Search for a heavy neutral particle decaying into an electron and a muon using 1 fb-1 of ATLAS data

DOI
10.1140/epjc/s10052-011-1809-9

Publication date
2011

Document Version
Final published version

Published in
European Physical Journal C

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Received: 14 September 2011 / Revised: 31 October 2011 / Published online: 7 December 2011
© CERN for the benefit of the ATLAS collaboration 2011. This article is published with open access at Springerlink.com

Abstract A search is presented for a high mass neutral particle that decays directly to the $e^\pm\mu^\mp$ final state. The data sample was recorded by the ATLAS detector in $\sqrt{s}=7$ TeV pp collisions at the LHC from March to June 2011 and corresponds to an integrated luminosity of 1.07 fb$^{-1}$. The data are found to be consistent with the Standard Model background. The high $e^\pm\mu^\mp$ mass region is used to set 95% confidence level upper limits on the production of two possible new physics processes: tau sneutrinos in an R-parity violating supersymmetric model and Z'-like vector bosons in a lepton flavor violating model.

Short-lived particles that decay into two oppositely signed leptons of different flavors, $e^\pm\mu^\mp$ ($e\mu$), $e^\pm\tau^\mp$ ($e\tau$), or $\mu^\pm\tau^\mp$ ($\mu\tau$), are predicted by a number of extensions to the Standard Model (SM). Examples include sneutrinos in R-parity violating (RPV) supersymmetric (SUSY) models [1], and extra gauge Z' bosons with lepton flavor violating (LFV) interactions [2]. This Letter reports a search for an excess of high invariant mass $e\mu$ ($m_{e\mu}$) events over SM predictions in pp collisions at $\sqrt{s}=7$ TeV at the LHC. The $e\mu$ final state is chosen due to its clean detector signature and low SM background in the high $m_{e\mu}$ region. Similar searches with the $e\mu$ final state have been reported previously by the CDF, D0 and ATLAS Collaborations [3–8]. In this Letter, we report an updated search with a data sample approximately 30 times larger than used for the previous ATLAS search [8] with improved sensitivity to new physics.

The ATLAS detector [9] is a multi-purpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field and by a hermetic calorimeter system, which provides three-dimensional reconstruction of particle showers up to $|\eta|<4.9$. For $|\eta|<2.5$, the electromagnetic calorimeter is finely segmented and plays an important role in electron identification. The muon spectrometer (MS) is based on three large superconducting toroids arranged with an eight-fold azimuthal coil symmetry around the calorimeters. Three stations of drift tubes and cathode strip chambers enable precise muon track measurements, and resistive-plate and thin-gap chambers provide muon triggering capability.

The data sample used in this analysis was collected using single lepton (e or μ) triggers, between March and June 2011. The total integrated luminosity is 1.07 ± 0.04 fb$^{-1}$ [10, 11]. The trigger efficiency is measured to be 100%, with a precision of 1%, for $e\mu$ candidates that pass the default selection criteria described below.

To select $e\mu$ candidates, the electron candidate is required to have $p_T>25$ GeV and to have pseudorapidity $|\eta|<1.37$ or $1.52<|\eta|<2.47$. It is further required to pass the “medium” [12] quality definition, which is based on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster. In addition, the electron is required to be isolated in the calorimeter with $E_T^{\Delta R<0.4} < 10$ GeV, where $E_T^{\Delta R<0.4}$ is defined as the transverse energy deposited in the calorimeter within a cone of radius $\Delta R=\sqrt{\Delta\eta^2+\Delta\phi^2}=0.4$ around the electron cluster. Corrections have been applied to account for energy leakage from the electron and energy deposition inside the isolation cone due to additional pp collisions. The muon candidate must be reconstructed in both the ID and the MS, and

$\Delta R=\sqrt{\Delta\eta^2+\Delta\phi^2}$ are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln\tan(\theta/2)$.
have $p_T > 25$ GeV and $|\eta| < 2.4$. Furthermore, the muon is required to be isolated in the ID with $p_T^{\Delta R<0.4} < 10$ GeV, where $p_T^{\Delta R<0.4}$ is defined as the scalar sum of the p_T of tracks associated to the primary vertex, within a cone of radius $\Delta R = 0.4$ around the muon track. Only tracks with $p_T > 1$ GeV are used. Furthermore, only electrons separated from muons by $\Delta R > 0.2$ are considered.

