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Abstract

The intricate dependency structure of biological “omics” data, particularly those originating

from longitudinal intervention studies with frequently sampled repeated measurements

renders the analysis of such data challenging. The high-dimensionality, inter-relatedness

of multiple outcomes, and heterogeneity in the studied systems all add to the difficulty in

deriving meaningful information. In addition, the subtle differences in dynamics often

deemed meaningful in nutritional intervention studies can be particularly challenging to

quantify. In this work we demonstrate the use of quantitative longitudinal models within the

repeated-measures ANOVA simultaneous component analysis+ (RM-ASCA+) framework

to capture the dynamics in frequently sampled longitudinal data with multivariate out-

comes. We illustrate the use of linear mixed models with polynomial and spline basis

expansion of the time variable within RM-ASCA+ in order to quantify non-linear dynamics

in a simulation study as well as in a metabolomics data set. We show that the proposed

approach presents a convenient and interpretable way to systematically quantify and sum-

marize multivariate outcomes in longitudinal studies while accounting for proper within

subject dependency structures.

Author summary

With advances in high-throughput omics platforms coupled with a reduction in associ-

ated costs, we increasingly see intervention studies generating extensive time-series of

measurements simultaneously capturing changes across many dimensions. However, in

order to derive meaningful information from such data, we must take into account the

high-dimensionality, the interrelatedness of outcomes, the experimental design, the tem-

poral dependency, as well as the subject-to-subject variability. Analytical tools that are

able to account for all of these properties, in particular approaches that incorporate the

temporal dependencies and the corresponding between-subject variability, are needed to
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make efficient use of such data. Here, we introduce novel methodology to quantify the

temporal dependency and its subject-to-subject variability in high-dimensional, fre-

quently sampled time-series data from longitudinal intervention studies. Our approach

provides a systematic way to quantify and summarize multivariate outcomes in longitudi-

nal intervention studies while accounting for the study design, the temporal dependency,

and its between-subject variability. We demonstrate the effectiveness of this approach in a

simulation study as well as on a metabolomics dataset.

Introduction

The study of biological systems has seen enormous progress in recent decades in part due to

the technological advances in the high-throughput data generating processes. These data often

contain a large number of highly correlated variables frequently exceeding the number of sam-

ples. Moreover, the data may originate in various multi-factorial experiments carried out in

heterogeneous populations. In particular, longitudinal interventions with repeated measures

of multiple variables over time are used to generate time-series data to elucidate the dynamics

and mechanisms of a system [1, 2]. However, to derive information from such data and assess

the intervention effects, analysis must take into account the experimental design, the high-

dimensionality, the heterogeneity in the population, and the correlatedness of the data both in

terms of variables as well as time [3].

In the field of nutrition, experiments studying metabolic perturbations are commonplace.

The dynamics of the metabolome are increasingly recognised as a more sensitive marker of

metabolic health compared to fasting measurement and are regularly employed as indicators

of intervention effects as well as pre-clinical and clinical conditions [4–6]. Standardised meal

challenges are used to generate frequently sampled time-series data of metabolite concentra-

tions in order to capture the dynamic alterations in the post-meal state [7]. The shapes of the

resulting plasma metabolite transients are often non-linear and vary considerably across the

study population [8]. Furthermore, nutritional intervention studies typically suffer from small

effect sizes and sample sizes in addition to the high variation in the responses due to the het-

erogeneity of the underlying population [9]. All of these properties render it difficult to extract

comprehensive information from such data.

Commonly used methodology to analyse longitudinal responses after meal challenges in

nutritional interventions include univariate analysis, such as computing the area under the

curve (AUC) or quantifying the change in time via linear mixed models (LMM) [10]. Multi-

variate analysis using ordinary differential equations (ODE) based models is also frequently

employed [11]. While properties of the univariate analyses are well understood, they neglect

the inter-relatedness of the outcomes and often require conservative false discovery rate (FDR)

correction to report the univariate results. Moreover, many of the frequently used univariate

techniques (e.g. AUC) disregard the dynamics of the outcome. Conversely, ODEs have been

successfully used to describe the inter-relatedness of species as well as the dynamics in biologi-

cal systems [12–14]. However, mechanistic models are often case-specific, and require prior

knowledge or extensive and costly experiments to build and validate, therefore remain imprac-

tical to extend to high-dimensional scenarios. In addition, techniques within the functional

data analysis (FDA) framework, such as functional PCA, have also been successfully applied in

an exploratory fashion to analyse high-dimensional longitudinal data [15, 16].

