Search for the Higgs Boson in the HWWljj Decay Channel in pp Collisions at $s = 7$ TeV with the ATLAS Detector

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.107.231801

Citation for published version (APA):
Search for the Higgs Boson in the $H \to WW \to \ell \nu jj$ Decay Channel in pp Collisions at $\sqrt{s} = 7$ TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)

(Received 16 September 2011; published 30 November 2011)

A search for a Higgs boson has been performed in the $H \to WW \to \ell \nu jj$ channel in 1.04 fb$^{-1}$ of pp collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No significant excess of events is observed over the expected background and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range 240 GeV $< m_H <$ 600 GeV. The best sensitivity is reached for $m_H = 400$ GeV, where the 95% confidence level upper bound on the cross section for $H \to WW$ production is 3.1 pb, or 2.7 times the standard model prediction.

DOI: 10.1103/PhysRevLett.107.231801

In the standard model (SM [1–3]), a scalar field vacuum expectation value breaks the electroweak symmetry, gives masses to the W and Z bosons [4–6], and manifests itself directly as the so-called Higgs boson. A primary goal of the Large Hadron Collider (LHC) is to test the SM mechanism directly as the so-called Higgs boson. A primary goal of the LHC experiment is to fully reconstruct the Higgs boson mass.

Higgs boson masses from direct searches at LEP and the Tevatron exclude 156 GeV $< m_H < 160$ GeV [7,8], the Higgs boson is predominantly produced via gluon fusion ($gg \to H$) [9–12] and to a lesser extent via vector boson fusion ($qq \to qgH$) [13–15]. Current limits from direct searches at LEP and the Tevatron exclude Higgs boson masses $m_H < 114.4$ GeV [16] and 156 GeV $< m_H < 177$ GeV [17] at 95% C.L.

For $m_H \geq 135$ GeV, the dominant decay mode of the Higgs boson is $H \to WW^{(*)}$ [18,19]. The most sensitive Higgs boson search channel in the mass region around $m_H = 160$ GeV is the purely leptonic mode $H \to WW^{(*)} \to \ell \nu \ell \nu$. For $m_H \geq 200$ GeV, the $H \to WW \to \ell \nu jj$ channel, where one W decays to a pair of jets ($W \to jj$), also becomes important. The advantage of $H \to WW \to \ell \nu jj$ over $H \to WW \to \ell \nu \ell \nu$ is the ability to fully reconstruct the Higgs boson mass.

This Letter describes a search for a Higgs boson in the $H \to WW \to \ell \nu jj$ channel using the ATLAS detector at the LHC, based on 1.04 fb$^{-1}$ of pp collision data at a center-of-mass energy $\sqrt{s} = 7$ TeV collected during 2011. In this analysis, the distribution of the $\ell \nu jj$ invariant mass $m(\ell \nu jj)$, reconstructed using the charged-lepton neutrino invariant mass constraint $m(\ell \nu) = m(W)$ and the requirement that two of the jets in the event are consistent with a $W \to jj$ decay, is used to search for a Higgs boson signal.

The results of a similar search for $H \to WW \to \ell \nu jj$ based on 35 pb$^{-1}$ of data recorded during the 2010 LHC run were presented in Ref. [20].

The present search, based on the measured shape of the $m(\ell \nu jj)$ distribution, is restricted to $m_H > 240$ GeV, in order to ensure a smoothly varying nonresonant background, well clear of the effective kinematic cutoff $m(\ell \nu jj) \sim 160$ GeV. For $m_H \geq 600$ GeV, the jets from $W \to jj$ decay begin to overlap due to the large W boost, and the natural width of the Higgs boson becomes large. A detailed treatment of these issues is beyond the scope of the present analysis. The best sensitivity in this analysis is expected for $m_H \sim 400$ GeV.

The ATLAS detector [21] is a multipurpose particle physics apparatus with forward-backward symmetric cylindrical geometry covering the pseudorapidity range $|\eta| < 2.5$ for track and $|\eta| < 4.9$ for jet measurements [22]. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by a high-granularity liquid-argon (LAr) sampling electromagnetic (EM) calorimeter. An iron-scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The end-cap and forward regions are instrumented with LAr calorimetry for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters and consists of three large superconducting toroids, each with eight coils, a system of precision tracking chambers, and detectors for triggering.

Detailed Monte Carlo (MC) studies of signal and backgrounds have been carried out [23]. The interaction with the ATLAS detector is modeled with GEANT4 [24] and the events are processed using the same reconstruction that is used to perform the reconstruction on data. The effect of multiple pp interactions in the same bunch crossing (pile-up) at the high luminosities achieved by the LHC in 2011 is modeled by superimposing, at the generation stage, several simulated minimum-bias events on the simulated signal.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
and background events. MC samples were generated with different pile-up levels and subsequently reweighted to match the pile-up conditions observed in the data.

