Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb-1 of pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

DOI 10.1016/j.physletb.2011.09.093

Publication date 2011

Document Version Final published version

Published in Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb\(^{-1}\) of \(pp\) collisions at \(\sqrt{s} = 7\) TeV using the ATLAS detector \(\star\)

ATLAS Collaboration

A B S T R A C T

The ATLAS detector at the LHC is used to search for high-mass states, such as heavy charged gauge bosons (\(W'\)), decaying to a charged lepton (electron or muon) and a neutrino. Results are presented based on the analysis of \(pp\) collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 1.04 fb\(^{-1}\). No excess above Standard Model expectations is observed. A \(W'\) with Sequential Standard Model couplings is excluded at the 95% confidence level for masses up to 2.15 TeV.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The high-energy collisions at the CERN Large Hadron Collider provide new opportunities to search for physics beyond the Standard Model (SM) of strong and electroweak interactions. One extension common to many models is the existence of additional heavy gauge bosons [1], the charged ones commonly denoted \(W'\). Such particles are most easily searched for in their decay to a charged lepton (electron or muon) and a neutrino.

This Letter describes such a search performed using 7 TeV \(pp\) collision data collected with the ATLAS detector during 2011 and corresponding to a total integrated luminosity of 1.04 fb\(^{-1}\). No \(W'\) signal is observed, and the data are used to extend current limits [2–4] on \(\sigma B\) (cross section times branching fraction) as a function of \(W'\) mass. The significant improvement over the previous ATLAS result [4] comes mostly from the increase in available integrated luminosity, but also reflects optimization of the event selection and increased acceptance in the muon channel. A lower limit on the mass of a \(W'\) boson in the Sequential Standard Model (SSM), i.e. the extended gauge model of Ref. [5] with \(W'\) coupling to \(W Z\) set to zero, is also reported. In this model, the \(W'\) has the same couplings to fermions as the SM \(W\) boson and thus a width which increases linearly with the \(W'\) mass.

The analysis presented here identifies candidates in the electron and muon channels and sets separate limits for \(W' \rightarrow e\nu\) and \(W' \rightarrow \mu\nu\). In addition, combined limits are evaluated, assuming the same branching fraction for both channels. The kinematic variable used to identify the \(W'\) is the transverse mass

\[
m_T = \sqrt{2p_T E^{\text{miss}}_T (1 - \cos \phi_T)},
\]

which displays a Jacobian peak that falls sharply above the resonance mass. Here \(p_T\) is the lepton transverse momentum, \(E^{\text{miss}}_T\) is the magnitude of the missing transverse momentum (missing \(E_T\)), and \(\phi_T\) is the angle between the \(p_T\) and missing \(E_T\) vectors. Throughout this Letter, transverse refers to the plane perpendicular to the colliding beams, longitudinal means parallel to the beams, \(\theta\) and \(\phi\) are the polar and azimuthal angles with respect to the longitudinal direction, and pseudorapidity is defined as \(\eta = -\ln(\tan(\theta/2))\).

The main background to the \(W' \rightarrow e\nu\) signal comes from the high-\(m_t\) tail of SM \(W'\) boson decay to the same final state. Other backgrounds are \(Z\) bosons decaying into two leptons where one lepton is not reconstructed, \(W\) or \(Z\) decaying to \(r\)-leptons where a \(r\) subsequently decays to an electron or muon, and diboson production. These are collectively referred to as the electroweak (EW) background. In addition, there is a background contribution from \(t\bar{t}\) production which is most important for the lowest \(W'\) masses considered here, where it constitutes about 10% of the background after event selection. Other strong-interaction background sources, where a light or heavy hadron decays semileptonically or a jet is misidentified as an electron, are estimated to be at most 10% of the total background in the electron channel and a negligible fraction in the muon channel, again after final selection. These are called QCD background in the following.