Analytical approaches currently employed to this type of high-dimensional longitudinal

data from designed interventions include extensions of the analysis of variance-simultaneous
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component analysis (ASCA) framework, a collection of methods based on decomposing the

data matrix into additive effects and then performing principal component analysis (PCA)

[17, 18]. Recently, this framework was extended to include random effects in linear mixed

model-PCA (LiMM-PCA) and repeated measures-ASCA+ (RM-ASCA+) [19, 20]. These

approaches work by estimating models of each metabolite time-course (in RM-ASCA+) or the

(PCA) reduced score time-courses (LiMM-PCA). However, both methodologies considered

simple longitudinal models with time as a qualitative factor, failing to capture the temporal

dependency between time points. While this may be appropriate for comparison of before-

after intervention effects or simple dynamics with few repeated measurements in time, time-

as-factor models are not suited for frequently sampled time-series where the quantification of

the temporal shape is important. In addition, application of such methods usually stops at

quantifying the heterogeneity at baseline and rarely considers the heterogeneity in the tempo-

ral dynamics.

In this work we extend the RM-ASCA+ framework by introducing longitudinal linear

mixed models with quantitative time variables in order to quantify multivariate outcomes over

time. In addition, we also broaden the scope of the framework by accounting for heterogeneity

in the temporal dynamics. We demonstrate that non-linear temporal effects can be recovered

from noisy frequently sampled multivariate longitudinal data originating from a heteroge-

neous population using a simulation study. Then, we illustrate our approach on frequently

sampled metabolomics data from the MELC Study, a double-blind, randomized, cross-over

trial looking at the postprandial energy metabolism and lipemic response [21].

1 Methods

In this section, we first introduce the use of continuous time linear mixed models within the

RM-ASCA+ framework through an example. Then, we describe the steps of analysis via

RM-ASCA+ with such models to analyse frequently sampled multivariate longitudinal data.

Finally, we specify the setup of two applications demonstrating the use of RM-ASCA+ using

continuous time LMMs: a simulation study and analysis of a metabolomics data set.

Longitudinal linear mixed model with continuous time

Suppose that response variable y was measured at K (k = 1, . . ., K) time-points in I (i = 1, . . ., I)
subjects in a cross-over design where each subject underwent H (h = 1, . . ., H) treatments. In

addition, we assume that the data displays quadratic profiles in time. If we consider the case

where the number of treatments H = 2, the number of measurements K = 11, and the measure-

ments are taken uniformly at t = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) for both treatments in all individ-

uals then a linear mixed model of the data can be written in the form:

yihk ¼ ðb0 þ gi0Þ þ ðb1 þ gi1Þ tk þ ðb2 þ gi2Þ t2
k þ ðb3 þ gi3Þ tk gh þ ðb4 þ gi4Þ t2

k gh þ �ihk ð1Þ

where β0−4 are the fixed effects coefficients, γi0−4 are random effects, tk represents the sample

time of the kth measurement, g 2 {−1, 1} is the indicator variable for treatment using sum cod-

ing, tkgh and t2
kgh are factor interactions between time and treatment and �ihk is a residual term.

For simplicity, the example here demonstrates the use of linear and quadratic polynomials (i.e.

the sample time t and its square) to introduce the temporal dependency. However, more gen-

erally, the temporal dependency may be coded by other basis functions (see section Modelling

curvilinear trends in time). Sum coding of a factor variable leads to the effects of the factor lev-

els being expressed relative to the mean across all groups. For more detail about the choice of

coding and their interpretation we refer to [20]. The model per subject in matrix form can be
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written as:

yi ¼ Xiβþ Ziγi þ ϵi; i ¼ 1; . . . ; I; ð2Þ

where yi is a vector of length HK, Xi and Zi are HK × p and HK × q design matrices, β and γi
are the vectors of fixed effects coefficients and random effects of length p and q, respectively,

and ϵi is the vector of residuals with length HK. The fixed effects parameterize the mean of the

response, while the random effects allow the response trajectories in time to covary between

individuals. The random effects and the residual error are assumed to have certain distribu-

tions that are specified through covariance matrix structures [22]. We assume, that γi �

N qð0q;DÞ with unstructured covariance matrix D, and ϵi � N HKð0HK ;ΣiÞ with Σi ¼ Is2
�

where I is the identity matrix and s2
�

is the residual variance. Additionally, we assume that γ1,

. . ., γI and ϵ1, . . ., ϵI are independent. Since in our example the continuous time variable t is

the same in both treatments for all subjects and the number of fixed and random effects coeffi-

cients p = q = 5, the design matrices take the form:

int t t2 t g t2g

Xi ¼ Zi ¼

1 0 0 0 0

1 1 1 � 1 � 1

1 2 4 � 2 � 4

1 3 9 � 3 � 9

..

. ..
. ..

. ..
. ..

.

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

The overall model (i.e. the model of all yi’s) is then given by vertically stacking yi, Xi, γi, and

ϵi for all i:

y ¼ Xβþ Zγ þ �;
γ

�

" #

� N
0Iq

0HK

" #

;

G 0Iq�HK

0HK�Iq R

#2

4

1

A ð3Þ

0

@

where vector y is of length IHK, the design matrices X and Z are IHK × p and IHK × Iq, respec-

tively, β and γ are the vectors of fixed effects coefficients and random effects of length p and Iq,

respectively, and ϵ is the vector of residuals of length IHK, with G = diag(D1, . . ., DI), R = diag
(S1, . . ., SI), and Z = diag(Z1, . . ., ZI) block-diagonal matrices. The linear mixed models were

implemented in R, ver. 4.0.2 using lme4, ver. 1.1–27.1 [23, 24]. The variance and covariance

parameters defining D and S were estimated via restricted maximum likelihood estimation

(REML).