The data used in this analysis were recorded during periods when all ATLAS subdetectors were operating under nominal conditions. The events were triggered by requiring the presence of an electron candidate with transverse energy $E_T > 20$ GeV or a muon candidate with transverse momentum $p_T > 18$ GeV.

Electron candidates are selected from clustered energy deposits in the EM calorimeter with an associated track and are required to satisfy a tight set of identification cuts [25] with an efficiency of $71\pm1.6\%$ for electrons with $E_T > 20$ GeV. While the energy measurement is taken from the EM calorimeter, the pseudorapidity η and azimuthal angle ϕ are taken from the associated track. The cluster is required to be inside the range $|\eta| < 2.47$, excluding 1.37 $< |\eta| < 1.52$ and small calorimeter regions affected by temporary operational problems. The track associated with the electron candidate is required to point back to a reconstructed primary vertex with a transverse impact parameter significance $d_0/\sigma_{d_0} \leq 10$ and an impact parameter along the beam direction $\varepsilon_0 \leq 10$ mm. Electrons are required to be isolated: the sum of the transverse energies in cells inside a cone $\Delta R < 0.3$ around [26] the cluster barycenter (excluding the electron itself) must satisfy $\Sigma(E_{T,\text{calib}}) < 4$ GeV.

Muons are reconstructed by combining tracks in the inner detector and muon spectrometer, with efficiency $92 \pm 0.6\%$ for muons with $p_T > 20$ GeV. Muons are required to pass basic quality cuts on the number and type of hits in the inner detector. They must lie in the range $|\eta| < 2.4$, and satisfy the same impact parameter cuts as electrons. They must also be isolated, with the sum of the transverse momenta of all tracks in a cone $\Delta R < 0.2$ around the muon satisfying $\Sigma(p_T^{track})/p_T^{\mu} < 0.1$.

Jets are reconstructed from topological clusters using the anti-k_t algorithm [27] with radius parameter $R = 0.4$. The reconstructed jets are calibrated using E_T and η dependent correction factors based on MC simulation and validated with data [28]. They are required to have $E_T > 25$ GeV and $|\eta| < 4.5$. Jets are considered b-tagged if they contain a reconstructed displaced secondary vertex consistent with a b-decay [29]. The operating point chosen for this b-tag selection has an efficiency of 50% for b-jets in $t\bar{t}$ events in MC, and the mistag rate for non-b-jets has been measured to be between 0.1% and 2.0%, depending on the $|\eta|$ and p_T of the jet [29]. The event missing transverse momentum E_T is reconstructed starting from topological energy clusters in the calorimeters calibrated according to the type of the object to which they are associated. The momenta of any muons in the event are also taken into account in the E_T measurement.

For this analysis, events are required to have at least one vertex with at least three associated tracks with $p_T > 400$ MeV. There must be exactly one reconstructed lepton candidate (electron or muon) with $p_T > 30$ GeV. In order to ensure that this analysis is statistically independent of the ATLAS $H \rightarrow ZZ \rightarrow \ell\ell\nu\nu$ analysis, events are vetoed if there is an additional lepton with $p_T > 20$ GeV, including electrons which only satisfy the looser identification cuts used in the $H \rightarrow ZZ \rightarrow \ell\ell\nu\nu$ analysis [30].

Events are required to have $E_T > 30$ GeV to account for an unobserved neutrino from $W \rightarrow \ell \nu$ decay. There must be exactly two jets ($H + 0$ jet sample) or exactly three jets ($H + 1$ jet sample) with $E_T > 25$ GeV and $|\eta| < 4.5$. The two jets with invariant mass (m_{jj}) closest to the mass of the W boson are required to satisfy 71 GeV $< m_{jj} < 91$ GeV. These two jets are taken as the W decay jets and are required to lie in the range $|\eta| < 2.8$, where the jet energy scale (JES) is best known (to better than $\pm(4-8)\%$ for $E_T > 25$ GeV [28]).

After this event selection, the background is expected to be dominated by $W +$ jets production. Other important backgrounds are $Z +$ jets, multijets (MJ) from QCD processes, top quark, and diboson (WW, WZ, and ZZ) production. In order to further reject backgrounds from top quark production, events are rejected if any of the jets is b-tagged.