2. Data

The ATLAS detector [6] has three major components: the inner tracking detector, the calorimeter and the muon spectrometer. Charged particle tracks and vertices are reconstructed with silicon pixel and silicon strip detectors covering \(|\eta| < 2.5\) and transition radiation detectors covering \(|\eta| < 2.0\), all immersed in a homogeneous 2 T magnetic field provided by a superconducting solenoid. This tracking detector is surrounded by a finely-segmented, hermetic calorimeter system that covers \(|\eta| < 4.9\) and
provides three-dimensional reconstruction of particle showers. It uses liquid argon for the inner, electromagnetic compartment followed by a hadronic compartment based on scintillating tiles in the central region (|\eta| < 1.7) and additional liquid argon for higher |\eta|. Outside the calorimeter, there is a muon spectrometer with air-core toroids providing a magnetic field, whose integral averages about 3 Tm. The deflection of the muons in the magnetic field is measured with three layers of precision drift-tube chambers for |\eta| < 2.0 and one layer of cathode-strip chambers followed by two layers of drift-tube chambers for 2.0 < |\eta| < 2.7. Additional resistive-plate and thin-gap chambers provide muon triggering capability and measurement of the \psi coordinate.

The data used in the electron channel are the events recorded with a trigger requiring the presence of an electron with \pT > 20 GeV. The efficiency of this trigger is 98%. For the muon channel, matching tracks in the muon spectrometer and inner detector with combined \pT > 22 GeV are used to identify events. Events are also recorded if a muon with \pT > 40 GeV is found in the muon spectrometer. The muon trigger efficiency is 80–90% in the regions of interest.

Each energy cluster reconstructed in the electromagnetic compartment of the calorimeter with \E_T > 25 GeV and |\eta| < 1.37 or 1.52 < |\eta| < 2.47 is considered as an electron candidate if it matches with an inner detector track. The electron direction is defined as that of the reconstructed track and its energy as that of the cluster, with a small (less than 2%) \eta-dependent energy scale correction. The resolution of the energy measurement is 2% for \E_T \approx 50 \text{ GeV} and approaches 1% in the high-\E_T range relevant to this analysis. To discriminate against hadronic jets, requirements are imposed on the lateral shower shapes in the first two layers of the electromagnetic part of the calorimeter and the fraction of energy leaking into the hadronic compartment. A hit in the first pixel layer is required to reduce background from photon conversions in the inner detector material. These requirements give about 90% identification efficiency for electrons with \E_T > 25 \text{ GeV} and a 2 \times 10^{-4} probability to falsely identify jets as electrons before isolation requirements are imposed [7].

Muon tracks can be reconstructed independently in both the inner detector and muon spectrometer, and the muons used in this study are required to have matching tracks in both systems. The muons are required to have \pT > 25 \text{ GeV}, where the momentum of the muon is obtained by combining the inner detector and muon spectrometer measurements. To ensure precise measurement of the momentum, muons are required to have hits in all three muon layers and are restricted to those \eta-ranges where the muon spectrometer alignment is best understood: approximately |\eta| < 1.0 and 1.3 < |\eta| < 2.0. The average momentum resolution is currently about 15% at \pT = 1 \text{ TeV}. About 80% of the muons in these \eta-ranges are reconstructed, with most of the loss coming from regions with limited detector coverage.

The missing \E_T in the electron channel is obtained from a vector sum over calorimeter cells associated with topological clusters and using local hadronic calibration [8]:

\[\mathbf{E}_{\text{miss}}^{\text{el}} = \mathbf{E}_{\text{calo}}^{\text{miss}} - \sum_{\text{topo}} \mathbf{E}_{\text{cell}}^{\text{topo}}. \]

(2)

The topological clusters reduce contributions from electronic noise. The \E_T of cells associated with the electron is corrected so their sum equals the electron \E_T. Muons only deposit a small fraction of their energy in the calorimeter, and so, in the muon channel, the missing \E_T is obtained from

\[\mathbf{E}_{\text{miss}}^{\mu} = \mathbf{E}_{\text{calo}}^{\text{miss}} - \pT_{\mu} + \mathbf{E}_{\text{T}}^{\text{loss}}. \]

(3)

The second term in this vector sum subtracts the muon transverse momentum and the last corrects for the transverse component of the energy deposited in the calorimeter by the muon, which is included in both of the first two terms. The energy loss is estimated by integrating the amount of material traversed and applying a calibrated conversion from path length to energy for each material type.

This analysis makes use of all the \sqrt{s} = 7 \text{ TeV} data collected in March–June 2011 that satisfy data quality requirements which guarantee the relevant detector systems were operating properly. The integrated luminosity for the data used in this study is 1.04 \text{ fb}^{-1} in both the electron and muon decay channels. The uncertainty on this estimate is 3.7%.

3. Simulation

Except for the QCD background, which is estimated from data, expected signal and background levels are evaluated with simulated samples and normalized using calculated cross sections and the integrated luminosity of the data.