RM-ASCA+

Assume that instead of the single response variable in Eq 3, we have measured J (j = 1, . . ., J)
response variables. In RM-ASCA+ Eq 3 is then extended to the multivariate case:

Y ¼ XBþ ZΓþ E ð4Þ

where Y is the IHK × J response matrix with J response variables, B is a p × J fixed effects

parameter matrix, Γ is an Iq × J matrix of random effects, and E is a IHK × J residual matrix.

To estimate B and the variance-covariance parameters specifying Γ, a LMM based on the

design matrices X and Z is applied to every column of Y separately, then the coefficients and

random variables are collected in B and Γ, respectively. The response matrix Y can now be

decomposed into effect matrices by multiplying the corresponding columns of X with the
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corresponding rows of B, and the corresponding columns of Z with the corresponding rows of

Γ. For example, the following operation is used to obtain the effect matrix of the fixed effects

of the time factor:

int t t2 t g t2g

Mf
T ¼

0 0 0 0 0

0 1 1 0 0

0 2 4 0 0

0 3 9 0 0

..

. ..
. ..

. ..
. ..

.

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

�

b01 . . . b0J

β11 . . . β1J

β21 . . . β2J

b31 . . . b3J

b41 . . . b4J

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

The IHK × J effect matrix Mf
T contains the population level multivariate profiles in time.

The effect matrices of the random effects are obtained analogously. In general, the response

matrix can be decomposed into effect matrices pertaining to each term in the model, however,

similarly to Mf
T , effect matrices can contain multiple effects. Here, we consider the effect matri-

ces:

Y ¼ Mf
0 þMf

T þMf
TG þMr

0
þMr

T þMr
TG þ E ð5Þ

where M0, MT, MTG are the effect matrices for baseline, time, and time-treatment interaction

corresponding to the intercepts, the time terms, and the interaction terms, respectively as

shown for Mf
T above. The superscripts f and r denote effect matrices containing fixed or ran-

dom effects, respectively, and E contains the residuals. After centering, multivariate analysis of

the effect matrix is then carried out via principal component analysis (PCA). For example,

PCA of Mf
T is given by:

Mf
T ¼ T f

TP
0 f
T ð6Þ

where Mf
T is a IHK × J effect matrix, T f

T is a IHK × AT score matrix, and P
0f
T is a J × AT loading

matrix, AT being the number of principal components used in describing Mf
T , and 0 denotes

the matrix transpose. The score and loading matrices are then visualized to elucidate the varia-

tion in the effect matrix. The dimensions of the effect matrix determine the dimensions of the

score and loading matrices, thereby effecting the mode of visualization. In general, the rows of

the effect matrix contain the observations to be compared visually in the form of scores follow-

ing PCA. For example, the analysis in Eq 6 yields the IHK × AT score matrix Tf
T , which allows

the visualization of the multivariate population differences between treatments in time for

every PC separately. For brevity, we refer to this mode of visualization as a ‘score trajectory’

plot. However, the effect matrix can also be reshaped prior to PCA to facilitate a different

mode of visualization by reshaping the effect matrix so that the dimensions for time K and

treatment H end up in the columns. For example, consider the effect matrix of the random

effects of time, Mr
T . Reshaping Mr

T from IHK × J to I ×HKJ and analysing via PCA leads to a

score matrix that allows the visualization of the multivariate differences between individuals

using a conventional score plot. This mode of visualization is particularly useful in the case of

effect matrices containing random effects. We will refer to these plots as ‘individual’ score

plots due to their use in highlighting the similarities and differences between individuals.

Principal component analysis is performed on the centered effect matrices via singular

value decomposition (SVD) using the base R function svd. The score and loading matrices T
and P0 in Eq 6 are the standardized scores (

ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

U) and loadings (VS=
ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

), respectively,
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where n is the number of rows of the effect matrix, the columns of U and VT contain the left

and right singular vectors, and S is the diagonal matrix of singular values in SVD.

Model validation

Approximate 95% confidence intervals for the scores and loadings are constructed through

non-parametric bootstrapping as described in [20]. Briefly, all the observations are used to esti-

mate a reference RM-ASCA+ model and the score and loading estimates are collected. Then, a

bootstrap sample is created and the model is re-estimated. Subsequently, orthogonal Procrus-

tes analysis is used to rotate the loading matrix of the bootstrap sample towards the reference

loading matrix, the score matrix is then rotated using the resulting rotation matrix from the

Procrustes analysis. The procedure was repeated a 100 times and the 2.5th and 97.5th percen-

tiles of the bootstrapped score and loading estimates are used as lower and upper bounds for

the confidence intervals.