Although the MC is not used to model the background in the final fit used to obtain limits, a combination of MC calculations and data-driven methods is used to better understand the background yields at this intermediate stage. Backgrounds due to $W/Z +$ jets, $t\bar{t}$, and diboson production are modeled using the ALPGEN [31], MC@NLO [32], and HERWIG [33] generators, respectively. A small contribution from $W/Z +$ γ events is generated using MADEVENT [34]. The shape of the MJ background is modeled using histograms derived from data samples selected in an identical way to the $H \rightarrow WW \rightarrow \ell\ell\nu jj$ selection except that the electron identification requirements are loosened and the isolation requirement on muons is inverted. In the loosened selection, electrons satisfying the complete set of identification criteria are not included. Expected contributions from non-QCD processes to the MJ shape histogram are subtracted using MC predictions.

To normalize the MJ shape histogram, the loose lepton control sample selection is further relaxed by removing the E_T cut to construct a shape template for the E_T distribution for the MJ background. The normalizations of this MJ template and the corresponding template for $W/Z +$ jets taken from MC are fit to the observed E_T distribution, and the resulting scale factors are then used to normalize the MJ and $W/Z +$ jets processes in comparisons between data and expectations. Both the gluon fusion and the vector boson fusion signal production processes are simulated using the POWHEG [35,36] event generator interfaced to PYTHIA [37], normalizing to the NNLO cross sections [19] shown in Table I.
In order to reconstruct the invariant mass $m(\ell \nu jj)$ of the WW system, the mass constraint $m(\nu) = m(W)$ is used, where the neutrino transverse momentum p_T^ν is taken from the event E_T. This equation can have real or complex solutions. In the case of complex solutions, the event is rejected. This requirement rejects 45% of background events in both data and MC, but only 36% of MC signal events with $m_H = 400$ GeV. In the case of two real solutions, the solution with smaller neutrino longitudinal momentum $|p_T^\nu|$ is taken, based on simulation studies. Table II shows the observed and expected numbers of events for signal and background after this full selection.

Figure 1 (top) shows the $m(\ell jj)$ distribution for this final sample. The expected signal for $m_H = 400$ GeV is also shown, scaled up by a factor of 2.7. The $m(\ell jj)$ resolution is (7.5 ± 0.6)% at $m_H = 400$ GeV, depending mostly on the jet energy resolution as checked in data versus MC by various jet-balance techniques [38], and shows a $1/\sqrt{m_H}$ dependence over the range of this analysis. Limits are set using a maximum likelihood fit to the shape of the observed $m(\ell jj)$ distribution in the range $200 < m(\ell jj) < 2000$ GeV. The nonresonant background in this fit is modeled by the sum of two exponential functions. The normalization and slope of each exponential are unconstrained parameters in the fit. The double-exponential form for the total background is well justified by fits to the $m(\ell jj)$ distributions obtained by selecting events with m_{jj} just below ($50 < m_{jj} < 60$ GeV) or just above ($100 < m_{jj} < 110$ GeV) the W peak, respectively. As a consistency check, the background parametrization was altered to use three exponentials and the shift in signal yield as compared to the nominal background shape was found to be small as compared to other uncertainties. The $m(\ell jj)$ distribution for the expected signal at each hypothesized m_H is modeled using the signal MC samples.

The fit includes nuisance parameters which account for the uncertainty in the efficiency of the electron, muon, and jet reconstruction. The electron and muon efficiencies are varied within their uncertainties, leading to an uncertainty in the signal efficiency of $\pm 1.6\%$ and $\pm 0.6\%$, for electrons and muons, respectively. Varying the jet energy scale within its uncertainties yields a corresponding uncertainty of $\pm 17\%$ in the expected signal, and smearing the jet energies within the uncertainty on their resolutions results in a signal uncertainty of $\pm 8.6\%$. The limits also take into account a $\pm 3.7\%$ uncertainty on the luminosity determination [39] and a $\pm 19.4\%$ uncertainty on the predicted cross section [19], taken to be independent of mass. The off-shell effects and interference between the signal and backgrounds, which are discussed in Refs. [19,40,41], have been neglected. A conservative estimate of this uncertainty would be $150 \times m_H^3$ (in GeV), where the m_H^3 form is motivated by the scaling of the Higgs width with m_H and the normalization factor is chosen to give $\sim 30\%$ at $m_H = 600$ GeV, based on Fig. 6 of Ref. [41]. If this were included, it would increase the total systematic error by less than 6% for $m_H \leq 500$ GeV, and as much as 15% for $m_H = 600$ GeV where the limit would be increased by $\sim 18\%$.