The $e\mu$ candidate events are required to have exactly one electron and one muon with opposite charge satisfying the above selection criteria. Furthermore, events have to contain at least one primary vertex reconstructed with at least three associated tracks of $p_T > 500$ MeV.

The SM processes that can produce an $e\mu$ signature can be divided into two categories: processes such as $Z/\gamma^* \rightarrow \tau \tau, \tau\bar{\tau}$, single top, WW, WZ and ZZ, which can produce electrons and muons in the final state, and processes, referred to as fake background in this Letter, such as $W/Z + \gamma$, $W/Z +$ jets and multijet events where the photon or one or two jets are reconstructed as leptons.

The contributions from processes listed in the first category as well as photon-related backgrounds are estimated using Monte Carlo (MC) samples generated at $\sqrt{s} = 7$ TeV. The detector response simulation [13] is based on the GEANT4 program [14]. Lepton reconstruction and identification efficiencies, energy scales and resolutions in the MC are corrected to the corresponding values measured in the data in order to improve the modeling of the background. The MC predictions are normalized to the data sample based on the integrated luminosity and cross sections of various physics processes. Top production is generated with MC@NLO [15–17] for $t\bar{t}$ and single top, the Drell–Yan process is generated with PYTHIA [18], and the diboson processes are generated with HERWIG [19, 20]. Higher order corrections have been applied to the cross sections predicted by these generators [21–23]. The $W/Z + \gamma$ contribution in the fake background comes from the $W(\rightarrow \mu\nu\gamma, Z(\rightarrow \mu\mu\gamma)$ processes, where the photon is reconstructed as an electron. This background is estimated using events generated with MADGRAPH [24].

The uncertainties for the $t\bar{t}$ and single top cross sections are taken to be 10% [25, 26] and 9% [27], respectively. The cross sections for $W/Z + \gamma$, $Z/\gamma^* \rightarrow \tau \tau, WW$, WZ and ZZ are assigned uncertainties of 10%, 5%, 7%, 7%, and 5%, respectively; these uncertainties arise from the choice of PDF, from factorization and renormalization scale dependence and from a_S variations. The integrated luminosity uncertainty and other smaller systematic uncertainties from the lepton trigger, reconstruction and identification efficiencies, energy (momentum) scale and resolution have been added in quadrature and are included in the total uncertainty.

The remaining fake backgrounds arise from the $W/Z +$ jets and multijet processes, where leptons are present from b- or c-hadron decays or at least one jet is misidentified as a lepton. Such lepton candidates are collectively referred to as “non-prompt leptons” in this Letter. These jet fake backgrounds account for $\sim 30\%$ of the expected $ee/\mu\mu$ data yield and are estimated from data using a 4×4 matrix background estimation method described below.