The Pythia signal model for W' has V-A SM couplings but does not include interference between W and W'. Decays to channels other than eV and \mu\nu, including \tau\nu, ud, sc and tb are included in the calculation of the W' widths but are not explicitly included as signal or background. At high mass (m_{W'} > 1 \text{ TeV}), the branching fraction to any of the lepton decay channels is 8.2%.

The W \rightarrow e\nu events are reweighted to have the NNLO (next-to-next-to-leading-order QCD) mass dependence of ZWPROD [15] with MSTW2008 PDFs [16] and following the \G_{tt} scheme [17]. Higher-order electroweak corrections (in addition to the photon radiation included in the simulation) are calculated using HO-Q2E [17,18]. In the high-mass region of interest, the electroweak corrections reduce the cross sections by 11% at m_{W'} = 1 \text{ TeV} and by 18% at m_{W'} = 2 \text{ TeV}.

The W \rightarrow e\nu and Z \rightarrow \ell\ell cross sections are calculated at NNLO using FEWZ [19,20] with the same PDFs, scheme and electroweak corrections used in the ZWPROD event reweighting. The W' \rightarrow e\nu cross sections are calculated in the same way, except the electroweak corrections beyond final-state radiation are not included because the calculation for the SM W cannot be applied directly. The \ttbar cross section is calculated at approximate-NNLO-NLO [21–23] assuming a top-quark mass of 172.5 GeV. The signal and most important background values for \ttbar are listed in Table 1.

Cross-section uncertainties for W' \rightarrow e\nu and the W/Z [7] and \ttbar [24] backgrounds are estimated from the MSTW2008 PDF error sets, the difference between MSTW2008 and CTEQ6.6 [25] PDF sets, and variation of renormalization and factorization scales by a factor of two. The estimates from the three sources are combined in quadrature. Most of the net uncertainty comes from the error sets and the MSTW–CTEQ difference, in roughly equal proportion. The uncertainty on the cross section for the W \rightarrow e\nu background varies from 5% at m_{W'} = 500 \text{ GeV} to 19% at m_{W'} = 2500 \text{ GeV}.

4. Event selection

Events are required to have their primary vertex reconstructed from at least three tracks with \pT > 0.4 \text{ GeV} and longitudinal distance less than 200 mm from the center of the collision region. Due to the high luminosity, there were typically five additional interactions per event and the primary vertex is defined to be the
one with the highest summed track p^2_T. Spurious tails in missing E_T arising from calorimeter noise and other detector problems are suppressed by checking the quality of each reconstructed jet and discarding events where any jet has a shape indicating such problems, following Ref. [26]. Events are required to have exactly one candidate electron or one candidate muon satisfying the requirements described above. In addition, the inner detector track associated with the electron or muon is required to be compatible with originating from the primary vertex, specifically to have transverse distance of closest approach $|d_0| < 1$ millimeter and longitudinal distance at this point $|z_0| < 5$ millimeters.

To suppress the QCD background, the lepton is required to be isolated. In the electron channel, the isolation energy is measured with the calorimeter in a cone $\Delta R < 0.4$ ($\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$) around the electron track, and the requirement is $\sum E_T < 9$ GeV, where the sum includes all calorimeter energy clusters in the cone excluding the core energy deposited by the electron. The sum is corrected to account for additional interactions and leakage of the electron energy outside this core. In the muon channel, the isolation energy is measured using inner detector tracks with $p^2_T > 1$ GeV in a cone $\Delta R < 0.3$ around the muon track. The isolation requirement is $\sum p^2_T < 0.05$ p_T, where the muon track is excluded from the sum. The scaling of the threshold with the muon p_T reduces efficiency losses due to radiation from the muon at high p_T.

Finally, missing E_T requirements are imposed to further suppress the QCD background. In both channels, a fixed threshold is applied: $E^\text{miss} > 25$ GeV. In the electron channel, where hadronic jets may be misidentified as electrons, a threshold proportional to the electron E_T is also applied: $E^\text{miss} > 0.6E_T$.

In the electron channel, the QCD background is estimated from data using the ABCD technique [27] with the isolation energy and missing E_T serving as discriminants. Consistent results are obtained using the “inverted isolation” technique described in Ref. [4]. In the higher mass bins ($m_T > 700$ GeV) where no events remain in the estimate, the QCD background level is set to zero and assigned an uncertainty equal to 10% of the total background level, a conservative upper limit based on the QCD contribution to the electron m_T distribution.

