Zero-shot Query Contextualization for Conversational Search

Krasakis, A.M.; Yates, A.; Kanoulas, E.

DOI
10.48550/arXiv.2204.10613
10.1145/3477495.3531769

Publication date
2022

Document Version
Final published version

Published in
SIGIR '22

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 426, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Zero-shot Query Contextualization for Conversational Search

Antonios Minas Krasakis
a.m.krasakis@uva.nl
University of Amsterdam
The Netherlands

Andrew Yates
a.c.yates@uva.nl
University of Amsterdam
The Netherlands

Evangelos Kanoulas
e.kanoulas@uva.nl
University of Amsterdam
The Netherlands

ABSTRACT
Current conversational passage retrieval systems cast conversational search into ad-hoc search by using an intermediate query resolution step that places the user’s question in context of the conversation. While the proposed methods have proven effective, they still assume the availability of large-scale question resolution and conversational search datasets. To waive the dependency on the availability of such data, we adapt a pre-trained token-level dense retriever on ad-hoc search data to perform conversational search with no additional fine-tuning. The proposed method allows to contextualize the user question within the conversation history, but restrict the matching only between question and potential answer. Our experiments demonstrate the effectiveness of the proposed approach. We also perform an analysis that provides insights of how contextualization works in the latent space, in essence introducing a bias towards salient terms from the conversation.

CCS CONCEPTS
- Information systems → Information retrieval; Users and interactive retrieval. Retrieval models and ranking; Information retrieval query processing.

KEYWORDS
information retrieval, conversational search, neural ranking

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org
SIGIR '22, July 11–15, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07...
https://doi.org/10.1145/3477495.3531769

1 INTRODUCTION
The introduction of commercial voice assistants along with advances in natural language understanding have enabled users to interact with retrieval systems in richer and more natural ways through conversations. While those interactions can ultimately lead to increased user satisfaction, they are inherently complex to handle as they require an understanding of the entire dialogue semantics by the retrieval system. Hence, the retrieval of relevant passages within the context of a conversation has risen as a promising research direction [2, 7, 15, 19].

Understanding the semantics of language has been empowered by the availability of large-scale datasets in a variety of tasks [3, 20, 29], which are lacking when it comes to conversational retrieval. Constructing a large and diverse conversational retrieval dataset can be quite challenging. Conversational queries are tail queries. As conversations evolve, multi-turn queries are likely to be unique and therefore cannot be aggregated for anonymisation, making it unlikely that publicly available resources can be built from real user interactions. Therefore, datasets need to be built using human experts in controlled environments. However, this approach leads to small-scale datasets [6–8, 22] and requires explicit conversation development instructions which bias the nature of the constructed dataset and hurt the generalizability of models to new types of conversations [1].

On the other hand there is a plethora of data resources for ad-hoc retrieval, e.g. Craswell et al. [4]. Therefore, most conversational retrieval approaches so far introduce a query rewriting step, which essentially decomposes the conversational search problem into a query resolution problem and an ad-hoc retrieval problem. Regarding query resolution, the majority of methods perform an explicit query re-write attempting to place the user’s question in the context of the conversation, by either expanding queries with terms from recent history [27], or rewriting the full question using a sequence-to-sequence model [12, 16, 18, 25, 30]. Yu et al. [31] learns to better encode the user’s question in a latent space so that the learnt embeddings are close to human rewritten questions, while Lin et al. [17] uses human rewritten questions to generate large-scale pseudo-relevance labels and bring the user’s question embeddings closer to the pseudo-relevant passage embeddings. In all cases, supervision is necessary and it is performed against CANARD [11], which consists of 40K synthetic resolutions of conversational questions. The only approaches that do not use supervision simply expand the user’s question by extracting general informative terms from the conversation history [2, 18].

In this work we pose the following key research question: to what extent can we transfer knowledge from ad-hoc retrieval to the domain of conversational retrieval, where data scarcity is and will likely remain an imminent problem? To answer this question we adapt CoLBERT [14], the state-of-the-art BERT-based token-level dense retriever pre-trained on ad-hoc search data. We propose Zero-shot Conversational Contextualization (ZeCo²), a variant of CoLBERT which on one hand contextualizes all embeddings within the conversation, but on the other hand matches only the contextualized terms of the last user’s question with potential answers (Figure 1). As such our approach is zero-shot in the conversational domain, that is, it does not use any conversational search data, neither rewritten queries nor relevance judgements, to retrieve relevant passages.
is also different from the aforementioned unsupervised keyword extraction works, since it focuses on contextualizing embeddings rather than adding terms to queries. In this work we aim to answer the following research questions:

RQ1 Can zero-shot contextualization of conversational questions improve dense passage retrieval?
RQ2 How does zero-shot contextualization change the last turn’s question embeddings?
RQ3 How is zero-shot contextualization affected by the anaphora phenomena found in conversations?