A looser lepton quality selection (called loose lepton here) is defined for each lepton type in addition to the default quality selection (called tight lepton here). For loose muons, the isolation requirement is dropped. For loose electrons, the “loose” electron identification criterion as defined in Ref. [12] are used and the isolation requirement is also dropped. The tight and loose lepton selections are then used to classify events where both leptons pass the loose requirements into four categories, depending on whether both leptons subsequently pass the tight requirement (N_{pp}), only one lepton fails the tight requirement and the other lepton passes the tight requirement (N_{pf} or N_{fp}), or both leptons fail the tight requirement (N_{ff}). The sample composition can be estimated by solving a linear system of equations: $(N_{pp}, N_{pf}, N_{fp}, N_{ff}) = (\epsilon(N_{e\mu}, N_{e\mu^1}, N_{e\mu^2}, N_{e\mu^3}))^T$, where $N_{e\mu}$ (or $N_{e\mu^1}$) is the number of events with two prompt leptons (or two non-prompt leptons), while $N_{e\mu^1}$ and $N_{e\mu^2}$ are the numbers of events with one prompt lepton and one non-prompt lepton. The matrix ϵ contains the probabilities for a loose quality lepton to pass the tight quality selection for both prompt and non-prompt leptons. The probability for prompt leptons (non-prompt leptons) is estimated by applying the loose and tight selections on $Z/\gamma^* \rightarrow ee/\mu\mu$ events (a sample of dijet events). To take into account the lepton p_T dependence of the two probabilities, the matrix equation is inverted for each event, giving four weights, corresponding to the four combinations of prompt and non-prompt leptons. These weights are then summed over all events to yield the total number of events with one or more non-prompt leptons. The overall jet fake background is found to be 1175 ± 32 (stat) events. The breakdown of these contributions is estimated to be $N_{e\mu} = 375 \pm 30$ (stat), $N_{e\mu^1} = 89 \pm 13$ (stat) and $N_{e\mu^2} = 711 \pm 8$ (stat). The overall systematic uncertainty of 10% comes mainly from the uncertainty on the probability for a loose quality non-prompt muon to pass the tight quality selection.

Table 1 shows the number of events selected in data and the estimated background contributions with their uncertainties (both statistical and systematic uncertainties are included). A total of 4053 $e\mu$ candidates are observed, while the expectation from SM processes is 4145 ± 250 events. The $m_{e\mu}$ distribution is presented in Fig. 1 for data and background contributions. The distribution of observed events is compared to the expected background using a Kolmogorov–Smirnov test with statistical uncertainties only [28, 29]. The test probability is 56%, consistent with the absence of a new physics signal.

Table 2 shows the numbers of observed and predicted background events in eleven high $e\mu$ mass regions. Good
agreement is found for all mass regions and no statistically significant data excess is observed. Limits are set on the contributions of new physics processes to the high mass region from two scenarios: the production of \(\tilde{\nu}_\tau \) in an RPV \(\tilde{\nu}_\tau \) model and of an LFV \(Z' \) in extra-gauge boson models. The process \(d\bar{d} \rightarrow \tilde{\nu}_\tau \rightarrow e\mu \) in a SUSY RPV model is considered. The RPV sneutrino couplings allowed in the supersymmetric Lagrangian are \(\lambda_{ijk} \tilde{L}_i \tilde{E}_j \tilde{E}_k + \lambda'_{ijk} \tilde{L}_i \tilde{Q}_j \tilde{D}_k \), where \(L \) and \(Q \) are the lepton and quark \(SU(2) \) doublet superfields, and \(E \) and \(D \) denote the singlet fields for charged leptons and down type quarks, respectively. The indices \(i, j, k = 1, 2, 3 \) refer to the fermion generation numbers. The coupling constants \(\lambda \) satisfy \(\lambda'_{ijk} = -\lambda_{ijk} \). Only the tau sneutrino is considered in this Letter since stringent limits already exist on the electron sneutrino and muon sneutrino [1]. By fixing all RPV couplings except \(\lambda'_{311} \) (\(\tilde{\nu}_\tau \) to \(d\bar{d} \)) and \(\lambda_{312} \) (\(\tilde{\nu}_\tau \) to \(e\mu \)) to zero, and assuming that \(\tilde{\nu}_\tau \) is the lightest supersymmetric particle, the contributions to the \(e\mu \) final state originate from the \(\tilde{\nu}_\tau \) only. The cross section is 0.154 pb for \(m_{\tilde{\nu}_\tau} = 650 \text{ GeV} \), \(\lambda'_{311} = 0.10 \) and \(\lambda_{312} = 0.05 \) [30, 31]. The total decay width is \(\Gamma_{\tilde{\nu}_\tau} = (3\lambda'_{311}^2 + 2\lambda_{312}^2) m_{\tilde{\nu}_\tau}/16\pi \). Using couplings that are consistent with the current limits, the decay width is less than 1 GeV for \(m_{\tilde{\nu}_\tau} = 1 \text{ TeV} \), which is well below the contribution from detector resolution. MC samples with \(\tilde{\nu}_\tau \) masses ranging from 0.1 to 2 TeV are generated with HERWIG [19, 20, 32].

