Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb−1 of pp collisions at √s = 7 TeV using the ATLAS detector

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2011.09.093

Link to publication

Citation for published version (APA):
Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb⁻¹ of pp collisions at √s = 7 TeV using the ATLAS detector

ATLAS Collaboration

A R T I C L E I N F O

Article history:
Received 5 August 2011
Received in revised form 16 September 2011
Accepted 26 September 2011
Available online 1 October 2011
Editor: H. Weerts

1. Introduction

The high-energy collisions at the CERN Large Hadron Collider provide new opportunities to search for physics beyond the Standard Model (SM) of strong and electroweak interactions. One extension common to many models is the existence of additional heavy gauge bosons [1], the charged ones commonly denoted \(W' \), which displays a Jacobian peak that falls sharply above the resonance mass. Here \(p_T \) is the lepton transverse momentum, \(E_T^{\text{miss}} \) is the magnitude of the missing transverse momentum (missing \(E_T \)), and \(\phi_\nu \) is the angle between the \(p_T \) and missing \(E_T \) vectors. Throughout this Letter, transverse refers to the plane perpendicular to the colliding beams, longitudinal means parallel to the beams, \(\theta \) and \(\phi \) are the polar and azimuthal angles with respect to the longitudinal direction, and pseudorapidity is defined as \(\eta = -\ln(\tan(\theta/2)) \).

The main background to the \(W' \rightarrow e\nu \) signal comes from the high-\(m_t \) tail of SM \(W \) boson decay to the same final state. Other backgrounds are \(Z \) bosons decaying into two leptons where one lepton is not reconstructed, \(W \) or \(Z \) decaying to \(\tau \)-leptons where a \(\tau \) subsequently decays to an electron or muon, and diboson production. These are collectively referred to as the electroweak (EW) background. In addition, there is a background contribution from \(t\bar{t} \) production which is most important for the lowest \(W' \) masses considered here, where it constitutes about 10% of the background after event selection. Other strong-interaction background sources, where a light or heavy hadron decays semileptonically or a jet is misidentified as an electron, are estimated to be at most 10% of the total background in the electron channel and a negligible fraction in the muon channel, again after final selection. These are called QCD background in the following.

2. Data

The ATLAS detector [6] has three major components: the inner tracking detector, the calorimeter and the muon spectrometer. Charged particle tracks and vertices are reconstructed with silicon pixel and silicon strip detectors covering \(|\eta| < 2.5 \) and transition radiation detectors covering \(|\eta| < 2.0 \), all immersed in a homogeneous 2 T magnetic field provided by a superconducting solenoid. This tracking detector is surrounded by a finely-segmented, hermetic calorimeter system that covers \(|\eta| < 4.9 \) and
provides three-dimensional reconstruction of particle showers. It uses liquid argon for the inner, electromagnetic compartment followed by a hadronic compartment based on scintillating tiles in the central region (|η| < 1.7) and additional liquid argon for higher |η|. Outside the calorimeter, there is a muon spectrometer with air-core toroids providing a magnetic field, whose integral averages about 3 Tm. The deflection of the muons in the magnetic field is measured with three layers of precision drift-tube chambers for |η| < 2.0 and one layer of cathode-strip chambers followed by two layers of drift-tube chambers for 2.0 < |η| < 2.7. Additional resistive-plate and thin-gap chambers provide muon triggering capability and measurement of the \(\psi \) coordinate.

The data used in the electron channel are the events recorded with a trigger requiring the presence of an electron with \(p_T > 20 \) GeV. The efficiency of this trigger is 98%. For the muon channel, matching tracks in the muon spectrometer and inner detector with combined \(p_T > 22 \) GeV are used to identify events. Events are also recorded if a muon with \(p_T > 40 \) GeV is found in the muon spectrometer. The muon trigger efficiency is 80–90% in the regions of interest.