To the best of our knowledge this is one of the few efforts for zero-shot conversational search. Our approach remains agnostic and unbiased to small conversational datasets and it can prove particularly useful in privacy-sensitive settings (eg. medical domain), where annotating rewrites of conversational questions is not an option. Further, our method is orthogonal to and can be applied in combination with existing query resolution techniques.

We open-source our code for reproducibility and future research purposes.

2 METHODOLOGY

In this section, we describe our zero-shot dense retriever for conversational retrieval. Our approach consists of two main components: an encoder that produces token embeddings of a document or query and a matching component that compares query and document token embeddings to produce a relevance score.

2.1 Task & Notation

Let q_t be the user utterance/query to the system at the t-th turn, and p_t the corresponding canonical passage response provided by the dataset. We formulate our passage retrieval task as follows: Given the last user utterance q_t and the previous context of the conversation at turn t: $ctx_t = (q_0, p_0, ..., q_{t-1}, p_{t-1})$, we produce a ranking of k passages $R_{q_t} = (p_1^q, p_2^q, ..., p_k^q)$ from a collection C that are most likely to satisfy the users' information need.

2.2 Token-level Dense Retrieval

In this section we briefly describe CoBERT [14], a dense retrieval model that serves as our query and document encoder f_{Enc}. In contrast to other dense retrievers that construct global query and document representations (eg. DPR [13] or ANCE [28]), CoBERT generates embeddings of all input tokens. This allows us to perform matching at the token-level. To generate token embeddings, CoBERT passes each token through multiple attention layers in a transformer encoder architecture, which contextualizes each token with respect to its surroundings [9, 26]. We use E_q to denote the embeddings produced for a query q and E_d to denote the embeddings produced for a document d. To compute a query-document score, CoBERT performs a soft-match between the embeddings of a query token w_q and a document token w_d by taking their inner product. Specifically, each query token is matched with the most similar document token and the summation is computed:

$$score(w_q, w_d) = \sum_{q \in w_q} \sum_{d \in w_d} E_q \cdot E_d^T$$

Figure 1: Zero-shot Conversational Dense Retriever (figure adapted from [14] with permission)

2.3 Conversational Token-level Dense Retrieval

Our approach extends the idea of token contextualization to multiturn conversations. When dealing with conversations, it is crucial for each turn to be contextualized with respect to the conversation, because conversational queries have continuity and often contain phenomena of ellipsis or anaphoras to previous turns [24, 27, 30].

In practice, CoBERT serves as our query and document encoder f_{Enc}. We encode documents in the usual way. However, to encode a query at turn t, we concatenate the conversational context ctx_t with the last query utterance q_t before generating contextualized query token embeddings E_q^*.

$$E_q^* := f_{Enc}(ctx_t \circ [SEP] \circ q_t)$$

While E_q^* constitutes token embeddings of the entire conversation (i.e., the input to f_{Enc}), our goal is to perform ranking based on only tokens from the last utterance q_t. To do so, we (1) replace E_w with E_w^* in the token-level matching function (Eq 1) and (2) compute the score as $Score(q_t, d)$, so that only query tokens from the last turn contribute to it.

$$Score(q_t, d) := \sum_{w_q \in q_t, w_d \in d} \max_{E_q^*, E_d^*} E_q^* \cdot E_d^T$$

Note that, this approach of contextualizing q_t with respect to the conversation history ctx_t avoids the need for resolution supervision from conversational tasks. Instead, it relies on the pre-training of three different tasks: (a) Masked Language Modelling, (b) next sentence prediction tasks (pre-training of BERT [9]) and the (c) ad-hoc ranking task (pre-training of CoBERT [14]).

3 EXPERIMENTAL SETUP

In this section we outline our experimental setup.

3.1 Datasets and Evaluation

We test our approach on the TREC CAsT ’19, ’20 and ’21 [6–8] datasets. Each dataset consists of about 25 conversations, with an average of 10 turns per conversation. CAsT ’20 and ’21 include canonical passage responses to previous questions, that the user can refer to or give feedback. The corpus consists of the MSMarco...
We use ColBERT v1, while our method remains applicable to v2 \[23\], where the main novelty is optimizations to reduce the index size.

Table 1: Effectiveness of zero-shot embedding contextualization on TREC-CAsT datasets. Bold font indicates the best zero-shot performing model. Superscripts indicate statistically significant improvements (paired t-test, \(p = \text{value} < 0.05\)) of ZeCo\(^2\) over zero-shot models: last-turn \(^a\), all-history \(^b\) and ConvDR zero-shot \(^c\).

