrison formula again and by a direct

calculation yields that

_ _ B T\ T 1 -1
xT(Sn —2I) Yoy = (xt + Et) (Sn(t) + Ea:txtT — zI) Ty

TEEO-T (@) =202+ LaT 00 =DM}

Note that z; is independent of Z; and S,(¢). From the proof of Theorem 2 in Pan (2014), by
€T
[

substituting TzH for the unit vector x,, therein, we know that

7T (Sut) — 21) 'y = of||z]) as.,

Recall from Lemma E.3 that the reminder term 2z (S,(t) — 2I)~'a; = O(1) almost surely in the

numerator, and furthermore the denominator

1
1+ Ext(Sn(t) —zI)”



where the limit is bounded away from 0. Therefore, almost surely
1S, — 2I) Loy = of||la]|) + O(1).

Let z = a + bi, where i denotes the imaginary unit and b > 0. Recall in the Theorem 2 in Pan
(2014), using equation (2.27) therein,

1

<1+z'z
1-z7(S, — 2I)"1z shtoe

sp

= ‘1 +z7 (S, — zI)_lf‘ <l1+z'z H(S” — D)t

SN

On the other hand, for some large constant M, 7z = fISf < MfTf 22 Me. Tt follows that,

almost surely

1
=0(1).
‘1 —z1(S, — zI)~ 'z (1)
Hence, almost surely
1 2 af xy
Ty = (olllmdlP) +ofllzl) + 0() -0M) =0 (LX) =0,
by using Lemma E.2. Now the proof is complete. O

Appendix H. Proof of Corollaries 1-6

Proof of Corollary 1. It suffices to prove the consistency of the variance estimator (7). A direct
calculation yields the matrix expression given by
n 17 1

o = ! ——€e— ———
n—(d+1)n n—(d+1)

N n—(d+1)ET(I_PZ)€:

ETPZE =T+ T5.
Using the martingale law of large number and noting that d/n — 0, we can show that T} Bin

remains to show that 75 LN 0, which follows from Lemma 6. O

Proof of Corollary 2. Note that the support of F¥» is bounded with probability tending to 1. Tt
follows from Portmanteau Theorem (e.g. Theorem 2.1 in Billingsley) that w, 5 w, where w has

the same expression but uses F instead of F5». O

Proof of Corollaries 3 and 4. We only need to prove under the local alternatives (8) that 52 /o2 LN
1. Expanding

1

myT(I_PZ)?J

:m(XﬁqLe)T(prz) (XB +¢)

_ 1 T T v 2 TxT 1 T
_mﬁ X (I—PZ)XB+mB X (I—Pz)e—l—me e
=T + 15 + T5;.
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Note that Lemma 6 holds under the alternatives as well, and then by carefully checking the proof
of Corollary 1, we already have T3 L Using the spectral norm inequality,

Tl S||I_PZ||sp BT)?TXB

n—(d+1)
8758 = 0s (I18I) % 0.

<.
— n—(d+1)

Finally, by Cauchy-Schwarz inequality 75 < Ty - T3 Eo. O

Proof of Corollary 5. Tt suffices to show that p2 — p2 = p2 — || un)® 5 0. Let

AL A/ |4, ’

A
5= A

P2 =
T (AT, e/ |4,

It suffices to show that: (*) Ay — || |? 5 0; and (**) Ag — 1 5o.
We expand that

TATPyAve 2T Py AT P Ane T PLATPLA, Pye
1= ~ 2 - — 2
| | &

n

5 H — = A1 —2A12+ Ay 3.

n

By Lemma 11 and the assumption that oL Q,
1 T K TA—I 1 T K
B = <\/ﬁ||An||Z A’”) 5 <\/ﬁ||An||Z A"e)
= (2 0p(1)) (@ 4 0p(1)) (2210 + 08(1)) = i + 08(1).

On the other hand, using the definition of spectral norms and Lemma 6,

Amas (ATA,) .
) TP =1-0p(1)- 0p(1) B 0.

|4

Now applying Cauchy—Schwarz inequality we also have that

0< Az <[Pz,

P
|A1,2!2 <A11A13 = 0.
This completes the proof of statement (*). The proof of statement (**) is similar. We expand that
_ engﬁne eTPZggKne eTPZEZ/TnPZe

9= —T—p —2— o — + —— =: Qg1 — 2022+ Ag3.
4. 4. 4.
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Note that the diagonal elements of Kgﬁn are nonnegative and bounded by Apax (Eﬁln), and

2

their sum tr (ZZA’,J = Hg" . Using Lemma 2,

n
2 T
|4

NS e
A9 —1=0p —)\max (ATAH> HA%AnH

i

N (A7) - o (A1)
|21

Finally, by the definition of spectral norm and Lemma 6,

Amax (AZ;E,L) P
0< A273 < — 2 Esze = Op(l) . Op(l) — 0,
|-

and by Cauchy—Schwarz inequality A%}Q <Ag1Aos ﬂ 0. This completes the proof. O

Proof of Corollary 6. We need to prove that p2 — p? L, 0 under the alternatives. Let

AP A/ |4, ’

A
=5

=
o (At er |

It suffices to show that: (¥) A; — p2 5 0; and (¥*) Ay — 1 5o.

By a direct calculation,

~ (I = Py)ALP,A (I — Py)e  BTXT(I— Py)ATP,A,(I — P;)XB

| il
n

4.
3 =: A1+ Ry + Rs.

BTXT(I — P2)AT Py A, (I — Py)e

+2 —
|4

Recall from the proof of Corollary 5 that Ay — p? % 0. For statement (*) it remains to show
that Ry ERN 0, as then by Cauchy-Schwarz inequality we have R3 < 4A1R; L 0. Observe that
Amax(Pz) = Amax(I — Pz) = 1. Then, using the definition of spectral norm,

Ry < Ngn)ﬂTSnﬂ =Op (HBH2> R 0,
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“ /= Al /(2n) =

where we used the facts that Apax (ﬁgﬁ@ < A2, (S,) = Op(1) and Hgn
5~ (wy, + op(1)) which is bounded away from 0 with probability tending to 1.

max

The proof of statement (**) is completely analogous, after replacing EZPZEH by ﬁgﬁn every-

where above. We omit the details. O
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