Each energy cluster reconstructed in the electromagnetic compartment of the calorimeter with \(E_T > 25 \) GeV and \(|\eta| < 1.37 \) or 1.52 < \(|\eta| < 2.47\) is considered as an electron candidate if it matches with an inner detector track. The electron direction is defined as that of the reconstructed track and its energy as that of the cluster, with a small (less than 2%) \(\eta \)-dependent energy scale correction. The resolution of the energy measurement is 2% for \(E_T \approx 50 \) GeV and approaches 1% in the high-\(E_T \) range relevant to this analysis. To discriminate against hadronic jets, requirements are imposed on the lateral shower shapes in the first two layers of the electromagnetic part of the calorimeter and the fraction of energy leaking into the hadronic compartment. A hit in the first pixel layer is required to reduce background from photon conversions in the inner detector material. These requirements give about 90% identification efficiency for electrons with \(E_T > 25 \) GeV and a \(2 \times 10^{-4} \) probability to falsely identify jets as electrons before isolation requirements are imposed [7].

Muon tracks can be reconstructed independently in both the inner detector and muon spectrometer, and the muons used in this study are required to have matching tracks in both systems. The muons are required to have \(p_T > 25 \) GeV, where the momentum of the muon is obtained by combining the inner detector and muon spectrometer measurements. To ensure precise measurement of the momentum, muons are required to have hits in all three muon layers and are restricted to those \(\eta \)-ranges where the muon spectrometer alignment is best understood: approximately \(|\eta| \leq 1.0 \) and 1.3 < \(|\eta| < 2.0\). The average momentum resolution is currently about 15% at \(p_T = 1 \) TeV. About 80% of the muons in these \(\eta \)-ranges are reconstructed, with most of the loss coming from regions with limited detector coverage.

The missing \(E_T \) in the electron channel is obtained from a vector sum over calorimeter cells associated with topological clusters and using local hadronic calibration [8]:

\[
\mathbf{E}_T^{\text{miss}} = \mathbf{E}_{\text{calo}}^{\text{miss}} - \sum_{\text{topo}} \mathbf{E}_{\text{cell}}^{\text{topo}}.
\]

The topological clusters reduce contributions from electronic noise. The \(E_T \) of cells associated with the electron is corrected so their sum equals the electron \(E_T \). Muons only deposit a small fraction of their energy in the calorimeter, and so, in the muon channel, the missing \(E_T \) is obtained from

\[
\mathbf{E}_T^{\text{miss}} = \mathbf{E}_{\text{calo}}^{\text{miss}} - p_T^n + \mathbf{E}_T^{\text{loss}}.
\]

The second term in this vector sum subtracts the muon transverse momentum and the last corrects for the transverse component of the energy deposited in the calorimeter by the muon, which is included in both of the first two terms. The energy loss is estimated by integrating the amount of material traversed and applying a calibrated conversion from path length to energy for each material type.

This analysis makes use of all the \(\sqrt{s} = 7 \) TeV data collected in March–June 2011 that satisfy data quality requirements which guarantee the relevant detector systems were operating properly. The integrated luminosity for the data used in this study is 1.04 fb\(^{-1}\) in both the electron and muon decay channels. The uncertainty on this estimate is 3.7%.

3. Simulation

Except for the QCD background, which is estimated from data, expected signal and background levels are evaluated with simulated samples and normalized using calculated cross sections and the integrated luminosity of the data.

The \(W' \) signal and the \(W/Z \) boson backgrounds are generated with \textsc{Pythia} 6.421 [9] using MRST LO [10] parton distribution functions (PDFs). The \(t\bar{t} \) background is generated with MC@NLO 3.41 [11]. For all samples, final-state photon radiation is handled by \textsc{Pythia} 12. \textsc{ATLAS} full detector simulation [13] based on \textsc{Geant4} [14] is used to propagate the particles and account for the response of the detector.

The \textsc{Pythia} signal model for \(W' \) has \(V-A \) SM couplings but does not include interference between \(W \) and \(W' \). Decays to channels other than \(e\nu \) and \(\mu\nu \), including \(t\nu \), \(ud \), \(sc \) and \(tb \) are included in the calculation of the \(W' \) widths but are not explicitly included as signal or background. At high mass (\(m_{W'} > 1 \) TeV), the branching fraction to any of the lepton decay channels is 8.2%.