<table>
<thead>
<tr>
<th>base-retriever</th>
<th>variant</th>
<th>CAsT'19 NDCG@3</th>
<th>CAsT'20 NDCG@3</th>
<th>CAsT'21 NDCG@3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColBERT</td>
<td>last-turn (^a)</td>
<td>0.214 0.157</td>
<td>0.155 0.124</td>
<td>0.140 0.154</td>
</tr>
<tr>
<td></td>
<td>all-history (^b)</td>
<td>0.190 0.165</td>
<td>0.150 0.166</td>
<td>0.237 0.265</td>
</tr>
<tr>
<td>ZeCo(^2) (ours)</td>
<td>✔</td>
<td>0.239 (^b) 0.216 (^{a,b,c})</td>
<td>0.176 (^b) 0.200 (^{a,b,c})</td>
<td>0.234 (^a) 0.267 (^a)</td>
</tr>
<tr>
<td>human</td>
<td>✔</td>
<td>0.430 0.363</td>
<td>0.443 0.408</td>
<td>0.431 0.403</td>
</tr>
<tr>
<td>ConvDR ([31])</td>
<td>zero-shot (^c)</td>
<td>0.247 0.183</td>
<td>0.150 0.150</td>
<td>– –</td>
</tr>
<tr>
<td></td>
<td>few-shot</td>
<td>0.466 0.362</td>
<td>0.340 0.345</td>
<td>0.361 0.376</td>
</tr>
<tr>
<td></td>
<td>human</td>
<td>0.461 0.389</td>
<td>0.422 0.454</td>
<td>0.548 0.451</td>
</tr>
</tbody>
</table>

Table 1. It is clear that contextualization helps in all cases, especially in terms of Recall with relative improvements of 37% - 73%. We further observe that our approach significantly outperforms the all-history baseline, which uses the entire conversation as the query, in the first two datasets and yields comparable performance on CAsT’21. We hypothesize that the baseline’s improved performance on CAsT’21 is due to its document-level annotations, with one document satisfying multiple turns of the conversation. We also observe that all-history performs worse than last-turn regarding NDCG@3 but better regarding R@100. Furthermore, ZeCo\(^2\) outperforms the zero-shot ConvDR in most cases, especially with respect to Recall. Last, while the supervised versions of ConvDR clearly outperform ZeCo\(^2\) in NDCG@3, ZeCo\(^2\) remains competitive in terms of Recall.

<table>
<thead>
<tr>
<th>token</th>
<th>frequency</th>
<th>avg((\Delta tok))</th>
</tr>
</thead>
<tbody>
<tr>
<td>they</td>
<td>60</td>
<td>0.501</td>
</tr>
<tr>
<td>it</td>
<td>196</td>
<td>0.480</td>
</tr>
<tr>
<td>[SEP]</td>
<td>934</td>
<td>0.464</td>
</tr>
<tr>
<td>?</td>
<td>873</td>
<td>0.458</td>
</tr>
<tr>
<td>that</td>
<td>52</td>
<td>0.440</td>
</tr>
<tr>
<td>.</td>
<td>192</td>
<td>0.424</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>macro-avg</td>
<td>–</td>
<td>0.185</td>
</tr>
<tr>
<td>micro-avg</td>
<td>–</td>
<td>0.323</td>
</tr>
</tbody>
</table>

Table 3: Average change of frequent token embeddings after zero-shot contextualization (all CAsT datasets).

Next we consider the effect of contextualization of the user’s query by looking into how this changes the last turn’s query embeddings so that we answer RQ2.

What are the most influenced terms? To assess the effect of conversational contextualization (ZeCo\(^2\)), we measure the token embedding changes in the user’s query and report the terms with the largest average change in Table 3. We define token embedding change as the cosine distance between a term before and after contextualization: \(\Delta tok = 1 - \cos(tok_{ZeCo^2}, tok_{last-turn})\). We observe that terms indicating anaphora (‘they’, ‘it’, etc.), punctuation symbols and special tokens are the ones most influenced. This is expected, since users often use anaphoras referring to previous
conversation rounds. Regarding punctuation and special tokens, one plausible explanation is that a global representation of a turn is aggregated in those tokens after contextualization.

How do terms change when contextualized? To illustrate how contextualization changes term embeddings, in Table 2 we focus on a highly influenced anaphora term (‘it’) and match it to the most similar token embeddings from the conversation history. We observe that in certain cases, zero-shot contextualization resolves anaphoras successfully, bringing anaphora embeddings very close to the referred term ("sociology", "popular music", "throat cancer").