Simulation study

Synthetic metabolite responses over K = 11 repeated measurements are generated for a popula-

tion of I = 40 subjects undergoing a randomized cross-over trial with H = 2 treatments by spec-

ifying the fixed and random effects coefficients in the model:

yihk ¼ ð~b0 þ ~g i0Þ þ ð
~b1 þ ~g i1Þ tk þ ð~b2 þ ~g i2Þ t2

k þ ð
~b3 þ ~g i3Þ tk gh þ ð~b4 þ ~g i4Þ t2

k gh þ ~� ihk ð7Þ

where the fixed effects coefficients ~b0� 4 are selected to encode particular orthogonal temporal

profiles, and the random effects ~g0� 4 are sampled from a multivariate random distribution

using a covariance matrix of non-zero off-diagonal elements (i.e. correlated random effects).

The indicator variable for treatment g 2 {−1, 1}, and the continuous time vector t = (0, 1, . . .,

10). Finally, uncorrelated random noise ~� ihk is added to the model simulations to obtain the

synthetic responses yihk. In total, J = 25 metabolite responses are generated using Eq 7 in such

a way, that the fixed effects coefficients ~b0� 4 vary across the J metabolites. The responses are

then collected in the simulated multivariate response matrix Y with dimensions IHK × J for all

J metabolites.

In order to assess whether the encoded multivariate effects can be recovered from the noisy

data, we decompose the simulated response matrix without the error term into effect matrices

according to:

~Y ¼ ~M f
0 þ ~M f

T þ ~M f
TG þ ~M r

0
þ ~M r

T þ
~M r

TG ð8Þ

here, the effect matrices ~M contain the encoded (ground truth) multivariate effects and are

used as a reference in the re-analysis of the simulated data including the noise. The noisy syn-

thetic data are then analysed with RM-ASCA+ and the encoded and RM-ASCA+ estimated

effect matrices are visualized to evaluate whether the encoded multivariate effects were suc-

cessfully recovered.

Effect of fat source on post-meal lipoprotein dynamics from the MELC

Study

Metabolomics data from the MELC Study, a double-blind, randomized, cross-over trial was

used in this work [21]. The study data includes postprandial measurements in twenty healthy

male adults who consumed two test drinks on separate days with a washout period in-between.

The drinks differed in fat source, but otherwise were iso-energetic and equivalent in nutrient

composition. Plasma samples were taken K = 11 times, at the fasting state (t = 0), and 30, 60,
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90, 120, 180, 210, 240, 270, 300, 330 minutes after meal ingestion. The subset of data used here

contains concentrations of very low density and low density lipoprotein (VLDL and LDL) sub-

classes (J = 36, cholesterol esters [CE], free cholesterol [FC], triglycerides [TG] and phospho-

lipids [PL] in particle sizes XS to XXL) that were analysed using a nuclear magnetic resonance

based metabolomics platform [25].

Prior to the analysis, measurements below the detection limit were removed. Subsequently,

the measurements were divided by the standard deviation of the baseline measurements (t = 0)

per metabolite. This scaling ensures that metabolites with relatively large variances at baseline

do not disproportionately influence the RM-ASCA+ results [26]. We assume that there is no

variation at baseline between the treatments. The data was then analysed using RM-ASCA

+ with continuous time LMMs as described above (Eqs 1–6). In this case, we used natural

cubic splines with two degrees of freedom instead of polynomials in Eq 1. Natural cubic splines

are piece-wise cubic polynomials with continuous first and second derivatives at the knots

with linearity constraints imposed at the tails of the boundary knots [27]. Natural splines are

generally better behaved and do not suffer from the non-locality of polynomials at the same

degrees of freedom [28, 29].

Modelling curvilinear trends in time

There is a wide range of transformations that may be used to move beyond linearity besides

the simple polynomials and splines demonstrated in this work. The choice of basis function

depends on properties of the data, required amount of flexibility as well as considerations for

numerical stability. A more detailed look at basis functions is out of scope for the current

study, however, for a comprehensive overview of basis functions and splines we refer the

reader to [27, 29, 30]. The natural cubic splines were implemented with B-spline basis using

the ns function from the splines library (ver. 3.6.2). For more details about spline func-

tions in R we refer to [31].

2 Results

Simulation study

Synthetic data containing 11 time-point time-courses of 25 metabolites after 2 treatments in

a cross-over design were simulated in a population of 40 individuals. The resulting time-

courses display varying rates of linear and quadratic changes over time and differences

between the treatments across the metabolites in a heterogeneous population. The data gen-

erating process is highlighted through an example in Fig 1. First, the population level time-

courses of a metabolite were specified through the fixed effects model parameters, then sub-

ject-to-subject variability was introduced through the addition of random effects. Impor-

tantly, heterogeneity in the dynamics was also added via the random effects corresponding

to the time and time-treatment interaction effect. Finally, uncorrelated random noise repre-

sentative of measurement noise was added to achieve the final simulated time courses. This

process was repeated for all metabolites to create the synthetic data. All simulated time-

courses are shown in S1 Fig.