The \(W \to e\nu \) events are reweighted to have the NNLO (next-to-next-to-leading-order QCD) mass dependence of \textsc{Zwprod} [15] with MSTW2008 PDFs [16] and following the \textsc{GiGE} scheme [17]. Higher-order electroweak corrections (in addition to the photon radiation included in the simulation) are calculated using \textsc{HoRACE} [17,18]. In the high-mass region of interest, the electroweak corrections reduce the cross sections by 11% at \(m_{W'} = 1 \) TeV and by 18% at \(m_{W'} = 2 \) TeV.

The \(W \to e\nu \) and \(Z \to \ell\ell \) cross sections are calculated at NNLO using \textsc{Fzew} [19,20] with the same PDFs, scheme and electroweak corrections used in the \textsc{Zwprod} event reweighting. The \(W' \to e\nu \) cross sections are calculated in the same way, except the electroweak corrections beyond final-state radiation are not included because the calculation for the SM \(W \) cannot be applied directly. The \(t\bar{t} \) cross section is calculated at approximate-NNLO [21–23] assuming a top-quark mass of 172.5 GeV. The signal and most important background values for \(B \) are listed in Table 1.

Cross-section uncertainties for \(W' \to e\nu \) and the \(W/Z \) [7] and \(t\bar{t} \) [24] backgrounds are estimated from the MSTW2008 PDF error sets, the difference between MSTW2008 and CTEQ6.6 [25] PDF sets, and variation of renormalization and factorization scales by a factor of two. The estimates from the three sources are combined in quadrature. Most of the net uncertainty comes from the error sets and the MSTW–CTEQ difference, in roughly equal proportion. The uncertainty on the cross section for the \(W \to e\nu \) background varies from 5% at \(m_{e\nu} = 500 \) GeV to 19% at \(m_{e\nu} = 2500 \) GeV.

4. Event selection

Events are required to have their primary vertex reconstructed from at least three tracks with \(p_T > 0.4 \) GeV and longitudinal distance less than 200 mm from the center of the collision region. Due to the high luminosity, there were typically five additional interactions per event and the primary vertex is defined to be the
one with the highest summed track p_T^2. Spurious tails in missing E_T arising from calorimeter noise and other detector problems are suppressed by checking the quality of each reconstructed jet and discarding events where any jet has a shape indicating such problems, following Ref. [26]. Events are required to have exactly one candidate electron or one candidate muon satisfying the requirements described above. In addition, the inner detector track associated with the electron or muon is required to be compatible with originating from the primary vertex, specifically to have transverse distance of closest approach $|d_0| < 1$ mm and longitudinal distance at this point $|z_0| < 5$ mm.

To suppress the QCD background, the lepton is required to be isolated. In the electron channel, the isolation energy is measured with the calorimeter in a cone $\Delta R < 0.4$ \((\Delta R = \sqrt{\Delta\eta^2 + (\Delta\phi)^2})\) around the electron track, and the requirement is $\sum E_T < 9$ GeV, where the sum includes all calorimeter energy clusters in the cone excluding the core energy deposited by the electron. The sum is corrected to account for additional interactions and leakage of the electron energy outside this core. In the muon channel, the isolation energy is measured using inner detector tracks with $p_T^\text{trk} > 1$ GeV in a cone $\Delta R < 0.3$ around the muon track. The isolation requirement is $\sum p_T^\text{trk} < 0.05$ GeV, where the muon track is excluded from the sum. The scaling of the threshold with the muon p_T reduces efficiency losses due to radiation from the muon at high p_T.

Finally, missing E_T requirements are imposed to further suppress the QCD background. In both channels, a fixed threshold is applied: $E_T^{\text{miss}} > 25$ GeV. In the electron channel, where hadronic jets may be misidentified as electrons, a threshold proportional to the electron E_T is also applied: $E_T^{\text{miss}} > 0.6E_T$.

In the electron channel, the QCD background is estimated from data using the ABCD technique [27] with the isolation energy and missing E_T serving as discriminants. Consistent results are obtained using the “inverted isolation” technique described in Ref. [4]. In the higher mass bins ($m_T > 700$ GeV) where no events remain in the estimate, the QCD background level is set to zero and assigned an uncertainty equal to 10% of the total background level, a conservative upper limit based on the QCD contribution to the electron m_T distribution.