The QCD background for the muon channel is evaluated using a non-isolated data sample following the same procedure used for the 2010 analysis [4]. With the higher statistics now available, it is clear this background is less than 1% of the total background, so it is neglected in the following.

Table 1

<table>
<thead>
<tr>
<th>Process</th>
<th>Mass [GeV]</th>
<th>σB [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \rightarrow e\nu$</td>
<td>500</td>
<td>17.25</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>8.27</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.837</td>
</tr>
<tr>
<td></td>
<td>1250</td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>0.0887</td>
</tr>
<tr>
<td></td>
<td>1750</td>
<td>0.0325</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>0.0126</td>
</tr>
<tr>
<td></td>
<td>2250</td>
<td>0.00526</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>0.00234</td>
</tr>
</tbody>
</table>

$W \rightarrow e\nu$, $Z/\gamma^* \rightarrow e\nu$ ($m_Z/\Delta 1 > 60$ GeV), $t\bar{t} \rightarrow tX$

Table 2

<table>
<thead>
<tr>
<th>Process</th>
<th>σB [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \rightarrow e\nu$</td>
<td>1.59 ± 0.13</td>
</tr>
<tr>
<td>$Z \rightarrow \ell\ell$</td>
<td>0.00010 ± 0.00004</td>
</tr>
<tr>
<td>diboson</td>
<td>0.11 ± 0.08</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.08 ± 0.08</td>
</tr>
<tr>
<td>QCD</td>
<td>0.01 ± 0.02</td>
</tr>
<tr>
<td>Total</td>
<td>1.75 ± 0.24</td>
</tr>
</tbody>
</table>

The same reconstruction and event selection are applied to both data and simulated samples. Fig. 1 shows the p_T, missing E_T, and m_T spectra for each channel after event selection for the data, for the expected background, and for three examples of W' signals at different masses. The agreement between the data and expected background is good. Table 2 shows as an example how different sources contribute to the background for $m_T > 891$ GeV, the region used to search for a W' with a mass of 1500 GeV. The $W \rightarrow e\nu$ background dominates. The $Z \rightarrow \ell\ell$ background is much larger in the muon channel because most of the energy of the undetected muon is not captured in the calorimeter.

5. Statistical analysis

A Bayesian analysis is performed to determine if there is significant evidence for existence of a $W' \rightarrow e\nu$ signal above the SM background and to set limits on that process. For each candidate mass and decay channel, events are counted above an m_T threshold, $m_T > m_T^{min}$, with the threshold chosen to maximize sensitivity. The expected number of events in each channel is

$$N_{\text{exp}} = L_{\text{int}} \epsilon_{\text{sig}} L_{\text{B}} B + N_{\text{bg}},$$

where L_{int} is the integrated luminosity of the data sample and ϵ_{sig} is the event selection efficiency, i.e. the fraction of events that pass event selection criteria and have m_T above threshold. N_{bg} is the expected number of background events. Using Poisson statistics, the likelihood to observe N_{obs} events is

$$L(N_{\text{obs}}|\sigma B) = \frac{(L_{\text{int}} \epsilon_{\text{sig}} B + N_{\text{bg}})^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-(L_{\text{int}} \epsilon_{\text{sig}} B + N_{\text{bg})}}.$$

Uncertainties are handled by introducing Gaussian nuisance parameters θ, each with a probability density function (pdf) $g_i(\theta)$, and integrating the product of the Poisson likelihood with the pdfs. The integrated likelihood is

$$L_\theta(N_{\text{obs}}|\sigma B) = \int L(N_{\text{obs}}|\sigma B) \prod g_i(\theta_i) d\theta_i.$$

The nuisance parameters are taken to be the explicit dependencies: L_{int}, ϵ_{sig}, and N_{bg}, with the latter evaluated at the central value of L_{int}. Correlations between the nuisance parameters are neglected. This is justified by the small effect that the nuisance parameters themselves have on the limits, as demonstrated below.

The measurements in the two decay channels are combined assuming the same branching fraction for each. Eq. (6) remains valid with the Poisson likelihood replaced by the product of the Poisson likelihoods for the two channels. The electron and muon integrated luminosities are fully correlated. The selection efficiencies are uncorrelated and the background levels are partly correlated, including only the full correlation between the cross section uncertainties in the two channels. The effect of this correlation is small: if it is not included, the observed σB limits for
the lowest mass points improve by 2% and those for the high-mass points are unchanged.

