Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using $s = 7$ TeV pp collisions with the ATLAS detector

Published in:
The Journal of High Energy Physics

DOI:
10.1007/JHEP11(2011)099

Citation for published version (APA):
Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector

The ATLAS Collaboration

ABSTRACT: Results are presented of a search for any particle(s) decaying to six or more jets in association with missing transverse momentum. The search is performed using 1.34 fb$^{-1}$ of $\sqrt{s} = 7$ TeV proton-proton collisions recorded by the ATLAS detector during 2011. Data-driven techniques are used to determine the backgrounds in kinematic regions that require at least six, seven or eight jets, well beyond the multiplicities required in previous analyses. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a supersymmetry model (MSUGRA/CMSSM) where they extend previous constraints.

KEYWORDS: Hadron-Hadron Scattering
1 Introduction

Many extensions of the Standard Model predict the existence of TeV-scale states that rapidly decay to a large number of strongly interacting particles in association with one or more stable, weakly interacting particles. If such states are kinematically accessible with the proton-proton collisions at the LHC \[1\], they will be characterised by events with many hadronic jets with unbalanced momenta in the plane perpendicular to the beams due to the unobserved weakly interacting particles.

The most sensitive direct searches \[2–8\] have been previously performed at the LHC by the ATLAS and CMS collaborations in selections requiring jets and missing transverse momentum \(E_T^{\text{miss}}\). These analyses required a varying number of jets from as few as one \[4, 7, 8\], to as many as \(\geq 4\) \[5\].

The delivery of a large \(> \text{fb}^{-1}\) integrated luminosity makes it possible to extend those searches to final states with at least six, seven or even eight jets. Selecting events with larger jet multiplicities provides increased sensitivity to models that predict many-body decays or sequential cascade decays to many strongly interacting particles. Such models include supersymmetric \[9–17\] (SUSY) models that have gluinos with masses near the TeV scale and relatively heavy squarks.

Standard Model predictions must be determined with particular care for large jet multiplicities. The background from multi-jet events, in which the momentum imbalance results from jet mismeasurement, is evaluated using entirely data-driven methods. Electroweak and top contributions are obtained from a mixture of control measurements, and
transfer factors calculated from sophisticated multi-leg Monte Carlo simulations [18–21]. A detailed description of the background determination can be found in section 5.

Events containing high transverse momentum (\(p_T\)) electrons or muons are vetoed in order to reduce backgrounds from (semi-leptonically) decaying top quarks or W bosons. Other complementary searches have been performed by the ATLAS collaboration in final states with \(E_T^{\text{miss}}\) and lower jet multiplicity requirements [2, 4, 5], in conjunction with \(b\)-jet tagging [3], hard electrons and/or muons [22–24] or photons [25].

While the results are presented in the context of MSUGRA/CMSSM [26–31], the analysis is sensitive to any new states that decay into large numbers of jets in association with weakly interacting particles which escape the detector unseen.

2 The ATLAS detector and data samples

The ATLAS experiment [32] is a multipurpose particle physics detector with a forward-backward symmetric cylindrical geometry and nearly 4\(\pi\) coverage in solid angle.\(^1\) The layout of the detector is dominated by four superconducting magnet systems, which comprise a thin solenoid surrounding inner tracking detectors and a barrel and two end-cap toroids supporting a large muon tracker. The calorimeters are of particular importance to this analysis. In the pseudorapidity region \(|\eta| < 3.2\), high-granularity liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are used. An iron-scintillator tile calorimeter provides hadronic coverage for \(|\eta| < 1.7\). The end-cap and forward regions, spanning 1.5 < \(|\eta| < 4.9\), are instrumented with LAr calorimetry for both EM and hadronic measurements.

The data sample used in this analysis was taken during the first half of 2011 with the LHC operating at a centre-of-mass energy of \(\sqrt{s} = 7\) TeV. Application of beam, detector and data-quality requirements resulted in an integrated luminosity of \(1.34 \pm 0.05\) fb\(^{-1}\). The analysis makes use of dedicated multi-jet triggers, the details of which changed during the data-taking period as a consequence of increasing LHC luminosity. In all cases the trigger efficiency was greater than 95\% for events with either at least four jets with \(p_T > 80\) GeV, or at least five jets with \(p_T > 55\) GeV.