The QCD background for the muon channel is evaluated using a non-isolated data sample following the same procedure used for the 2010 analysis [4]. With the higher statistics now available, it is clear this background is less than 1% of the total background, so it is neglected in the following.

Table 1

<table>
<thead>
<tr>
<th>Process</th>
<th>Mass [GeV]</th>
<th>σB [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \to \ell \nu$</td>
<td>500</td>
<td>17.25</td>
</tr>
<tr>
<td>600</td>
<td>8.27</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.837</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>0.261</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>0.0887</td>
<td></td>
</tr>
<tr>
<td>1750</td>
<td>0.0325</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0.0126</td>
<td></td>
</tr>
<tr>
<td>2250</td>
<td>0.00526</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>0.00234</td>
<td></td>
</tr>
<tr>
<td>$W \nu \to \ell \ell$</td>
<td>10460</td>
<td></td>
</tr>
<tr>
<td>$\ell \nu \to \ell \ell$</td>
<td>989</td>
<td></td>
</tr>
<tr>
<td>$(m_T^Z > 60$ GeV)</td>
<td>$t\bar{t} \to \ell X$</td>
<td>89.4</td>
</tr>
</tbody>
</table>

The same reconstruction and event selection are applied to both data and simulated samples. Fig. 1 shows the p_T, missing E_T, and m_T spectra for each channel after event selection for the data, for the expected background, and for three examples of W' signals at different masses. The agreement between the data and expected background is good. Table 2 shows an example of how different sources contribute to the background for $m_T > 891$ GeV, the region used to search for a W' with a mass of 1500 GeV. The $W \to \ell \nu$ background dominates. The $Z \to \ell \ell$ background is much larger in the muon channel because most of the energy of the undetected muon is not captured in the calorimeter.

Table 2

<table>
<thead>
<tr>
<th>Process</th>
<th>$\ell \nu$</th>
<th>$\mu \nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \to \ell \nu$</td>
<td>1.59 ± 0.13</td>
<td>1.36 ± 0.13</td>
</tr>
<tr>
<td>$Z \to \ell \ell$</td>
<td>0.00010 ± 0.00004</td>
<td>0.095 ± 0.005</td>
</tr>
<tr>
<td>diboson</td>
<td>0.08 ± 0.08</td>
<td>0.11 ± 0.08</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.08 ± 0.08</td>
<td>0</td>
</tr>
<tr>
<td>QCD</td>
<td>$0.014^{+0.02}_{-0.01}$</td>
<td>$0.014^{+0.02}_{-0.01}$</td>
</tr>
<tr>
<td>Total</td>
<td>$1.75^{+0.24}_{-0.10}$</td>
<td>1.57 ± 0.15</td>
</tr>
</tbody>
</table>

5. **Statistical analysis**

A Bayesian analysis is performed to determine if there is significant evidence for existence of a $W' \to \ell \nu$ signal above the SM background and to set limits on that process. For each candidate mass and decay channel, events are counted above an m_T threshold, $m_T > m_{T_{\text{min}}}$, with the threshold chosen to maximize sensitivity. The expected number of events in each channel is

$$N_{\exp} = \epsilon_{\text{sig}} \int \frac{m_{T_{\text{int}}} \sigma B}{m_{T_{\text{int}}} + m_{T_{\text{bg}}}} dN_{\text{obs}}.$$ \hspace{1cm} (4)

where ϵ_{int} is the integrated luminosity of the data sample and ϵ_{sig} is the event selection efficiency, i.e. the fraction of events that pass event selection criteria and have m_T above threshold. N_{bg} is the expected number of background events. Using Poisson statistics, the likelihood to observe N_{obs} events is

$$L(N_{\text{obs}} | \sigma B) = \frac{(L_{\text{int}} \epsilon_{\text{sig}} \sigma B + N_{\text{bg}})^{N_{\text{obs}}}}{N_{\text{obs}} !} e^{-N_{\text{int}} \epsilon_{\text{sig}} \sigma B + N_{\text{bg}}}. \hspace{1cm} (5)$$