Bayes theorem gives the posterior probability that the $W' \rightarrow \ell \nu$ has signal strength σB:

$$P_{\text{post}}(\sigma B | N_{\text{obs}}) = N L_B(N_{\text{obs}}|\sigma B)P_{\text{prior}}(\sigma B)$$ \hspace{1cm} (7)

where $P_{\text{prior}}(\sigma B)$ is the assumed prior probability, here chosen to be one (i.e. flat in σB) for $\sigma B > 0$. The constant factor N normalizes the total probability to one. The posterior probability is evaluated for each mass and each decay channel and their combination, and then used to assess discovery significance and set a limit on σB.

6. Parameter estimation and systematics

The inputs for the evaluation of L_B (and hence P_{post}) are L_{int}, ε_{sig}, N_{bg}, N_{obs} and the uncertainties on the first three. Except for L_{int} and its uncertainty, these inputs are all listed in Table 3. The uncertainties on ε_{sig} and N_{bg} account for simulation statistics and all relevant experimental and theoretical effects except for the uncertainty on the integrated luminosity. The latter is included separately to allow for the correlation between signal and background. The table also lists the predicted numbers of signal events, N_{sig}, with their uncertainties accounting for the uncertainties in both ε_{sig} and the cross-section calculation.
The maximum value for the signal selection efficiency is at $m_W' = 1500$ GeV. For lower masses, the efficiency falls because the relative m_T threshold, $m_{T_{\text{min}}}/m_W'$, increases to reduce the background level. For higher masses, the efficiency falls because a large fraction of the cross section goes to off-shell production with $m_{T_{\ell}} \ll m_W'$. The fraction of fully simulated signal events that pass the event selection and are above the m_T threshold provides the initial estimate of ε_{Sig} for each mass. Small corrections are made to account for the difference in acceptance at NNLO (obtained from FEWZ) and that in the LO simulation. These vary from a 7% increase for $m_W' = 500$ GeV to a 10% decrease for $m_W' = 2500$ GeV. Contributions from $W' \rightarrow \tau \nu$ with the τ-lepton decaying leptonically have been neglected and would increase the W' event selection efficiencies by 3–4% for the highest masses. The background level is estimated for each mass by summing the EW and $t\tau$ event counts from simulation, and adding the small QCD contribution in the electron channel.

The experimental systematic uncertainties include efficiencies for the electron or muon trigger, reconstruction and selection. Lepton momentum and missing E_T response, characterized by scale and resolution, are also included. Most of these performance metrics are measured at relatively low p_T and their values are extrapolated to the high-p_T regime relevant to this analysis. The uncertainties in these extrapolations are included but are too small to significantly affect the results. The uncertainty on the QCD background estimate also contributes to the background level uncertainties for the electron channel. In some cases, e.g. the missing E_T scale and the muon QCD background, the experimental systematic uncertainties are significantly reduced from the previous study [4] because the additional available data allow more precise determination. In other cases they are similar or even larger, but have little effect on the final results.

Table 3

Inputs for the $W' \rightarrow e\nu$ and $W' \rightarrow \mu\nu$ σB limit calculations. The first three columns are the W' mass, m_T threshold and decay channel. The next two are the signal selection efficiency, ε_{Sig}, and the prediction for the number of signal events, N_{Sig}, obtained with this efficiency. The last two columns are the expected number of background events, N_{bg}, and the number of events observed in data, N_{obs}. The uncertainties on N_{Sig} and N_{bg} include contributions from the uncertainties on the cross sections but not from that on the integrated luminosity.

