Engineering retinal-based phototrophy via a complementary photosystem in Synechocystis sp. PCC6803

Chen, Q.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References


164. Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, et al. 2010. Enhance-
References


References

201. Kloer D, Schulz G. 2006. Structural and biological aspects of carotenoid cleavage. Cellu-
lar and Molecular Life Sciences CMLS. 63: 2291-2303.


tron transport involved in PxA-dependent proton extrusion in synechocystis sp. strain
PCC6803: Effect of pxaA inactivation on CO2, HCO3-, and NO3- uptake. J Bacteriol. 180:
3799-3803.

terium synechocystis PCC6803 to salt stress induces concerted changes in respiration

involves RNase E/G-type endoribonuclease cleavage at the AU-box and SD sequences in

psbA gene expression by cis-encoded antisense RNAs in synechocystis sp. PCC 6803.

207. Herrman M, Aro E, Tyystjärvi T. 2001. Two distinct mechanisms regulate the transcrip-
tion of photosystem II genes in synechocystis sp. PCC 6803. Physiol Plantarum. 112:
531-539.

psbA2 region in synechocystis 6803: Identification of a putative cis element involved in

but not production of psbA transcripts in the cyanobacterium synechocystis 6803. Plant
Mol Biol. 16: 891-897.

sis-specific transcripts in the cyanobacterium synechocystis 6803. Plant Mol Biol. 13:
693-700.

production in cyanobacteria, using synechocystis as the model organism. Metab Eng.
12: 70-79.

synechocystis sp strain 6803 produces a novel and functional D1 protein. Plant Cell. 9:
869-878.

chrome P450: CYP120A1 from synechocystis sp. PCC 6803. Arch Biochem Biophys.
436: 110-120.

echocystis CYP120A1 revealed the first nonanimal retinoic acid hydroxylase. FEBS Jour-
nal. 276: 5416-5431.

stoichiometries of membrane proteins by mass spectrometry: Microbial rhodopsins and
a potassium ion channel. Physical Chemistry Chemical Physics. 12: 3480-3485.

216. Kirchman DL, Hanson TE. 2013. Bioenergetics of photoheterotrophic bacteria in the
oceans. Environmental Microbiology Reports. 5: 188-199.

217. dos Santos FB, Du W, Hellingwerf KJ. 2014. Synechocystis: Not just a plug-bug for CO2,
but a green E. coli. Frontiers in Bioengineering and Biotechnology. 2: 36.

of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res. 46: 1460-
1472.


ing strategy. Biotechnology for Biofuels. 10: 93.


371. Hellingwerf KJ, Crielard W, Westerhoff HV. 1993. in Modern Trends in Biothermokinet-