The simulated synthetic data were collected into a multivariate response matrix and then

decomposed into effect matrices containing the ground truth effects according to Eq 8. Sub-

sequently, the multivariate effects in the simulated synthetic data were also estimated via

RM-ASCA+. The resulting encoded (i.e. ~M) and corresponding estimated effect matrices

(i.e. M) were visualized via PCA to assess whether RM-ASCA+ with continuous time metab-

olite models could recover the encoded multivariate effects. The population level effect
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matrices are summarized visually as score trajectory and loading plots representing the

encoded temporal patterns and their association with the original metabolite time-courses in

Fig 2. The encoded time ( ~M f
T) and time-treatment interaction ( ~M f

TG) effect matrices are visu-

alized in panels a and b, respectively, while the RM-ASCA+ estimated time (Mf
T) and time-

treatment interaction (Mf
TG) effect matrices are shown on panels c and d. The encoded multi-

variate time and time-treatment interaction effects show a combination of slow increasing

and parabolic trajectories in time (PC1 & PC2, panel a) as well as two distinct diverging pat-

terns in the case of time-treatment interaction effects (PC1 & PC2, panel b). The most prom-

inent temporal patterns explain 61% and 86.2% of the variance for the effect matrices of time

and time-treatment interaction, respectively. The patterns across the loadings indicate the

design according to which the fixed effects model parameters were specified in the data gen-

erating metabolite models.

In panels c and d of Fig 2, the RM-ASCA+ estimated score trajectory and loading plots of

the population level time and time-treatment interaction effect matrices are shown. The esti-

mated score trajectories and loadings show good agreement with the ground truth in panels a

and b indicating that the encoded multivariate effects in the synthetic data could be recovered

with RM-ASCA+ using the continuous metabolite models. Both the shapes of the prominent

patterns in time (score trajectories) as well as their association with the metabolites (loadings)

were conserved. In addition, PC3 shows that no artifact (effect outside of the encoded ground

truth) was found using RM-ASCA+. The visualization in Fig 2 is representative of applying

RM-ASCA+ to experimental data. Here, however, due to the simulated nature of the data, the

ground truth scores and loadings are also known. Therefore, a direct comparison of encoded

and estimated scores and loadings is shown in S2 and S3 Figs, respectively. In addition, the use

of trailing PCs (such as PC3 in Fig 2) to indicate model validity only holds in the case when the

ground truth is known.

The RM-ASCA+ estimated effect matrices of the random effects for time (Mr
T), and

time-treatment interaction (Mr
TG) in Eq 5 were visualized in an individual score plot span-

ning PC1 and PC2 to facilitate the comparison of the simulated subjects’ responses in Fig 3.

The score plots for the effect matrix of time (panel a) and time-treatment interaction (panel

b) show that the subjects are randomly distributed around zero indicating agreement with

the normal sampling distribution used for specifying the random effects. The origin is an

Fig 1. Example highlighting the process of generating an synthetic metabolite time-course. Panel a shows the

population level metabolite time-courses determined by the fixed effects model parameters (~b0� 4 in Eq 7). In panel b,

the population level curves are extended with subject-to-subject variability through the addition of random effects

(~g0� 4 in Eq 7). Finally, panel c contains the synthetic time-course with the added random noise. The response to

treatment A and B are shown in continuous and dashed lines, respectively. Colours indicate the subjects to which the

responses belong to. For parsimony, only two subjects are visualized.

https://doi.org/10.1371/journal.pcbi.1011221.g001
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approximation of the population average response profiles based on PC1 and PC2, there-

fore, the position of the subjects indicate how their responses differed compared to the pop-

ulation average. Additionally, the distance between the subjects is representative of how

similarly they responded to each other. For example, given the score plot of time-treatment

interaction (panel b), subjects 36 and 37 differ along their PC1 dimension indicating differ-

ential response in time to the two treatments. This was visually confirmed by looking at the

synthetic responses in S4 Fig).

Fig 2. Simulation study design and results. The encoded (top row) and the RM-ASCA+ recovered (bottom row) effect matrices are summarized in score

trajectory and loading plots. The columns correspond to the effect matrices for time (a, c) and time-treatment interaction (b, d), respectively. Scores contain the

patterns in time (i.e. patterns over repeated measures) while the loadings indicate the association of score with the original metabolite time-course. The metabolites are

coloured according to their PC1 loading magnitude for readability. Bootstrapped 95% confidence intervals are shown for the recovered effects as shaded area for the

scores and error bars for the loadings.

https://doi.org/10.1371/journal.pcbi.1011221.g002
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Quantifying post-meal lipoprotein dynamics

We applied RM-ASCA+ using continuous time LMMs on metabolomics data from the MELC

Study. A subset of the post-meal lipoprotein responses used in the analysis including triglycer-

ides (TG) in very low and low density lipoproteins (VLDL-LDL) after the test drinks is shown

in Fig 4. The complete set of data used in the analysis is shown in S5 Fig.