<table>
<thead>
<tr>
<th>m_W' [GeV]</th>
<th>$m_{T_{\text{min}}}$ [GeV]</th>
<th>ε_{Sig}</th>
<th>N_{Sig}</th>
<th>N_{bg}</th>
<th>N_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>398</td>
<td>0.388 ± 0.019</td>
<td>6930 ± 620</td>
<td>101.9 ± 10.8</td>
<td>121</td>
</tr>
<tr>
<td>600</td>
<td>447</td>
<td>0.252 ± 0.015</td>
<td>4500 ± 430</td>
<td>63.7 ± 6.5</td>
<td>91</td>
</tr>
<tr>
<td>750</td>
<td>562</td>
<td>0.456 ± 0.022</td>
<td>3910 ± 330</td>
<td>62.1 ± 7.1</td>
<td>69</td>
</tr>
<tr>
<td>1000</td>
<td>708</td>
<td>0.286 ± 0.016</td>
<td>2450 ± 220</td>
<td>41.8 ± 4.7</td>
<td>57</td>
</tr>
<tr>
<td>1250</td>
<td>794</td>
<td>0.429 ± 0.020</td>
<td>1420 ± 110</td>
<td>20.7 ± 3.7</td>
<td>20</td>
</tr>
<tr>
<td>1500</td>
<td>891</td>
<td>0.374 ± 0.024</td>
<td>417 ± 35</td>
<td>6.13 ± 0.92</td>
<td>4</td>
</tr>
<tr>
<td>1750</td>
<td>1000</td>
<td>0.515 ± 0.024</td>
<td>344 ± 4.4</td>
<td>1.57 ± 0.23</td>
<td>2</td>
</tr>
<tr>
<td>2000</td>
<td>1122</td>
<td>0.472 ± 0.023</td>
<td>17.3 ± 2.4</td>
<td>0.89 ± 0.20</td>
<td>1</td>
</tr>
<tr>
<td>2250</td>
<td>1122</td>
<td>0.415 ± 0.019</td>
<td>11.4 ± 1.7</td>
<td>0.82 ± 0.14</td>
<td>1</td>
</tr>
<tr>
<td>2500</td>
<td>1122</td>
<td>0.333 ± 0.018</td>
<td>6.16 ± 0.99</td>
<td>0.48 ± 0.10</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4

Relative uncertainties on the event selection efficiency and background level for a W' with a mass of 1500 GeV. The efficiency uncertainties include contributions from trigger, reconstruction and event selection. The cross section uncertainty for ε_{Sig} is that assigned to the acceptance correction described in the text. The last row gives the total uncertainties.

<table>
<thead>
<tr>
<th>Source</th>
<th>ε_{Sig}</th>
<th>μ_{ν}</th>
<th>N_{Sig}</th>
<th>N_{bg}</th>
<th>N_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>3%</td>
<td>4%</td>
<td>3%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Energy/momentum resolution</td>
<td>-</td>
<td>2%</td>
<td>3%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Energy/momentum scale</td>
<td>1%</td>
<td>1%</td>
<td>5%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>QCD background</td>
<td>-</td>
<td>10%</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monte Carlo statistics</td>
<td>3%</td>
<td>3%</td>
<td>9%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Cross section (shape/level)</td>
<td>3%</td>
<td>3%</td>
<td>10%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>5%</td>
<td>6%</td>
<td>18%</td>
<td>15%</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 summarizes the uncertainties on the event selection efficiencies and background levels for the $W' \rightarrow \ell \nu$ signal with $m_W' = 1500$ GeV using $m_T > 891$ GeV.

7. Results

None of the observations for any mass in either channel or their combination has a significance above three-sigma, so there is no evidence for the observation of $W' \rightarrow \ell \nu$. Table 5 and Fig. 2 present the 95% CL (confidence level) observed limits on σB for both $W' \rightarrow \ell \nu$ decay channels and their combination. The figure also shows the expected limits and the theoretical σB for an SSM W'. The intersection between the central theoretical prediction and the observed limits provides the 95% CL lower limit on the mass. Table 6 presents the expected and observed W' mass limits for the electron and muon decay channels and for the combination of the two channels. The observed combined mass limit is 2.15 TeV.
Fig. 2. Expected and observed limits on σB for $W' \to e\nu$ (top), $W' \to \mu\nu$ (center), and the combination (bottom) assuming the same branching fraction for both channels. The NNLO calculated cross section and its uncertainty are also shown.

The above results are obtained using a prior probability flat in σB. If this prior is replaced by one flat in coupling strength, the σB limits improve by 20–28% for $m_{W'} > 1000$ GeV and by smaller amounts at the lower masses. The reference prior [28,29], which minimizes the information supplied by the prior, gives intermediate results. Limits evaluated with CL_s [30] for the electron and muon channels and including all uncertainties are nearly identical to the corresponding values in Table 5.