3 Object reconstruction

The definitions of jets, leptons (\(e\) and \(\mu\)) and missing transverse momentum follow closely those of previous ATLAS searches [5, 24].

Jet candidates are reconstructed using the anti-\(k_t\) jet clustering algorithm [33, 34] with distance parameter 0.4. The inputs to this algorithm are clusters of calorimeter cells [35] seeded by those with energy significantly above the measured noise. Jet momenta are constructed by performing a four-vector sum over these topological clusters of calorimeter cells, treating each as an \((E, \vec{p})\) four-vector with zero mass. These jets are corrected for the

\(^1\)ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis along the beam pipe. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity \(\eta\) is defined in terms of the polar angle \(\theta\) by \(\eta = -\ln \tan(\theta/2)\).
effects of calorimeter non-compensation and inhomogeneities by using p_T- and η-dependent calibration factors based on Monte Carlo (MC) simulations validated with extensive test-beam and collision-data studies [36]. Only jet candidates with $p_T > 20$ GeV and $|\eta| < 4.9$ are retained. During the data-taking period, a localized electronics failure in the LAr barrel calorimeter created an electronically dead region in the second and third calorimeter layers, approximately 1.4×0.2 in $\Delta \eta \times \Delta \phi$, in which on average 30% of incident jet energy is lost. The impact on reconstruction efficiency for $p_T > 20$ GeV jets is found to be negligible. Since the energy response for jets in the problematic region is underestimated due to this extra dead area, a correction factor is applied to the jet transverse momenta. Events are rejected if the correction applied to any jet candidate provides a contribution to E_T^{miss} that is greater than both 10 GeV and 0.1 E_T^{miss}. When identification of jets containing heavy flavour quarks is required, either to make measurements in control regions or for cross checks, a tagging algorithm exploiting both impact parameter and secondary vertex information is used [37].

Electron candidates are required to have $p_T > 20$ GeV and $|\eta| < 2.47$, to pass the ‘medium’ electron shower shape and track selection criteria of ref. [38], and to be outside problematic regions of the calorimeter. Muon candidates are required to have $p_T > 10$ GeV and $|\eta| < 2.4$.

The measurement of the missing transverse momentum two-vector \vec{P}_T^{miss} (and its magnitude E_T^{miss}) is then based on the transverse momenta of all electron and muon candidates, all jets which are not also electron candidates with $|\eta| < 4.5$, and all calorimeter clusters with $|\eta| < 4.5$ not associated to such objects.

Following the steps above, overlaps between candidate jets with $|\eta| < 2.8$ and leptons are resolved as follows. First, any such jet candidate lying within a distance $\Delta R < 0.2$ of an electron is discarded, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$. Then any lepton candidate remaining within a distance $\Delta R = 0.4$ of such a jet candidate is discarded. Thereafter, all jet candidates with $|\eta| > 2.8$ are discarded, and the remaining electron, muon and jet candidates are retained as reconstructed objects.

4 Event selection

Following the object reconstruction described in section 3, events are discarded if any electrons or muons remain, or if they contain any jet failing quality selection criteria designed to suppress detector noise and non-collision backgrounds [39], or if they lack a reconstructed primary vertex with five or more associated tracks.