After estimating the metabolite models we decomposed the multivariate response matrix

into effect matrices according to the RM-ASCA+ framework as before in Eq 5. PCA analysis of

the combined response matrix Mf
T þMf

TG summarizes the overall effect of the test drinks on

the post-meal lipoprotein response in the population. Visualizing the results revealed a promi-

nent slowly increasing pattern (PC1, 89.3–98.7% explained variance) that was primarily domi-

nant in the VLDLs with decreasing prevalence going from XXL to S particle size. The XS

Fig 3. Score plot of the estimated effect matrices of (a) time, and (b) time-treatment interaction composed of the

random effects model simulation. Each effect matrix was reshaped to I ×HKJ prior to PCA. Points represent the

simulated individuals.

https://doi.org/10.1371/journal.pcbi.1011221.g003

Fig 4. Triglycerides in very low and low density lipoproteins (VLDL, LDL) by particle size after the test drinks in the MELC Study. XXL: extra extra large, XL: extra

large, L: large, M: medium, S: small, XS: extra small.

https://doi.org/10.1371/journal.pcbi.1011221.g004
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VLDLs and the LDLs showed the inverse of the pattern denoted by the negative loadings. A

faster responding component (PC2, 0.7–8.4% explained variance) was observed in L to S

VLDLs and LDLs with the exception of TG in LDLs. The bootstrapped 95% confidence inter-

vals suggest that there is no significant difference in the rate and shape of the multivariate

responses between treatments A and B. PC3 contained no significant variation and was there-

fore discarded for interpretation.

The effect matrices Mf
T , and Mf

TG can be examined in isolation to further elucidate the

change in time, and the change in time due to the difference between the test drinks (S6 Fig).

The change in time represents the average of the change induced by the two test drinks (panel

a) due to the sum coding of the treatment effect. In addition, the additive nature of the effect

matrices allows for insight into the relative variability between the sub-models. The confidence

intervals in the score trajectory and loading plots indicate large variability within the popula-

tion in the time-treatment interaction effects compared to the average change in time. In addi-

tion, no significant differences in the temporal profiles due to the test drink composition were

found based on the time-treatment interaction results (panel b, S6 Fig).

The corresponding random effects model estimate-based effect matrices Mr
T and Mr

TG were

consulted to elucidate the between-subject variability. First, PCA of the effect matrices in IHK ×
J orientation was carried out to show the individual-specific temporal profiles in a score trajec-

tory and loading plot (S7 Fig). In addition, PCA was applied to the reshaped effect matrices (I ×
HKJ) leading to an individual score plot of the effect matrices to facilitate the comparison

between individuals (Fig 6). The results summarise the heterogeneity in the post-meal dynamics

of the population by showing how the individuals vary around their respective population level

patterns (i.e. the results of the effect matrices composed of the fixed effects model estimates in

Fig 5 and S6 Fig). In Fig 6, individuals close to the origin point responded similarly to the popu-

lation level responses, while individuals further away showed diverging responses. The direc-

tions along the PC axes in Fig 6 correspond to the population level ones, e.g. individual 14

appearing to the left of the origin along the PC1 dimension relates to the participant’s lack of

slow increasing response compared to those observed in the population trajectories in S6 Fig,

panel b. In particular, the time-treatment interaction results showed that individuals within the

population responded in opposite ways to the test drinks. Individual 7 generally had higher

responses to treatment A compared to treatment B, while individual 17 responded to the con-

trary. These results were confirmed by consulting the metabolite responses in the data (S8 Fig).

3 Discussion

In this work, we extended the RM-ASCA+ framework towards frequently sampled multivari-

ate time-series outcomes by introducing the use of LMMs with quantitative time as the under-

lying univariate temporal model. RM-ASCA+ is a highly flexible analytical framework for

longitudinal multivariate data with multi-factorial experimental designs that yields easy-to-

interpret and efficient representations of the study outcomes [20]. However, its applicability to

studies where the shape of the longitudinal outcomes is of importance has been limited. We

showed how RM-ASCA+ using LMMs with basis expansion of the numeric time variable may

be used to capture the dynamics, including non-linearities, in the multivariate outcomes. Fur-

thermore, we introduced and demonstrated the use of random effects in the models to allow

the comparison of individual specific dynamics.

We illustrated the use and properties of RM-ASCA+ with quantitative time models by ana-

lysing synthetic multivariate time-courses representative of a heterogeneous population. The

number of outcomes, sample size, and effect sizes were simulated to mirror the structure of

dietary intervention studies in the field of nutrition. While the effect sizes and measurement
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Fig 6. Individual score plot of PC1 and PC2 of the effect matrices of time (a) and time-treatment interaction (b)

composed of the random effects model estimates. Points represent the individuals from the MELC Study.

https://doi.org/10.1371/journal.pcbi.1011221.g006

Fig 5. Score trajectory and loading plots of analysing the population level effect matrix for time+time-treatment

interaction. Scores contain the predominent patterns over time, while the loadings show the association of the scores

with the metabolite time-courses. Metabolites are shown in the axis label of the loadings with the colours indicating the

various subclasses. FC: free cholesterol, CE: esterified cholesterol, PL: phospholipids, TG: tryglicerides. Bootstrapped

95% confidence intervals are shown as shaded area for the scores and error bars for the loadings.

https://doi.org/10.1371/journal.pcbi.1011221.g005
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noise were chosen to resemble real biological data, the encoded temporal effects (panels a and

b, Fig 2) were selected to display notable orthogonal linear and quadratic profiles in order to

make it easier to show the that the simulated effects were correctly estimated by the approach.

