Engineering retinal-based phototrophy via a complementary photosystem in Synechocystis sp. PCC6803

Chen, Q.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

51. Jung KH. 2012. in New type of cation pumping microbial rhodopsins in marine bacteria
, (ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA), pp 1155.

References

Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by synechocystis sp. PCC6803. Biotechnol Biofuels. 7: 99.

164. Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, et al. 2010. Enhance-

REFERENCES

257. **Vidal R, Lopez-Maury L, Guerrero MG, Florencio FJ.** 2009. Characterization of an alcohol dehydrogenase from the cyanobacterium synecochystis sp. strain PCC 6803 that responds to environmental stress conditions via the HilK34-Rre1 two-component system.

286. Kok B. 1948. in *A critical consideration of the quantum yield of Chlorella-photosynthesis.* (Wageningen University & Research, Amsterdam : Junk), pp 0-56.

References