An \(e\mu \) resonance also appears in models containing a heavy neutral gauge boson, \(Z' \) [33], with non-diagonal lepton flavor couplings. Rare muon decay searches have placed extremely stringent limits on the combination of the mass and the coupling to \(ee \) and \(e\mu \) in such models [2]. The \(e\mu \) searches at hadron colliders are not able to match the sensitivity of dedicated \(\mu \rightarrow e \) conversion experiments. A limit on the production cross section times branching ratio to \(e\mu \) is placed on the \(Z' \)-like boson model to represent the production of vector particles that can decay to the \(e\mu \) final state. To calculate the efficiency and acceptance, the \(Z' \) is assumed to have the same quark and lepton couplings as the SM \(Z \) except a non-zero \(Z' \) to \(e\mu \) coupling, which is assumed to be the same as the \(Z' \) to \(ee \) coupling. The cross section is 0.61 pb for \(m_{Z'} = 700 \text{ GeV} \) [34]. MC samples with \(Z' \) masses ranging from 0.7 to 2 TeV are generated with PYTHIA.

Both \(\tilde{\nu}_\tau \) and \(Z' \) masses are processed through the standard chain of the ATLAS simulation and reconstruction. The overall product of acceptance and efficiency is 36% for \(m_{\tilde{\nu}_\tau} = 100 \text{ GeV} \) and increases to 64% for \(m_{\tilde{\nu}_\tau} = 1 \text{ TeV} \). The corresponding number is \(\sim 60\% \) for \(Z' \) with mass \(m_{Z'} = 700 \text{ GeV} \) to \(m_{Z'} = 2 \text{ TeV} \). The predicted \(m_{e\mu} \) distributions for a \(\tilde{\nu}_\tau \) with \(m_{\tilde{\nu}_\tau} = 650 \text{ GeV} \) and a \(Z' \) with \(m_{Z'} = 700 \text{ GeV} \) are also shown in Fig. 1.

Table 1

Estimated backgrounds in the selected sample, together with the observed event yields. The total integrated luminosity is 1.07 fb\(^{-1}\)

<table>
<thead>
<tr>
<th>Process</th>
<th>Number of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t\bar{t})</td>
<td>1580±170</td>
</tr>
<tr>
<td>Jet fake</td>
<td>1175±120</td>
</tr>
<tr>
<td>(Z/\gamma^* \rightarrow \tau \tau)</td>
<td>750 ± 60</td>
</tr>
<tr>
<td>(WW)</td>
<td>380±31</td>
</tr>
<tr>
<td>Single top</td>
<td>154±16</td>
</tr>
<tr>
<td>(W/Z + \gamma)</td>
<td>82 ± 13</td>
</tr>
<tr>
<td>(ZZ)</td>
<td>22.4±2.3</td>
</tr>
<tr>
<td>Total background</td>
<td>4145±250</td>
</tr>
<tr>
<td>Data</td>
<td>4053</td>
</tr>
</tbody>
</table>

Table 2

Estimated total backgrounds in the selected sample, together with the observed event yields for 11 high \(m_{e\mu} \) mass regions