Four different signal regions (SRs) are defined as shown in table 1. The use of multiple signal regions provides sensitivity in different areas of the MSUGRA/CMSSM plane. Furthermore, the complementarity of the selections may be enhanced in new models not

\hspace{1cm}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
SR & Selection Criteria & Sensitivity Areas \\
\hline
SR1 & $E_T^{\text{miss}} > 10$ GeV & Inner regions of the plane \\
\hline
SR2 & $E_T^{\text{miss}} > 20$ GeV & Outer regions of the plane \\
\hline
SR3 & $E_T^{\text{miss}} > 30$ GeV & Edge regions of the plane \\
\hline
SR4 & $E_T^{\text{miss}} > 40$ GeV & Outermost regions of the plane \\
\hline
\end{tabular}
\end{table}

\hspace{1cm}

<table>
<thead>
<tr>
<th>Signal region</th>
<th>7j55</th>
<th>8j55</th>
<th>6j80</th>
<th>7j80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet p_T</td>
<td>>55 GeV</td>
<td>>80 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet $</td>
<td>\eta</td>
<td>$</td>
<td><2.8</td>
<td></td>
</tr>
<tr>
<td>ΔR_{jj}</td>
<td>>0.6 for any pair of jets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of jets</td>
<td>≥7</td>
<td>≥8</td>
<td>≥6</td>
<td>≥7</td>
</tr>
<tr>
<td>$E_T^{\text{miss}}/\sqrt{H_T}$</td>
<td>>3.5 GeV$^{1/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Definitions of the four signal regions.

explicitly considered here. The combinations of jet multiplicities and p_T thresholds are chosen such that all four SRs have trigger efficiencies in excess of 95% and acceptances greater than 2% - 3% for kinematically accessible MSUGRA/CMSSM models. Differences caused by jet merging and splitting between the offline and online selections can lead to trigger inefficiencies. A separation of $\Delta R_{jj} > 0.6$ between all jets with p_T above the threshold for the SR is required to maintain acceptable trigger efficiency.

The final selection variable is $E_T^{\text{miss}}/\sqrt{H_T}$, the ratio of magnitude of the missing transverse momentum to the square root of the scalar sum H_T of transverse momenta of all jets with $p_T > 40$ GeV and $|\eta| < 2.8$. This ratio provides a measure of the size of the missing transverse momentum relative to the resolution due to stochastic variations in the measured jet energies.

5 Backgrounds, simulation and normalisation

Standard Model processes contribute to the event counts in the signal regions. The dominant backgrounds are multi-jet production, including those from purely strong interaction processes and fully hadronic decays of $t\bar{t}$; semi- and fully-leptonic decays of $t\bar{t}$; and leptonically-decaying W or Z bosons produced in association with jets. Non-fully-hadronic top, and W and Z are collectively referred to as ‘leptonic’ backgrounds, and can contribute to the signal regions when no e or μ leptons are produced (for example $Z \rightarrow \nu\nu$ or hadronic $W \rightarrow \tau\nu$ decays) or when they are produced but out of acceptance or not reconstructed. Contributions from the hadronic decays of W and Z bosons are negligible.

The selection cuts were chosen such that the background from the multi-jet processes can be determined from supporting measurements. In events dominated by jet activity, the ATLAS E_T^{miss} resolution is approximately proportional to $\sqrt{H_T}$. The ratio $E_T^{\text{miss}}/\sqrt{H_T}$ is therefore almost invariant under changes in the jet multiplicity N_{jet}, as will be shown later.

The shape of the $E_T^{\text{miss}}/\sqrt{H_T}$ distribution for the multi-jet background is therefore determined from data using control regions CR with smaller jet multiplicities than the SRs. The control regions are assumed to be dominated by Standard Model processes, an assumption that is corroborated by the agreement of multi-jet cross section measurements with up to six jets [40] with Standard Model predictions. The signal ‘contamination’ contributes less than 1% to the higher multiplicity CRs for relevant, unexcluded MSUGRA/CMSSM points. The basic shape of the $E_T^{\text{miss}}/\sqrt{H_T}$ distribution is encapsulated in transfer factors.
$T_{j,p}$, defined to be the ratio of the number of events in the control region, CR$_{3,p}^+$, with a certain number, j, of jets above a p_T threshold p and $E_T^{miss}/\sqrt{H_T} > 3.5\text{GeV}^{1/2}$ to the number in the control region, CR$_{3,p}^-$, with the same j, p and $E_T^{miss}/\sqrt{H_T} < 1.5\text{GeV}^{1/2}$. The $T_{j,p}$ are calculated after subtracting the predicted contributions of the ‘leptonic’ backgrounds from the measured counts. The signal region prediction is found by applying a $T_{j,p}$, with the same p as the signal region and $j = 5$ when $p = 55\text{ GeV}$ and $j = 4$ when $p = 80\text{ GeV}$, to the number of events (after subtracting the expected contribution from ‘leptonic’ background sources) satisfying signal region multiplicity requirements but with $E_T^{miss}/\sqrt{H_T} < 1.5\text{GeV}^{1/2}$.

