Engineering retinal-based phototrophy via a complementary photosystem in Synechocystis sp. PCC6803

Chen, Q.

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
References

94. Hellingswerf KJ. 1979. in *Structural and functional studies on lipid vesicles containing bacteriorhodopsin (Doctoral dissertation).* (university of Amsterdam, WorldCat Database), pp 27.

164. Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, et al. 2010. Enhance-
References

References

257. **Vidal R, Lopez-Maury L, Guerrero MG, Florencio FJ.** 2009. Characterization of an alcohol dehydrogenase from the cyanobacterium synnechocystis sp. strain PCC 6803 that responds to environmental stress conditions via the Hik34-Rre1 two-component system.

371. Hellingwerf KJ, Crielard W, Westerhoff HV. 1993. in Modern Trends in Biothermokinet-