In reality, such effects will not be orthogonal and therefore more difficult to interpret. Linear

combination of the four encoded temporal effects of linear and quadratic changes in time as

well as their interaction with the treatments can produce many heterogeneous shapes as

shown in the simulated metabolites (S1 Fig). Additionally, the synthetic responses were simu-

lated from LMMs including random effects pertaining to the temporal effects to introduce

inter-individual variability in the dynamics of the responses. Using RM-ASCA+ with quantita-

tive time models we were able to quantify the encoded population effects showing the potential

in applying the approach on frequently sampled noisy data containing non-linear trajectories

in a heterogeneous population.

Heterogeneity in the dynamics of the post-meal lipoprotein concentrations has been previ-

ously linked to functional differences in metabolism, while the postprandial lipoprotein profile

was found to vary with factors such as gender and level of adiposity [32–34]. Frequently sam-

pled postprandial Lipemic responses from the MELC Study have been previously analysed to

quantify the post-meal dynamics after two test drinks in a population of healthy individuals

[21]. However, the univariate analyses carried out in the original study did not account for the

correlation across the metabolites even though they were measured in the same individual. A

re-analysis of data from the MELC Study was carried out to demonstrate the novel RM-ASCA

+ with quantitative time models which accounts for the multivariate nature of the data. The

RM-ASCA+ derived representations provide a convenient view into the main modes of post-

prandial lipoprotein dynamics using the score trajectory and loading plots including typical

patterns primarily determined by particle size as well as differential dynamics of triglycerides.

In addition, the multivariate response profiles of individuals can be easily compared via the

effect matrices of the random effects as shown in Fig 6.

A summary of the effect of the meal challenges on the lipoprotein responses in the MELC

Study can be derived by visualizing the score and loading estimates of the combined time and

time-treatment interaction effect matrices from RM-ASCA+ (Fig 4). The plots present a con-

cise and convenient way to interpret as well as compare the various lipoprotein responses and

treatments. In addition, the effect decomposition step allowed the quantification of the vari-

ability in the responses by effect source, highlighting the high heterogeneity in the responses to

the test drinks by fat source. Furthermore, the underlying metabolite models were able to

quantify between-subject variability in the dynamics via employing random effects of the time

and time-treatment interaction effects. Thus, the approach allows insight into the inter-relat-

edness of the various lipoproteins as well as their changes in time, while accounting for sub-

ject-to-subject variability in the dynamics of the responses.

The approach outlined here allows the quantification of temporal dynamics while account-

ing for the dependency structures in data including within and between individual variability.

Therefore, it presents an improvement over univariate methods frequently used to analyse

post-meal dynamics such as AUC or LMM. Moreover, our approach is more easily generaliz-

able and scalable to other systems than ODE-based models of postprandial dynamics, which

may take a long time to build and validate.

The use of quantitative time models within RM-ASCA+ poses many benefits compared

to the time-as-factor models demonstrated in [20]. Such approaches making use of polyno-

mials or splines are frequently employed in univariate analysis to capture non-linearities in

data. In particular, the use of explicit time models through various basis expansions of the

numeric time variables allow the quantification of the dependency between the repeated

measurements over time, making it possible to capture specific temporal shapes [35].
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Additionally, as the number of repeated measurements in time grows, estimation of the

time-as-factor models becomes less practical due to a large number of model parameters.

Conversely, through the use of basis expansion methods such as polynomials and splines,

quantitative time models present a flexible alternative with fewer parameters to estimate.

Here, we demonstrated our approach using polynomial bases in a simulation study. How-

ever, it should be noted that the use of polynomial bases particularly ones with high order

terms are generally not recommended due to ill-conditioning and their rigidity [28, 36].

These issues may be avoided by employing orthogonal polynomials or other basis expan-

sions such as splines. Therefore, in the application to real data from the MELC Study, we

used natural cubic splines. Quantification of the temporal dependency via continuous time

models also supports the use of data with missing values. In addition, the sampling fre-

quency, length of the sampled period, as well as the uniformity of the sampling scheme

across subjects are also important in selecting the appropriate time model. A quantitative

time model is flexible with regards to these properties and is generally favoured for data

with irregular sampling strategies by subjects, as it requires no binning of the measurements

or dropping them from the analysis.

