Engineering retinal-based phototrophy via a complementary photosystem in Synechocystis sp. PCC6803

Chen, Q.

Citation for published version (APA):
INVITATION

You are cordially invited to the public defense of my PhD thesis entitled:

Engineering retinal-based phototrophy via a complementary photosystem in *Synechocystis* sp. PCC6803

Que Chen
Q.Chen@uva.nl

On Wednesday 14th June 2017 at 12:00 in the Agnietenkapel Oudezijds Voorburgwal 231, Amsterdam

Paranymphs:

Wei Du
W.Du1@uva.nl

Jeroen van der steen
jeroen.vandersteen@gmail.com
Engineering retinal-based phototrophy via a complementary photosystem in *Synechocystis* sp. PCC6803

Que Chen
Engineering retinal-based phototrophy via a complementary photosystem in Synechocystis sp. PCC6803

Que Chen
© Que Chen, 2017

All rights reserved. No part of this publication may be reproduced in any form without prior written permission from the author.

The research reported in this thesis was carried out in the Molecular Microbial Physiology group of the Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam. The work was funded by Biosolar Cells (BSC core project grant C2.9 to WJdG and KJH), co-financed by the Dutch Ministry of Economic Affairs. Que Chen was supported by a PhD scholarship from the Chinese Scholarship Council.

Cover design: The pictures on the cover page show the crystal structure of a proteorhodopsin. Image on the front and back page shows the structure of its hexametric oligomer at the intracellular side and the extracellular side, respectively. Protons (H+) are being pumped from the intracellular side (front page) to extracellular side (back page), thereby passing through the whole thesis. The cover has been designed by Jos Arents and Que Chen.

The images are reproduced based on supplementary data from Ran, Tingting, et al. 2013. Acta Crystallographica Section D: Biological Crystallography with permission.

Layout: The thesis layout has been designed by Yang Liu via software of Adobe InDesign CC 2017

ISBN: 978-94-028-0656-4

Printed by: Ipskamp Drukkers, Enschede, the Netherlands
Engineering retinal-based phototrophy via a complementary photosystem in *Synechocystis* sp. PCC6803
Promotiecommissie:

Promotor: Prof. dr. K. J. Hellingwerf Universiteit van Amsterdam
Copromotor: Dr. F. Branco dos Santos Universiteit van Amsterdam

Overige leden:

- Prof. dr. R. Croce Vrije Universiteit Amsterdam
- Prof. dr. J. van der Oost Wageningen University & Research
- Prof. dr. W. J. de Grip Universiteit Leiden
- Prof. dr. H. V. Westerhoff Universiteit van Amsterdam
- Prof. dr. L. W. Hamoen Universiteit van Amsterdam
- Dr. G. J. Smits Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Contents

Chapter 1
General introduction: Engineering a proton pumping rhodopsin as a complementary photosystem in *Synechocystis* sp. PCC6803

Chapter 2
‘Direct conversion’: Artificial photosynthesis with cyanobacteria

Chapter 3
Expression of *holo*-proteorhodopsin in *Synechocystis* sp. PCC6803

Chapter 4
Functional expression of *Gloeobacter* rhodopsin in *Synechocystis* sp. PCC6803

Chapter 5
Retinal metabolism in *Synechocystis* sp. PCC6803 and the formation of *holo*-proteorhodopsin

Chapter 6
Combining retinal-based and chlorophyll-based (oxygenic) photosynthesis: Proteorhodopsin expression increases growth rate and fitness of a ΔPSI-strain of *Synechocystis* sp. PCC6803

Chapter 7
General discussion: Potential applications of PR-based phototrophy and the challenges in exploring its physiological effect in *vivo*

References

Summary

Samenvatting

Acknowledgements

List of publications