The validity of the assumption of $E_T^{miss}/\sqrt{H_T}$ invariance has been tested with data, using a series of additional CRs with either smaller jet multiplicities than the SRs, or at smaller values of $E_T^{miss}/\sqrt{H_T}$ (between $1.5\text{GeV}^{1/2}$ and $3.0\text{GeV}^{1/2}$) or both. Templates are formed from data selections with lower values of N_{jet} and correcting for ‘leptonic’ contamination. After scaling by the appropriate normalisation the shapes of the $E_T^{miss}/\sqrt{H_T}$ distributions in these CRs are found to be well described by these templates (see figures 1 and 2 for examples). The numbers of events in each of six different CRs are found to be correctly predicted to within $\sim 10\% - 20\%$. The residual differences are included in the systematic uncertainty associated with the method.

The backgrounds from multi-jet processes are cross checked using another data-driven technique [2, 5] which smears the energies of individual jets from low-E_T^{miss} multi-jet ‘seed’ events in data. Separate smearing functions are defined for b-tagged and non-b-tagged
jets, with each modelling both the Gaussian core and the non-Gaussian tail of the jet response. The functions are based on simulations and are verified with data in three-jet control regions in which the $\hat{F}_{T}^{\text{miss}}$ can be associated with the fluctuation of a particular jet. The agreement between the two methods is satisfactory within uncertainties, and so the prediction used in what follows is that based on $E_{T}^{\text{miss}} / \sqrt{H_{T}}$ shape invariance.

Monte Carlo simulations are used to determine the transfer factors used to estimate the 'leptonic' Standard Model backgrounds, and to assess sensitivity to specific SUSY signal models. When used for 'leptonic' background estimation, the resulting transfer factors connect CRs and SRs with similar selection requirements. Theoretical uncertainties, including those arising from the use of Leading Order (LO) generators, are therefore reduced. All Monte Carlo samples employ a GEANT4 [41] based detector simulation [42], and are reconstructed with the same algorithms as the data. The simulations include the effects of multiple proton-proton interactions per bunch crossing.

Figure 2. Observed and predicted jet multiplicity distributions for jets with $p_{T} > 55$ GeV (upper) and with $p_{T} > 80$ GeV (lower) in four example control regions defined by $1.5 \text{GeV}^{1/2} < E_{T}^{\text{miss}} / \sqrt{H_{T}} < 2 \text{GeV}^{1/2}$ (left) and $2 \text{GeV}^{1/2} < E_{T}^{\text{miss}} / \sqrt{H_{T}} < 3 \text{GeV}^{1/2}$ (right). Overlaid are templates taken from selections requiring $E_{T}^{\text{miss}} / \sqrt{H_{T}} < 1.5 \text{GeV}^{1/2}$ which are normalised to the data in the lowest jet multiplicity bin shown. The background estimation includes the ALPGEN Monte-Carlo prediction for the 'leptonic' Standard Model backgrounds. For illustrative purposes the plots also contain the distribution expected for an example MSUGRA/CMSSM point with $m_{0} = 1220$ GeV and $m_{1/2} = 180$ GeV.
Figure 3. The multiplicity of jets with $p_T > 55$ GeV (left) or $p_T > 80$ GeV (right) for events in various control regions. Top row: top-quark enhanced control regions requiring at least one b-tagged jet, a single isolated muon with $p_T > 20$ GeV and $|\eta| < 2.4$ and $40 < m_T < 100$ GeV. Middle row: W-boson enhanced region (as for top, but with b-jet veto). Bottom row: $Z \to \mu\mu$ enhanced region.