<table>
<thead>
<tr>
<th>(m_{e\mu})</th>
<th>Data</th>
<th>SM prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>>200 GeV</td>
<td>286</td>
<td>288 ± 22</td>
</tr>
<tr>
<td>>250 GeV</td>
<td>152</td>
<td>136 ± 11</td>
</tr>
<tr>
<td>>300 GeV</td>
<td>70</td>
<td>67 ± 6</td>
</tr>
<tr>
<td>>350 GeV</td>
<td>35</td>
<td>34.0 ± 3.0</td>
</tr>
<tr>
<td>>400 GeV</td>
<td>22</td>
<td>17.7 ± 1.7</td>
</tr>
<tr>
<td>>450 GeV</td>
<td>10</td>
<td>10.5 ± 1.2</td>
</tr>
<tr>
<td>>500 GeV</td>
<td>7</td>
<td>6.8 ± 0.9</td>
</tr>
<tr>
<td>>550 GeV</td>
<td>3</td>
<td>4.3 ± 0.6</td>
</tr>
<tr>
<td>>600 GeV</td>
<td>3</td>
<td>2.4 ± 0.4</td>
</tr>
<tr>
<td>>650 GeV</td>
<td>1</td>
<td>1.49 ± 0.31</td>
</tr>
<tr>
<td>>700 GeV</td>
<td>0</td>
<td>1.07 ± 0.25</td>
</tr>
</tbody>
</table>

Fig. 1

Observed and predicted \(e\mu \) invariant mass distributions. Signal simulations are shown for \(m_{\tilde{\nu}_\tau} = 650 \text{ GeV} \) and \(m_{Z'} = 700 \text{ GeV} \). The couplings \(\lambda'_{311} = 0.10 \) and \(\lambda_{312} = 0.05 \) are used for the RPV \(\tilde{\nu}_\tau \) model. The production cross section is assumed to be the current published limit of 0.178 pb for the LFV \(Z' \) model [8]. The ratio plot at the bottom includes only statistical uncertainties.
The \(m_{\mu\mu} \) spectrum is examined for the presence of a new heavy particle. For each assumed \(m_{\tilde{\nu}} \) value in the range 100 GeV to 2 TeV, a search region, which depends on the simulated \(e\mu \) mass resolution, is used.\(^2\) The number of observed and predicted background and signal events in each search range are used to set an upper limit on \(\sigma(pp \rightarrow \tilde{\nu}) \times \text{BR}(\tilde{\nu} \rightarrow e\mu) \). A Bayesian method [35] is used with a uniform prior for the signal cross section for a given \(m_{\tilde{\nu}} \). Figure 2a shows the expected and observed 95\% confidence level (C.L.) limits, as a function of \(m_{\tilde{\nu}} \), together with the limits previously published by ATLAS [8], which were based on 35 pb\(^{-1}\) of data, and the expected ±1 and ±2 standard deviation uncertainty bands. For a \(\tilde{\nu} \) with a mass of 100 GeV (1 TeV), the limit on the cross section times branching ratio is 135 (4.5) fb. The limits obtained extend 7 (34) times beyond the previous ATLAS results.

The theoretical cross sections for \(\lambda'_{311} = 0.10, \lambda_{312} = 0.05 \) and \(\lambda'_{311} = 0.11, \lambda_{312} = 0.07 \) are also shown. Tau sneutrinos with a mass below 1.32 (1.45) TeV are excluded, assuming coupling values \(\lambda'_{311} = 0.10 \) and \(\lambda_{312} = 0.05 \) (\(\lambda'_{311} = 0.11 \) and \(\lambda_{312} = 0.07 \)). The limits are significantly better than the limits from the previous ATLAS analysis using 35 pb\(^{-1}\) of data. The 95\% C.L. observed upper limits on \(\lambda'_{311} \) as a function of \(m_{\tilde{\nu}} \) are shown in Fig. 2b for three values of \(\lambda_{312} \), together with the exclusion region obtained from the D0 experiment [7] and previously by the ATLAS experiment [8]. The limits on \(\lambda'_{311} \) are tight than the D0 results for \(m_{\tilde{\nu}} > 270 \) GeV sneutrinos assuming \(\lambda_{312} = 0.07 \). Better sensitivity can be obtained for \(m_{\tilde{\nu}} < 270 \) GeV by applying selection cuts on missing transverse energy and number of jets in the event to improve the signal and background ratio, but it will make the search model-dependent.