<table>
<thead>
<tr>
<th>m_H [GeV]</th>
<th>$\sigma(gg \rightarrow H)$ [pb]</th>
<th>$\sigma(qq \rightarrow H)$ [pb]</th>
<th>BR($H \rightarrow \ell^+ \nu jj$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>2.4 ± 0.4</td>
<td>0.30 ± 0.014 − 0.008</td>
<td>0.202</td>
</tr>
<tr>
<td>400</td>
<td>2.0 + 0.31 − 0.34</td>
<td>0.162 + 0.010 − 0.005</td>
<td>0.170</td>
</tr>
<tr>
<td>500</td>
<td>0.85 ± 0.15</td>
<td>0.095 + 0.0068 − 0.0032</td>
<td>0.160</td>
</tr>
<tr>
<td>600</td>
<td>0.33 + 0.063 − 0.058</td>
<td>0.058 + 0.005 − 0.002</td>
<td>0.164</td>
</tr>
</tbody>
</table>

As a consistency check, the background parametrization was altered to use three exponentials and the shift in signal yield as compared to the nominal background shape was found to be small as compared to other uncertainties. The $m(\ell jj)$ distribution for the expected signal at each hypothesized m_H is modeled using the signal MC samples.

The fit includes nuisance parameters which account for the uncertainty in the efficiency of the electron, muon, and jet reconstruction. The electron and muon efficiencies are varied within their uncertainties, leading to an uncertainty in the signal efficiency of $\pm 1.6\%$ and $\pm 0.6\%$, for electrons and muons, respectively. Varying the jet energy scale within its uncertainties yields a corresponding uncertainty of $\pm 17\%$ in the expected signal, and smearing the jet energies within the uncertainty on their resolutions results in a signal uncertainty of $\pm 8.6\%$. The limits also take into account a $\pm 3.7\%$ uncertainty on the luminosity determination [39] and a $\pm 19.4\%$ uncertainty on the predicted cross section [19], taken to be independent of mass. The off-shell effects and interference between the signal and backgrounds, which are discussed in Refs. [19,40,41], have been neglected. A conservative estimate of this uncertainty would be $150 \times m_H^3$ (in GeV), where the m_H^3 form is motivated by the scaling of the Higgs width with m_H and the normalization factor is chosen to give $\sim 30\%$ at $m_H = 600$ GeV, based on Fig. 6 of Ref. [41]. If this were included, it would increase the total systematic error by less than 6% for $m_H \leq 500$ GeV, and as much as 15% for $m_H = 600$ GeV where the limit would be increased by $\sim 18\%$.

<table>
<thead>
<tr>
<th>$H(e\nu jj) + 0j$</th>
<th>$H(\mu\nu jj) + 0j$</th>
<th>$H(e\nu jj) + 1j$</th>
<th>$H(\mu\nu jj) + 1j$</th>
<th>$H + 0j$ or $1j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/Z + jets</td>
<td>5580 ± 150</td>
<td>6690 ± 430</td>
<td>3610 ± 140</td>
<td>3940 ± 360</td>
</tr>
<tr>
<td>Multijet</td>
<td>592 ± 16</td>
<td>222 ± 15</td>
<td>420 ± 16</td>
<td>195 ± 17</td>
</tr>
<tr>
<td>Top</td>
<td>87 ± 17</td>
<td>87 ± 18</td>
<td>271 ± 54</td>
<td>280 ± 56</td>
</tr>
<tr>
<td>Dibosons</td>
<td>226 ± 45</td>
<td>222 ± 45</td>
<td>89 ± 18</td>
<td>112 ± 23</td>
</tr>
<tr>
<td>Expected background</td>
<td>6490 ± 160</td>
<td>7220 ± 440</td>
<td>4390 ± 150</td>
<td>4530 ± 370</td>
</tr>
<tr>
<td>Data</td>
<td>6446</td>
<td>7201</td>
<td>4134</td>
<td>4380</td>
</tr>
</tbody>
</table>

Table II. Expected and observed numbers of events for an integrated luminosity of 1.04 fb$^{-1}$ after all selection cuts (including the requirement that $m(\ell \nu) = m(W)$ has a real solution) for the signal and the main backgrounds. For the $W/Z +$ jets and MJ backgrounds, the uncertainties are taken from the fit to the E_T distribution used to normalize these backgrounds. For signal, top and diboson, the quoted uncertainties are JES ($\pm 17\%$), jet energy resolution (8.6%), cross section ($\pm 10\%$ for both top and diboson, and $\pm 19.4\%$ for signal), and luminosity ($\pm 3.7\%$), added in quadrature; the total errors in the rightmost column for these processes are the linear sum of the errors for the individual channels since these sources of systematic uncertainty are correlated across channels. Statistical errors are small compared to these uncertainties.
FIG. 1 (color online). Top: the reconstructed invariant mass $m(\ell\nu jj)$ in the data summed over lepton flavor and jet multiplicity. The expected backgrounds are also shown. Bottom: the difference between data and the fitted nonresonant background. There is no indication of any significant excess. Limits are extracted using the Profile Likelihood [42] as a test statistic and following the CL_s procedure described in Ref. [43].