To estimate the contribution from ‘leptonic’ $t\bar{t}$ events, control regions are defined with exactly one $p_T > 20$ GeV muon, transverse mass\(^3\) in the range 40 GeV $< m_T(\mu, P_T^{\text{miss}}) < 100$ GeV, and at least one b-tagged jet. The jet multiplicity distributions for this initial

\(^3\)The transverse mass is defined by $m_T^2(a,b) = m_a^2 + m_b^2 + 2 \left(E_T^{(a)} E_T^{(b)} - \vec{P}_T^{(a)} \cdot \vec{P}_T^{(b)} \right)$, where $E_T = p_T^2 + m^2$. The massless representation is used for P_T^{miss}.

- 7 -
control selection are shown in figures 3(a) and 3(b). The control regions, \(CR_{\ell}^{t\bar{t}} \), are then formed by including the leptons in the jet multiplicity, \(j \), and requiring \(E_{T}^{\text{miss}}/\sqrt{H_{T}} > 3.5 \text{ GeV}^{1/2} \). The contribution in each SR is calculated from the corresponding \(CR_{\ell}^{t\bar{t}} \) (with the same \(j, p \)) in each case using a transfer factor evaluated using ALPGEN [18] v2.13 \(\bar{t}t \) Monte Carlo, the PDF set CTEQ6L1 [43] and up to three (and as a cross check, up to five) additional outgoing partons in the matrix elements. Parton showering, fragmentation and hadronization for all ALPGEN samples is performed with HERWIG [44, 45], while JIMMY [46] is used to simulate the underlying event.

The vector boson processes \(Z \rightarrow \nu\nu \) and \(W \rightarrow \ell\nu \) provide small contributions to the signal regions when produced in association with jets. The \(W \rightarrow \ell\nu + \text{jets} \) background is evaluated using an ALPGEN-based simulation with up to five additional partons in the matrix elements. Control regions are defined with selections similar to the \(CR_{\ell}^{t\bar{t}} \) but with a \(b \)-jet veto to reduce contamination from \(t\bar{t} \). The jet multiplicity distributions for the \(W \)-enhanced selection can be found in figures 3(c) and 3(d).

The \(Z \rightarrow \nu\nu + \text{jets} \) background is calculated using an ALPGEN-based simulation with up to five additional partons in the matrix elements. There are sufficient \(Z \rightarrow \mu^{+}\mu^{-} \) events in data to verify the Monte Carlo predictions for multiplicities in the range \(1 \leq N_{\text{jet}} \leq 5 \) (figures 3(e) and 3(f)). The ratio of cross sections \(R_{n} \equiv \frac{\sigma(V+(n+1)\text{jets})}{\sigma(V+n\text{jets})} \) is found, both in simulations and in data, to be nearly constant.\(^4\) The values of \(R_{n} \) for \(N_{\text{jet}} \in \{5, 6, 7\} \) have been cross checked against SHERPA [19–21] with COMIX [53] and agreement found at the 20% level.

Backgrounds from other sources such as single top or diboson production, which have been evaluated using Monte Carlo simulations, and those from non-collision sources are found to be negligible.

MSUGRA/CMSSM particle spectra and decay modes are calculated with ISAJET [54] v7.75. Samples are generated with HERWIG++ [55] v2.4.2. The cross sections are normalised using the next-to-leading-order predictions of PROSPINO [56] v2.1.

6 Systematic uncertainties

Systematic uncertainties arise through the imperfect modelling of the multi-jet \(E_{T}^{\text{miss}}/\sqrt{H_{T}} \) distribution, the use of MC-derived transfer factors relating observations in the control regions to ‘leptonic’ background expectations in the signal regions, and from the calculation of the SUSY signal.

For the multi-jet contribution, systematic uncertainties are determined to account for the residual dependence of the \(E_{T}^{\text{miss}}/\sqrt{H_{T}} \) distribution on \(N_{\text{jet}} \) (as described in section 5), the fraction of jets containing \(b \) quarks and the response in problematic areas of the calorimeter. A special study performed to quantify the effect of the dead area of the calorimeter found that after applying the correction-based veto described in section 3 the uncertainty is less than 5%.

