Engineering retinal-based phototrophy via a complementary photosystem in Synechocystis sp. PCC6803

Chen, Q.

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
INVITATION

You are cordially invited to the public defense of my PhD thesis entitled:

Engineering retinal-based phototrophy via a complementary photosystem in *Synechocystis* sp. PCC6803

Que Chen

Q.Chen@uva.nl

On Wednesday 14th June 2017 at 12:00 in the Agnietenkapel Oudezijds Voorburgwal 231, Amsterdam

Paranymphs:

Wei Du
W.Du1@uva.nl

Jeroen van der steen
jeroen.vandersteen@gmail.com
Engineering retinal-based phototrophy via a complementary photosystem in *Synechocystis* sp. PCC6803

Que Chen
Engineering retinal-based phototrophy via a complementary photosystem in *Synecocystis* sp. PCC6803

Que Chen

© Que Chen, 2017

All rights reserved. No part of this publication may be reproduced in any form without prior written permission from the author.

The research reported in this thesis was carried out in the Molecular Microbial Physiology group of the Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam. The work was funded by Biosolar Cells (BSC core project grant C2.9 to WJdG and KJH), co-financed by the Dutch Ministry of Economic Affairs. Que Chen was supported by a PhD scholarship from the Chinese Scholarship Council.

Cover design: The pictures on the cover page show the crystal structure of a proteorhodopsin. Image on the front and back page shows the structure of its hexametric oligomer at the intracellular side and the extracellular side, respectively. Protons (H+) are being pumped from the intracellular side (front page) to extracellular side (back page), thereby passing through the whole thesis. The cover has been designed by Jos Arents and Que Chen.

The images are reproduced based on supplementary data from Ran, Tingting, *et al.* 2013. *Acta Crystallographica Section D: Biological Crystallography* with permission.

Layout: The thesis layout has been designed by Yang Liu via software of Adobe InDesign CC 2017

ISBN: 978-94-028-0656-4

Printed by: Ipskamp Drukkers, Enschede, the Netherlands
Engineering retinal-based phototrophy via a complementary photosystem in *Synechocystis* sp. PCC6803

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op woensdag 14 juni 2017, te 12:00 uur

door

Que Chen

geboren te Mian Yang, China
Promotiecommissie:

Promotor: Prof. dr. K. J. Hellingwerf Universiteit van Amsterdam
Copromotor: Dr. F. Branco dos Santos Universiteit van Amsterdam

Overige leden:

 Prof. dr. R. Croce Vrije Universiteit Amsterdam
 Prof. dr. J. van der Oost Wageningen University & Research
 Prof. dr. W. J. de Grip Universiteit Leiden
 Prof. dr. H. V. Westerhoff Universiteit van Amsterdam
 Prof. dr. L. W. Hamoen Universiteit van Amsterdam
 Dr. G. J. Smits Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Contents

Chapter 1 1
General introduction: Engineering a proton pumping rhodopsin as a complementary photosystem in Synechocystis sp. PCC6803

Chapter 2 15
‘Direct conversion’: Artificial photosynthesis with cyanobacteria

Chapter 3 33
Expression of holo-proteorhodopsin in Synechocystis sp. PCC6803

Chapter 4 59
Functional expression of Gloeobacter rhodopsin in Synechocystis sp. PCC6803

Chapter 5 81
Retinal metabolism in Synechocystis sp. PCC6803 and the formation of holo-proteorhodopsin

Chapter 6 107
Combining retinal-based and chlorophyll-based (oxygenic) photosynthesis: Proteorhodopsin expression increases growth rate and fitness of a ΔPSI-strain of Synechocystis sp. PCC6803

Chapter 7 137
General discussion: Potential applications of PR-based phototrophy and the challenges in exploring its physiological effect in vivo

References 153
Summary 175
Samenvatting 179
Acknowledgements 183
List of publications 187