Figure 2 shows the 95% CL upper bound on the cross-section times branching ratio for Higgs production in units of the Standard Model prediction, $\sigma \times BR_{H\to WW}/(\sigma \times BR_{H\to WW})_{SM}$, as a function of m_H. The observed cross section limit for $m_H = 400$ GeV is 3.1 pb, or 2.7 times the SM prediction, while the corresponding expected limits are 5.2 pb or 4.5 times the SM expectation. In the SM with an additional heavy fourth generation [44,45], the gluon fusion mechanism for production of a Higgs boson is expected to be substantially enhanced. Within the four generation context, a Higgs boson is excluded at 95% CL by the present data over the range $m_H = 310–430$ GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; M0ST CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GSRT, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; JINR; Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; NISiSW, Poland; GRICES and FCT; Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

T. Hryn’ova, P. J. Hsu, S.-C. Hsu, G. S. Huang, Z. Hubacek, F. Hubaut, F. Huegging, T. B. Huffman, L. Hooft van Huysduynen, T. Horazdovsky, C. Horn, D. F. Howell, T. Hryn’ova,
M. Zeller,174 M. Zeman,124 A. Zemla,38 C. Zendler,20 O. Zenin,127 T. Ženiš,143a Z. Zenonos,121a,121b S. Zenz,14
D. Zerwas,114 G. Zevi della Porta,56 Z. Zhan,32d D. Zhang,22b,22c H. Zhang,87 J. Zhang,5 X. Zhang,32d Z. Zhang,114
L. Zhao,107 T. Zhao,137 Z. Zhao,32b A. Zhemchugov,64 S. Zheng,32a J. Zhong,150,ee B. Zhou,86 N. Zhou,162
D. Ziemińska,15 R. Zimmermann,20 S. Zimmermann,20 S. Zimmermann,37 M. Ziolkowski,4 R. Zitoun,4
L. Živković,34 V. V. Zmouchko,127a G. Zobernig,171 A. Zoccoli,19a,19b Y. Zolnierowski,4 A. Zsenei,29
M. zur Nedden,15 V. Zutshi,105 and L. Zwalinski29
(1ATLAS Collaboration)

1University at Albany, Albany New York, USA
2Department of Physics, University of Alberta, Edmonton AB, Canada
3a Department of Physics, Ankara University, Ankara, Turkey
3b Department of Physics, Dumlupınar University, Kutahya, Turkey
3c Department of Physics, Gazi University, Ankara, Turkey
3d Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
3e Turkish Atomic Energy Authority, Ankara, Turkey
4LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5High Energy Physics Division, Argonne National Laboratory, Argonne Illinois, USA
6Department of Physics, University of Arizona, Tucson Arizona, USA
7Department of Physics, The University of Texas at Arlington, Arlington Texas, USA
8Physics Department, University of Athens, Athens, Greece
9Physics Department, National Technical University of Athens, Zografou, Greece
10Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12a Institute of Physics, University of Belgrade, Belgrade, Serbia
12b Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13Department for Physics and Technology, University of Bergen, Bergen, Norway
14Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley California, USA
15Department of Physics, Humboldt University, Berlin, Germany
16Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18a Department of Physics, Bogazici University, Istanbul, Turkey
18b Division of Physics, Dogus University, Istanbul, Turkey
18c Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
18d Department of Physics, Istanbul Technical University, Istanbul, Turkey
19a INFN Sezione di Bologna, Italy
19b Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21Department of Physics, Boston University, Boston Massachusetts, USA
22Department of Physics, Brandeis University, Waltham Massachusetts, USA
23a Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
23b Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
23c Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
23d Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24Physics Department, Brookhaven National Laboratory, Upton New York, USA
25a National Institute of Physics and Nuclear Engineering, Bucharest, Romania
25b University Politehnica Bucharest, Bucharest, Romania
25c West University in Timisoara, Timisoara, Romania
26Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28Department of Physics, Carleton University, Ottawa ON, Canada
29CERN, Geneva, Switzerland
30Enrico Fermi Institute, University of Chicago, Chicago Illinois, USA
31a Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
31b Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
32b Department of Modern Physics, University of Science and Technology of China, Anhui, China