Jets containing heavy flavour (\(b \) and \(c \)) quarks can include neutrinos and hence have broader resolution functions. The size of the systematic uncertainty resulting from heavy

\(^4\)See also ref. [47–52].
flavour (b-jet) contributions, including those from fully-hadronic \(t\bar{t} \), is determined as follows. Separate values of \(T \) are calculated for events with at least one \(b \) jet and for non-\(b \)-tagged sub-samples, and their individual contributions to the SRs are determined. The differences with respect to the flavour-blind determination actually used are \(8\% - 15\% \) depending on SR, and are included as a systematic uncertainty.

The transfer factors calculated for the ‘leptonic’ backgrounds have systematic uncertainties due to the finite number of Monte Carlo events generated, the jet energy scale, the jet energy resolution, the lepton identification efficiency, the \(b \)-tag efficiency, and the effect of multiple proton-proton interactions per bunch crossing.

Theoretical uncertainties on the SUSY signal were estimated from variation of the factorisation and renormalisation scales in PROSPINO between half and twice the mean outgoing sparticle mass and by considering the PDF uncertainties provided by CTEQ6.6 [57]. Uncertainties were calculated for individual production processes (e.g. \(\tilde{q}\tilde{q}, \tilde{g}\tilde{g}, \) etc.) and are typically \(30\% - 40\% \) for models in the vicinity of the limits expected to be set by this analysis. For the signal samples, the combined experimental systematic uncertainties from jet energy scale, resolution, and cleaning are typically \(15\% - 20\% \). The 3.7\% luminosity uncertainty [58, 59] is included but is negligible.

7 Results, interpretation and limits

The measured \(E_{\text{T}}^{\text{miss}}/\sqrt{H_{T}} \) distributions for two of the signal regions are shown in figure 4 prior to the final \(E_{\text{T}}^{\text{miss}}/\sqrt{H_{T}} > 3.5 \text{GeV}^{1/2} \) requirement. The number of observed events...
Table 2. Results for each of the four signal regions for 1.34 fb$^{-1}$. The expected number of Standard Model events are given for each of the following sources: multi-jet (including fully hadronic $t\bar{t}$), semi-and fully-leptonic top combined, and W and Z bosons (separately) in association with jets, as well as the total Standard Model expectation. Where small event counts in control regions have not made it possible to determine a central value for the expectation, an asymmetric bound is given instead. The number of observed events is also shown. The final three rows show the statistical quantities described in the text.

<table>
<thead>
<tr>
<th>Signal region</th>
<th>$7j55$</th>
<th>$8j55$</th>
<th>$6j80$</th>
<th>$7j80$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-jets</td>
<td>26 ± 5.2</td>
<td>2.3 ± 0.7</td>
<td>19 ± 4</td>
<td>1.3 ± 0.4</td>
</tr>
<tr>
<td>$t\bar{t} \to q\ell, \ell\ell$</td>
<td>10.8 ± 6.7</td>
<td>$0^{+4.3}_{-3.4}$</td>
<td>6.0 ± 4.6</td>
<td>$0^{+0.13}_{-0.6}$</td>
</tr>
<tr>
<td>W + jets</td>
<td>0.95 ± 0.45</td>
<td>$0^{+0.13}_{-0.3}$</td>
<td>0.34 ± 0.24</td>
<td>$0^{+0.13}_{-0.3}$</td>
</tr>
<tr>
<td>Z + jets</td>
<td>$1.5^{+1.8}_{-1.5}$</td>
<td>$0^{+0.75}_{-0.3}$</td>
<td>$0^{+0.75}_{-0.3}$</td>
<td>$0^{+0.75}_{-0.3}$</td>
</tr>
<tr>
<td>Total Standard Model</td>
<td>39 ± 9</td>
<td>$2.3^{+4.4}_{-0.7}$</td>
<td>26 ± 6</td>
<td>$1.3^{+0.9}_{-0.4}$</td>
</tr>
<tr>
<td>Data</td>
<td>45</td>
<td>4</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>$N^{95%}_{\text{BSM,max}}$</td>
<td>26.0</td>
<td>11.2</td>
<td>16.3</td>
<td>6.0</td>
</tr>
<tr>
<td>$\sigma^{95%}_{\text{BSM,max}} \times \epsilon/\text{fb}$</td>
<td>19.4</td>
<td>8.4</td>
<td>12.2</td>
<td>4.5</td>
</tr>
<tr>
<td>p_{SM}</td>
<td>0.30</td>
<td>0.36</td>
<td>0.49</td>
<td>0.16</td>
</tr>
</tbody>
</table>