A key step in RM-ASCA+ is selecting the model that will represent the change in the vari-

ables over time. This temporal model must be appropriately specified to quantify the change

in the univariate models. Similarly to any univariate analysis via LMMs, this includes ensur-

ing that the model appropriately represents the experimental setup, that the model parame-

ters are identifiable, as well as examining model diagnostics [37–39]. In this work, the

univariate model structure was shared across the metabolites i.e. all metabolites were mod-

eled using the same LMM specification. Diagnostic plots of the residuals in the metabolite

models fitted to the MELC Study are shown in S1 Appendix. While quantitative time models

are quite flexible, care must be taken to avoid misspecification of the univariate models. For

example, assume that most metabolites are appropriately described using a quadratic time

variable, except for a particular metabolite that shows a delayed response. In such a case, the

quadratic model would be misspecified; instead, a piece-wise model capturing the delay is

necessary. The use of a model selection step within RM-ASCA+ to specify the model struc-

ture in each metabolite prior to multivariate analysis may be feasible, however was out of

scope for the current work. Moreover, as heterogeneity in the longitudinal outcomes is a key

feature of biological systems, we advocate the use of random effects of the model terms

underlying the dynamics. Nevertheless, care should be taken when adding coefficients to

estimate so that the model complexity is supported by the experimental design and data [39].

In principle, an arbitrary number of metabolites may be included in the analysis presented in

this work, however, note that estimating the LMMs may be costly. In such cases, performing

PCA on the metabolite responses first, as done in LiMM-PCA, may be a more scalable option

[19, 20].

In conclusion, analysis of multi-outcome longitudinal data originating from multi-factorial

experimental designs must take into account the within-subject dependency structures and

account for the heterogeneity in the population. RM-ASCA+ is a novel analytical framework

that takes into account the inter-relatedness of the multiple outcomes and population hetero-

geneity. Here, the framework is extended to quantify the dynamics in frequently sampled

time-series data through the use of linear mixed models with numeric time predictors as the

underlying univariate models of RM-ASCA+. Additionally, we showed how non-linearities in

time, and heterogeneity in the dynamics -both frequently observed properties of biological sys-

tems- can be captured within RM-ASCA+ through the use of basis expansion, and random

effects of the model terms describing the dynamics.
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Supporting information

S1 Fig. Simulated metabolite responses.

(TIF)

S2 Fig. Encoded vs. RM-ASCA+ estimated scores of the fixed effects effect matrices of time

and time-treatment interaction from the simulation study. Bars indicate resampling based

95% confidence intervals. Diagonal line represents perfect agreement.

(TIF)

S3 Fig. Encoded vs. RM-ASCA+ estimated loadings of the fixed effects effect matrices of

time and time-treatment interaction from the simulation study. Bars indicate resampling

based 95% confidence intervals. Diagonal line represents perfect agreement.

(TIF)

S4 Fig. Simulated metabolite responses with the responses of subjects 36 and 37 highlighted.

(TIF)

S5 Fig. Lipoprotein responses by particle size in the MELC Study [21]. XXL: extra extra

large, XL: extra large, L: large, M: medium, S: small, XS: extra small.

(TIF)

S6 Fig. Score trajectory and loading plots of analysing the effect matrices for time, and

time-treatment interaction (panels a, and b, respectively). Scores contain the prominent

patterns over time, while the loadings show the association of the scores with the metabolite

time-courses. Metabolites are shown in the axis label of the loadings with the colours indicat-

ing the various subclasses. FC: free cholesterol, CE: esterified cholesterol, PL: phospholipids,

TG: tryglicerides. Resampling based 95% confidence intervals are shown as shaded area for the

scores and error bars for the loadings.

(TIF)

S7 Fig. Score trajectory plot of the effect matrices time+time-treatment interaction, time,

and time-treatment interaction composed of the random effects model estimates.

(TIF)

S8 Fig. Lipoprotein responses by particle size after the test drinks in 20 healthy young

males in the MELC Study with highlighted individuals. XXL: extra extra large, XL: extra

large, L: large, M: medium, S: small, XS: extra small.

(TIF)

S1 Appendix. Diagnostic residual plots of the metabolite models fitted to the MELC study

data.
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18. Thiel M, Féraud B, Govaerts B. ASCA+ and APCA+: Extensions of ASCA and APCA in the analysis of

unbalanced multifactorial designs. Journal of Chemometrics. 2017; 31(6):e2895. https://doi.org/10.

1002/cem.2895

19. Martin M, Govaerts B. LiMM-PCA: Combining ASCA+ and linear mixed models to analyse high-dimen-

sional designed data. Journal of Chemometrics. 2020; 34(6). https://doi.org/10.1002/cem.3232

20. Madssen TS, Giskeødegård GF, Smilde AK, Westerhuis JA. Repeated measures ASCA+ for analysis

of longitudinal intervention studies with multivariate outcome data. PLOS Computational Biology. 2021;

17(11):e1009585. https://doi.org/10.1371/journal.pcbi.1009585 PMID: 34752455

21. Hageman JHJ, Erdõs B, Keijer J, Adriaens M, de Wit B, Stañková B, et al. The Effect of Partly Replacing
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