Uncertainties are handled by introducing Gaussian nuisance parameters θ_i, each with a probability density function (pdf) $g_i(\theta_i)$, and integrating the product of the Poisson likelihood with the pdfs. The integrated likelihood is

$$L_{\theta}(N_{\text{obs}} | \sigma B) = \int L(N_{\text{obs}} | \sigma B) \prod_i g_i(\theta_i) d\theta_i. \hspace{1cm} (6)$$

The nuisance parameters are taken to be the explicit dependencies: L_{int}, ϵ_{sig}, and N_{bg}, with the latter evaluated at the central value of L_{int}. Correlations between the nuisance parameters are neglected. This is justified by the small effect that the nuisance parameters themselves have on the limits, as demonstrated below.

The measurements in the two decay channels are combined assuming the same branching fraction for each. Eq. (6) remains valid with the Poisson likelihood replaced by the product of the Poisson likelihoods for the two channels. The electron and muon integrated luminosities measurements are fully correlated. The selection efficiencies are uncorrelated and the background levels are partly correlated, including only the full correlation between the cross section uncertainties in the two channels. The effect of this correlation is small: if it is not included, the observed σB limits for
31

Fig. 1. Spectra of \(p_T\) (top), missing \(E_T\) (center) and \(m_T\) (bottom) for the electron (left) and muon (right) channels after event selection. The points represent data and the filled histograms show the stacked backgrounds. Open histograms are \(W' \rightarrow \ell \nu\) signals added to the background with masses in GeV indicated in parentheses in the legend. The QCD backgrounds estimated from data are also shown. The signal and other background samples are normalized using the integrated luminosity of the data and the NNLO (approximate-NNLO for \(t\bar{t}\)) cross sections listed in Table 1.

6. Parameter estimation and systematics

The inputs for the evaluation of \(\mathcal{L}_B\) (and hence \(P_{\text{post}}\)) are \(L_{\text{int}}, \varepsilon_{\text{sig}}, N_{\text{sig}}, N_{\text{obs}}\) and the uncertainties on the first three. Except for \(L_{\text{int}}\) and its uncertainty, these inputs are all listed in Table 3. The uncertainties on \(\varepsilon_{\text{sig}}\) and \(N_{\text{sig}}\) account for simulation statistics and all relevant experimental and theoretical effects except for the uncertainty on the integrated luminosity. The latter is included separately to allow for the correlation between signal and background. The table also lists the predicted numbers of signal events, \(N_{\text{sig}}\), with their uncertainties accounting for the uncertainties in both \(\varepsilon_{\text{sig}}\) and the cross-section calculation.
The maximum value for the signal selection efficiency is at \(m_W = 1500 \text{ GeV} \). For lower masses, the efficiency falls because the relative \(m_T \) threshold, \(m_{\text{min}}/m_W \), increases to reduce the background level. For higher masses, the efficiency falls because a large fraction of the cross section goes to off-shell production with \(m_{\ell\ell} \ll m_W \).

The fraction of fully simulated signal events that pass the event selection and are above the \(m_T \) threshold provides the initial estimate of \(\varepsilon_{\text{sig}} \). Small corrections are made to account for the difference in acceptance at NNLO (obtained from FEWZ) and that in the LO simulation. These vary from a 7% increase for \(m_W = 500 \text{ GeV} \) to a 10% decrease for \(m_W = 2500 \text{ GeV} \). Contributions from \(W' \to \ell \nu \tau \nu \) with the \(\tau \) -lepton decaying leptonically have been neglected and would increase the \(W' \) event selection efficiencies by 3–4% for the highest masses. The background level is estimated for each mass by summing the EW and \(\tau \tau \) event counts from simulation, and adding the small QCD contribution in the electron channel.