for each of the signal regions is shown in table 2. The Standard Model expectations are also shown, together with their combined statistical and systematic uncertainties. The data are found to be in good agreement with the background model and no excess is observed. table 2 shows the 95% confidence level upper bound $N^{95\%}_{\text{BSM,max}}$ on the number of events originating from sources other than the Standard Model, the corresponding upper limit $\sigma^{95\%}_{\text{BSM,max}} \times \epsilon$ on the cross section times efficiency within acceptance (which equals the limit on the observed number of signal events divided by the luminosity) and the p-value for the Standard Model-only hypothesis (p_{SM}).

An interpretation of these results is presented in figure 5 as a 95% confidence level exclusion region in the $\tan \beta = 10$, $A_0 = 0$, $\mu > 0$ slice of MSUGRA/CMSSM. Data from the four SRs are used to set the limits, taking the SR with the best expected limit at each point in parameter space. The limit for each SR is obtained by comparing the observed event count with that expected from Standard Model background plus SUSY signal processes, taking into account uncertainties in the expectation including those which are correlated between signal and background (for instance jet energy scale uncertainties). The exclusion regions are obtained using the CL$_s$ prescription [60]. Acceptance times efficiency values are tabulated for typical points elsewhere [61].

5A particular MSUGRA/CMSSM model point is specified by five parameters: the universal scalar mass m_0, the universal gaugino mass $m_{1/2}$, the universal trilinear scalar coupling A_0, the ratio of the vacuum expectation values of the two Higgs fields $\tan \beta$, and the sign of the higgsino mass parameter μ.

Figure 5. Combined exclusion bounds in the $\tan \beta = 10, A_0 = 0, \mu > 0$ slice of the MSUGRA/CMSSM space. Gluinos with masses below 520 GeV, and gluinos with masses below 680 GeV under the assumption that $m_{\text{squark}} = 2 \times m_{\text{gluino}}$ are excluded at the 95% confidence level. Limits from individual SRs can be found elsewhere [61]. Recent limits from ATLAS [5], as well as previous limits from D0 and CDF [62–65] and LEP [66, 67] are also shown.

8 Summary

A search for new phenomena has been performed using events containing missing transverse momentum and much larger jet multiplicities than have been previously considered, up to eight or more jets. The dominant Standard Model background contributions have been determined from the data themselves. The sub-dominant ‘leptonic’ backgrounds are measured using multiple control regions together with Monte Carlo transfer factors.
No evidence for physics beyond the Standard Model has been observed in a data sample from early 2011 corresponding to an integrated luminosity of 1.34 fb$^{-1}$. Limits are set on MSUGRA/CMSSM models excluding at the 95% confidence level gluinos with masses below 520 GeV, and gluinos with masses below 680 GeV under the assumption that $m_{\text{squark}} = 2 \times m_{\text{gluino}}$. This result extends those set by previous ATLAS analyses.

Acknowledgments

We wish to thank CERN for the efficient commissioning and operation of the LHC during this data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

[38] ATLAS Collaboration, *Measurement of the \(W \rightarrow l\nu \) and \(Z/\gamma^* \rightarrow ll \) production cross sections in proton-proton collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector*, *JHEP* 12 (2010) 060 [arXiv:1010.2130] [inSPIRE].

D0 Collaboration, *t\bar{t} production cross-section in p\bar{p} collisions at \sqrt{s} = 1.8 TeV*, Phys. Rev. D 67 (2003) 012004 [hep-ex/0205019] [inSPIRE].