The first row shows one noteworthy example where the matching term is always cancer, but contextualization allows it to resolve to the correct embedding of throat cancer instead of lung cancer. Lastly, we see cases where embeddings come closer to punctuation symbols, indicating that those might preserve some sort of global query representation, or a multi-token concept (e.g., “the neverending story film.

To answer RQ3, we quantitatively explore whether contextualization brings anaphora terms closer to their corresponding resolutions and how this affects ranking. Bringing anaphora terms closer to resolutions is crucial for conversational search. We identify those terms automatically using the human rewrites and define the effect of contextualization in bringing anaphora embeddings (\hat{A}) closer to resolution embeddings (\hat{R}) as:

$$\Delta \text{sim}(\hat{A} \rightarrow \hat{R}) = \text{sim}(\hat{A}_ZCo^\text{Co}, \hat{R}) - \text{sim}(\hat{A}_\text{last-turn}, \hat{R})$$

where anaphoras are contextualized within the last turn ($\hat{A}_\text{last-turn}$) or the entire conversation (\hat{A}_ZCo^Co). We encode resolutions (\hat{R}) independently to ensure they retain their original representations. On queries with multi-token anaphoras or resolutions, we pick the highest match. In Figure 2 we observe the scatter plot of this Δsim against ΔRecall. In most cases, contextualization improves Recall ($\Delta \text{Recall} > 0$) and brings anaphoras closer to resolutions ($\Delta \text{sim} > 0$). Further, Recall correlates with this change in similarity towards resolutions (Pearson’s $R = 0.31$, p-value = 0.005).

To examine whether anaphora terms coming closer to resolutions is simply a by-product of being encoded together, we measure similarities between anaphoras (\hat{A}) and (a) resolution terms (\hat{R}) vs (b) random terms from the same conversation (\hat{Rnd}) in Table 4. For consistency, we also encode random terms independently. When anaphoras are contextualized within only the last-turn, they are more similar to random terms than to resolutions on average.

Table 2: Examples of best term matches of anaphora terms in conversation history (before & after query contextualization).

| Utterance | Human resolution | Δtok | ΔRecall | closest match | closest match |
|-----------|------------------|---------------------|------------------------|------------------------|
| ... | | | | tell me about lung cancer. | what causes throat cancer? |
| what technological developments enabled it? | popular music | 0.54 | +0.42 | ... the origins of popular music? | ... the origins of popular music? |
| why did ben franklin want it to be the national symbol? | turkeys | 0.22 | +0.29 | where are turkeys from? | where are turkeys from? |
| what is it about? | neverending story film | 0.39 | +0.12 | the neverending story film | the neverending story film |

Table 4: Embedding similarities between anaphoras and resolution or random terms from the conversations (CAsT’19).

<table>
<thead>
<tr>
<th>\hat{R} (resolution)</th>
<th>\hat{Rnd} (random term)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{A}_\text{last-turn}$</td>
<td>0.178</td>
</tr>
<tr>
<td>\hat{A}_ZCo^Co</td>
<td>0.372</td>
</tr>
</tbody>
</table>

Figure 2: Correlation between ΔRecall and similarity change of anaphoras towards resolutions (CAsT’19).
However, our method (ZeCo3) brings anaphoras closer to their resolutions, while pushing them away from other (random) words from the same conversation. This confirms that resolutions have a high impact on contextualizing anaphoras, in contrast to other random conversation words. The mechanism behind this effect requires further investigation. It could be that simply the lower frequency of resolution terms has an effect here, but it is also possible that pre-trained transformers have certain co-reference resolution capabilities (eg. by relating ‘it’ to a noun). Regardless, it is evident that our method induces a bias towards salient terms from the conversation, leading to improved ranking performance.

5 CONCLUSIONS
In this paper, we explore the possibility of performing conversational search in a zero-shot setting, by contextualizing the last user query with respect to the conversation history. We show that this method is highly effective for first-stage ranking, yielding consistent and significant improvements in $R@100$. Further, it is suitable for privacy-sensitive settings, and can be combined with existing query rewriting techniques. In addition, we shed light into how zero-shot contextualization changes the last turn embeddings and show that biasing them towards the previous conversation can help retrieval, since it brings them closer to the conversation topic and salient terms. For future work we aim to explore zero-shot re-ranking and extend this work to few-shot training.

ACKNOWLEDGMENTS
This research was supported by the NWO Innovational Research Incentives Scheme Vidi (016.Vidi.189.039), the NWO Smart Culture - Big Data / Digital Humanities (314-99-301), and the H2020-EU.3.4 - SOCIETAL CHALLENGES - Smart, Green And Integrated Transported (814961). All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.

REFERENCES