The experimental systematic uncertainties include efficiencies for the electron or muon trigger, reconstruction and selection. Lepton momentum and missing \(E_T \) response, characterized by scale and resolution, are also included. Most of these performance metrics are measured at relatively low \(p_T \) and their values are extrapolated to the high-\(p_T \) regime relevant to this analysis. The uncertainties in these extrapolations are included but are too small to significantly affect the results. The uncertainty on the QCD background estimate also contributes to the background level uncertainties for the electron channel. In some cases, e.g., the missing \(E_T \) scale and the muon QCD background, the experimental systematic uncertainties are significantly reduced from the previous study [4] because the additional available data allow more precise determination. In other cases they are similar or even larger, but have little effect on the final results.

Table 3

<table>
<thead>
<tr>
<th>(m_W) [GeV]</th>
<th>(m_{\text{min}}) [GeV]</th>
<th>(\varepsilon_{\text{sig}})</th>
<th>(N_{\text{sig}})</th>
<th>(N_{\text{obs}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>398</td>
<td>0.388 ± 0.019</td>
<td>6930 ± 620</td>
<td>101.9 ± 10.8</td>
</tr>
<tr>
<td>600</td>
<td>447</td>
<td>0.252 ± 0.015</td>
<td>4500 ± 430</td>
<td>63.7 ± 6.5</td>
</tr>
<tr>
<td>750</td>
<td>562</td>
<td>0.456 ± 0.022</td>
<td>3910 ± 330</td>
<td>62.1 ± 7.1</td>
</tr>
<tr>
<td>1000</td>
<td>708</td>
<td>0.286 ± 0.016</td>
<td>2450 ± 220</td>
<td>41.8 ± 4.7</td>
</tr>
<tr>
<td>1250</td>
<td>794</td>
<td>0.429 ± 0.020</td>
<td>1420 ± 110</td>
<td>20.7 ± 3.7</td>
</tr>
<tr>
<td>1500</td>
<td>891</td>
<td>0.326 ± 0.019</td>
<td>970 ± 79</td>
<td>14.3 ± 1.4</td>
</tr>
<tr>
<td>1750</td>
<td>1000</td>
<td>0.482 ± 0.022</td>
<td>417 ± 35</td>
<td>6.13 ± 0.92</td>
</tr>
<tr>
<td>2000</td>
<td>1122</td>
<td>0.374 ± 0.024</td>
<td>344 ± 4.4</td>
<td>1.57 ± 0.23</td>
</tr>
<tr>
<td>2250</td>
<td>1122</td>
<td>0.515 ± 0.024</td>
<td>17.3 ± 2.4</td>
<td>0.89 ± 0.20</td>
</tr>
<tr>
<td>2500</td>
<td>1122</td>
<td>0.338 ± 0.020</td>
<td>11.4 ± 1.7</td>
<td>0.82 ± 0.14</td>
</tr>
</tbody>
</table>

Table 4

Relative uncertainties on the event selection efficiency and background level for a \(W' \) with a mass of 1500 GeV. The efficiency uncertainties include contributions from trigger, reconstruction and event selection. The cross section uncertainty for \(\varepsilon_{\text{sig}} \) is that assigned to the acceptance correction described in the text. The last row gives the total uncertainties.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\varepsilon_{\text{sig}})</th>
<th>(N_{\text{sig}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Energy/momentum resolution</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Energy/momentum scale</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>QCD background</td>
<td>1%</td>
<td>5%</td>
</tr>
<tr>
<td>Monte Carlo statistics</td>
<td>10%</td>
<td>1%</td>
</tr>
<tr>
<td>Cross section (shape/level)</td>
<td>3%</td>
<td>10%</td>
</tr>
<tr>
<td>All</td>
<td>6%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Table 4 summarizes the uncertainties on the event selection efficiencies and background levels for the \(W' \to \ell \nu \) signal with \(m_W = 1500 \text{ GeV} \) using \(m_T > 891 \text{ GeV} \).