The ATLAS collaboration

G. Aad48, B. Abbott111, J. Abdallah41, A.A. Abdelalim49, A. Abdesselam118, O. Abdinov10, B. Abi112, M. Abolins88, H. Abramowicz153, H. Abreu115, E. Acerbi89a,89b, B.S. Acharya164a,164b, D.L. Adams24, T.N. Addy56, J. Adelman175, M. Aderholz99, S. Adomeit98, P. Adragna75, T. Adye129, S. Aefsky22, J.A. Aguilar-Saavedra124b,a, M. Aharrouche81, S.P. Ahlen21, F. Ahles48, A. Ahmad148, M. Ahsan40, G. Aielli133a,133b, T. Akdogan18a, T.P.A. Åkesson79, G. Akimoto155, A.V. Akimov94, A. Akiyama67, M.S. Alam1, M.A. Alam76, J. Albert169, S. Albrand55, M. Alekseeva29, I.N. Aleksandrov65, F. Alessandria89a, C. Alexa25a, G. Alexander153, G. Alexandre49, T. Alexopoulos9, M. Alhroob20, M. Aliev15, G. Alimonti89a, J. Alison120, M. Aliyev40, P.P. Allport73, S.E. Allwood-Spiers53, J. Almond82, A. Aloisio102a,102b, R. Alonso171, A. Alonso79, M.G. Alviggi102a,102b, K. Amako66, P. Amara29, C. Amelung22, V.V. Ammosov128, A. Amorim124b,a, G. Amorós167, N. Amram153, C. Anastopoulos29, L.S. Ancu16, N. Andari115, T. Andeen34, C.F. Anders20, G. Anders58a, K.J. Anderson30,
(e) Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
6 Department of Physics, University of Arizona, Tucson AZ, United States of America
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
(a) Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago;
(b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
(c) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;
(d) Department of Modern Physics, University of Science and Technology of China, Anhui;
(e) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas TX, United States of America
Physics Department, University of Texas at Dallas, Richardson TX, United States of America
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
Department of Physics, Duke University, Durham NC, United States of America
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
Section de Physique, Université de Genève, Geneva, Switzerland
(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi;
High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
(a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
113 Palacký University, RCPTM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a)INFN Sezione di Pavia; (b)Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
124 (a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127 Czech Technical University in Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b)Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c)Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
SLAC National Accelerator Laboratory, Stanford CA, United States of America
(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
(a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto ON, Canada
(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
Science and Technology Center, Tufts University, Medford MA, United States of America
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
(a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Fisica,
Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana IL, United States of America
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170 Waseda University, Tokyo, Japan
171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison WI, United States of America
173 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
174 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
175 Department of Physics, Yale University, New Haven CT, United States of America
176 Yerevan Physics Institute, Yerevan, Armenia
177 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
e Also at TRIUMF, Vancouver BC, Canada
f Also at Department of Physics, California State University, Fresno CA, United States of America
g Also at Fermilab, Batavia IL, United States of America
h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
i Also at Università di Napoli Parthenope, Napoli, Italy
j Also at Institute of Particle Physics (IPP), Canada
k Also at Department of Physics, Middle East Technical University, Ankara, Turkey
l Also at Louisiana Tech University, Ruston LA, United States of America
m Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
n Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
o Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
p Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
q Also at Manhattan College, New York NY, United States of America
r Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
s Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica,
Taipei, Taiwan

t Also at High Energy Physics Group, Shandong University, Shandong, China

u Also at Section de Physique, Université de Genève, Geneva, Switzerland

v Also at Departamento de Física, Universidade de Minho, Braga, Portugal

w Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

y Also at California Institute of Technology, Pasadena CA, United States of America

z Also at Institute of Physics, Jagiellonian University, Krakow, Poland

aa Also at Department of Physics, Oxford University, Oxford, United Kingdom

ab Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

ac Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

ad Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

ae Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

af Also at Department of Physics, Nanjing University, Jiangsu, China

* Deceased