Prior to this Letter, the best limits for $500 < m_{W'} < 800$ GeV were established by CDF [2] in $W' \to e\nu$ with $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV using an integrated luminosity of 5.3 fb$^{-1}$. At higher masses, the best limits were set by CMS [3] and ATLAS [4], each combining electron and muon channels and using pp collisions at $\sqrt{s} = 7$ TeV with 36 pb$^{-1}$ of data acquired in 2010. The CDF and CMS limits were obtained with a Bayesian approach, and the earlier ATLAS results were established with CL_s. Fig. 3 compares the limits obtained here with those earlier measurements. The comparison is made using the ratio of the limit to the calculated value of σB, a quantity that is proportional to the square of the coupling strength. The NNLO cross sections in Table 1 are used

<table>
<thead>
<tr>
<th>$m_{W'}$ [GeV]</th>
<th>95% CL limit on σB [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>S</td>
</tr>
<tr>
<td>500</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>121</td>
</tr>
<tr>
<td>600</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>61</td>
</tr>
<tr>
<td>750</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td>28.5</td>
</tr>
<tr>
<td>1000</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>10.6</td>
</tr>
<tr>
<td>1250</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>10.1</td>
</tr>
<tr>
<td>1500</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>1750</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>7.9</td>
</tr>
<tr>
<td>2000</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>6.7</td>
</tr>
<tr>
<td>2250</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td>2500</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$m_{W'}$ [TeV]</th>
<th>Exp.</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.17</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>2.08</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>2.23</td>
<td>2.15</td>
<td></td>
</tr>
</tbody>
</table>

Table 5
Upper limits on σB for $W' \to e\nu$. The first two columns are the mass and decay channel and the following columns are the 95% CL limits with headers indicating the nuisance parameters for which uncertainties are included: S for the event selection efficiency (ϵ_{SEL}), B for the background level (N_{BG}), and I for the integrated luminosity (L_{int}). Columns labeled SBL include all uncertainties and are used to evaluate mass limits. Results are given for the electron and muon channels and both combined.

Table 6
Lower limits at 95% CL on the SSM W' mass. The first column is the decay channel ($e\nu$, $\mu\nu$ or both combined) and the following columns give the expected (Exp.) and observed (Obs.) mass limits.
for both the ATLAS and CMS points. The limits presented here provide significant improvement for masses above 600 GeV.

8. Conclusions

The ATLAS detector has been used to search for new high-mass states decaying to a lepton plus missing E_T. The search is performed in pp collisions at $\sqrt{s} = 7$ TeV using 1.04 fb$^{-1}$ of integrated luminosity. No excess above SM expectations is observed. Bayesian limits on σB are shown in Figs. 2 and 3. These are the best published limits for $m_{W'} > 600$ GeV. A W' with SM couplings is excluded for masses up to 2.15 TeV at the 95% CL.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not have been operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and KREA, Barcelona, Spain
12 (c) Institute of Physics, University of Belgrade, Belgrade; (d) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Daeug University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep;
19 (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
20 Physicalakusitsches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston, MA, United States
22 Department of Physics, Brandeis University, Waltham, MA, United States
23 (a) Universidade Federal do Rio De Janeiro COPE/EEF; Rio de Janeiro, (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora, (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paolo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa, ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui;
33 (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
35 Nevis Laboratory, Columbia University, Irvington, NY, United States
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
38 Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, United States
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham, NC, United States
45 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, United States
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
59 (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
60 Faculty of Science, Hiroshima University, Hiroshima, Japan
61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
62 Department of Physics, Indiana University, Bloomington, IN, United States
63 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
64 University of Iowa, Iowa City, IA, United States
65 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
66 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
67 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
68 Graduate School of Science, Kobe University, Kobe, Japan
69 Faculty of Science, Kyushu University, Fukuoka, Japan
70 Kyoto University of Education, Kyoto, Japan
71 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
72 Physics Department, Lancaster University, Lancaster, United Kingdom
73 (a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
75 Department of Physics, Joseph Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
76 Department of Physics, Queen Mary University of London, London, United Kingdom
77 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
78 Department of Physics and Astronomy, University College London, London, United Kingdom
79 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
80 Fysiksa Institutionen, Lunds Universitet, Lund, Sweden
81 Departamento de Física Teórica, C-15, Universidad Autonoma de Madrid, Madrid, Spain
82 Institut für Physik, Universität Mainz, Mainz, Germany
83 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
84 CPTM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France