7. Results

None of the observations for any mass in either channel or their combination has a significance above three-sigma, so there is no evidence for the observation of \(W' \). Table 5 and Fig. 2 present the 95% CL (confidence level) observed limits on \(\sigma B \) for both \(W' \to \ell \nu \) decay channels and their combination. The figure also shows the expected limits and the theoretical \(\sigma B \) for an SSM \(W' \). The intersection between the central theoretical prediction and the observed limits provides the 95% CL lower limit on the mass. Table 6 presents the expected and observed \(W' \) mass limits for the electron and muon decay channels and for the combination of the two channels. The observed combined mass limit is 2.15 TeV.
The above results are obtained using a prior probability flat in \(\sigma B \). If this prior is replaced by one flat in coupling strength, the \(\sigma B \) limits improve by 20–28% for \(m_{W'} \geq 1000 \) GeV and by smaller amounts at the lower masses. The reference prior [28,29], which minimizes the information supplied by the prior, gives intermediate results. Limits evaluated with \(C_{\ell} \) [30] for the electron and muon channels and including all uncertainties are nearly identical to the corresponding values in Table 5.

Prior to this Letter, the best limits for \(500 < m_{W'} < 800 \) GeV were established by CDF [2] in \(W^+ \rightarrow e\nu \) with \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV using an integrated luminosity of 3.6 pb\(^{-1}\). At higher masses, the best limits were set by CMS [3] and ATLAS [4], each combining electron and muon channels and using \(pp \) collisions at \(\sqrt{s} = 7 \) TeV with 36 pb\(^{-1}\) of data acquired in 2010. The CDF and CMS limits were obtained with a Bayesian approach, and the earlier ATLAS results were established with \(C_{\ell} \). Fig. 3 compares the limits obtained here with those earlier measurements. The comparison is made using the ratio of the limit to the calculated value of \(\sigma B \), a quantity that is proportional to the square of the coupling strength. The NNLO cross sections in Table 1 are used.
for both the ATLAS and CMS points. The limits presented here provide significant improvement for masses above 600 GeV.

8. Conclusions

The ATLAS detector has been used to search for new high-mass states decaying to a lepton plus missing \(E_T \). The search is performed in pp collisions at \(\sqrt{s} = 7 \) TeV using 1.04 fb\(^{-1}\) of integrated luminosity. No excess above SM expectations is observed. Bayesian limits on \(\sigma_B \) are shown in Figs. 2 and 3. These are the best published limits for \(m_W > 600 \) GeV. A \(W' \) with SM couplings is excluded for masses up to 2.15 TeV at the 95% CL.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; CONICET, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNR, DNRS and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3–CRNS, CEA-DSM/IRFU, France; GANAS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

Department of Physics, University of Massachusetts, Amherst, MA, United States
Department of Physics, McGill University, Montreal, QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor, MI, United States
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
INFN Sezione di Milano, Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
Group of Particle Physics, University of Montreal, Montreal, QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli, Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, Dekalb, IL, United States
Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
Department of Physics, New York University, New York, NY, United States
Ohio State University, Columbus, OH, United States
Faculty of Science, Okayama University, Okayama, Japan
Hunter L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
Department of Physics, Oklahoma State University, Stillwater, OK, United States
Paločky University, RCPITM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, OR, United States
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
University of Pennsylvania, Philadelphia, PA, United States
INFN Sezione di Pavia, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
Department of Physics, University of Pittsburgh, Pittsburgh, PA, United States
Laboratorio de Instrumentación e Física Experimental de Partículas – LIP, Lisboa, Portugal
Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
State Research Center for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina, SK, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
INFN Sezione di Roma I, Dipartimento di Fisica, Università La Sapienza, Roma, Italy
INFN Sezione di Roma Tor Vergata, Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Dipartimento di Fisica, Università Roma Tre, Roma, Italy
Faculté des Sciences Ain Chock, Faculté des Sciences de l'Énergie, Université Hassan II, Casablanca, Morocco
Laboratoire de Physique des Hautes Energies – LPHE, Université Libre de Bruxelles, Brussels, Belgium
Department of Physics and Astronomy, University of California Santa Cruz, Santa Cruz, CA, United States
Department of Physics, University of Washington, Seattle, WA, United States
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby, BC, Canada
SLAC National Accelerator Laboratory, Stanford, CA, United States
Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovakia
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Košice, Slovak Republic
Department of Physics, University of Johannesburg, Johannesburg, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Stockholm University; The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto, ON, Canada