A similar method is used to set limits on the LFV \(Z' \)-like vector boson; however, as opposed to the sneutrino limits, a unique mass window is defined for each potential signal mass. The 95\% C.L. upper limits on \(\sigma(pp \rightarrow Z') \times \text{BR}(Z' \rightarrow e\mu) \) are shown in Fig. 3. The expected limit is the same as the observed limit for the high mass points because both the median background event count expectation and the observed number of events are zero. For a \(Z' \) with mass of 0.7 TeV (1.0 TeV), the limit on the cross section times branching ratio is 9.6 fb (4.8 fb). This result improves upon previous ATLAS limits by roughly a factor of 20 (40).

In conclusion, a search has been performed for high mass \(e\mu \) events using \(pp \) collision data at \(\sqrt{s} = 7 \) TeV recorded by the ATLAS detector. The observed \(m_{e\mu} \) distribution is found to be consistent with SM predictions. With no evidence for new physics, 95\% C.L. exclusion limits are placed on the production cross sections and RPV coupling values of the tau sneutrinos in an RPV SUSY model, and tau sneutrinos with a mass below 1.32 (1.45) TeV are excluded, assuming coupling values \(\lambda'_{311} = 0.10 \) and \(\lambda_{312} = 0.05 \) (\(\lambda'_{311} = 0.11 \) and \(\lambda_{312} = 0.07 \)). The results presented here are the most stringent results to date for \(m_{\tilde{\nu}} > 270 \) GeV. More stringent constraints are also set on the production cross sections of \(Z' \) bosons in an LFV model. These two benchmark models can be used to represent the production of any narrow scalar and vector particles that can decay to the \(e\mu \) final state.
The observed 95% C.L. upper limits on $\sigma (pp \rightarrow Z') \times \text{BR} (Z' \rightarrow e\mu)$. The expected limits are also shown together with the expected ± 1 and ± 2 standard deviation uncertainty bands. The observed and expected limits overlap as discussed in the text.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CIPI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DZMKF and DESY, Germany; IN2P3-CNRS, CEA-DSM/IRFU, France; FNAL, USA; INFN, Italy; INFN, Italy; INFN, Italy; MEXT and JSPS, Japan; INFN, Italy; INFN, Italy; MILANO-BICOCCA and INFN, Italy; INFN, Spain; INFN, Italy; INFN, Italia
25(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Science, Hiroshima University, Hiroshima, Japan
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
Department of Physics, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
(a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
Department of Physics, University of Illinois, Urbana IL, United States of America
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CN), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
\(^a \) Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP, Lisboa, Portugal
\(^b \) Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
\(^c \) Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
\(^d \) Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
\(^e \) Also at TRIUMF, Vancouver BC, Canada
\(^f \) Also at Department of Physics, California State University, Fresno CA, United States of America
\(^g \) Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
\(^h \) Also at Fermilab, Batavia IL, United States of America
\(^i \) Also at Department of Physics, University of Coimbra, Coimbra, Portugal
\(^j \) Also at Università di Napoli Parthenope, Napoli, Italy
\(^k \) Also at Institute of Particle Physics (IPP), Canada
\(^l \) Also at Department of Physics, Middle East Technical University, Ankara, Turkey
\(^m \) Also at Louisiana Tech University, Ruston LA, United States of America
\(^n \) Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
\(^o \) Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
\(^p \) Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
\(^q \) Also at Manhattan College, New York NY, United States of America
\(^r \) Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
\(^s \) Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
\(^t \) Also at High Energy Physics Group, Shandong University, Shandong, China
\(^u \) Also at Section de Physique, Université de Genève, Geneva, Switzerland
\(^v \) Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
\(^w \) Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
\(^x \) Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
\(^y \) Also at California Institute of Technology, Pasadena CA, United States of America
\(^z \) Also at Institute of Physics, Jagiellonian University, Krakow, Poland
\(^aa \) Also at Department of Physics, Oxford University, Oxford, United Kingdom
\(^ab \) Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
\(^ac \) Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
\(^ad \) Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
\(^ae \) Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
\(^af \) Also at School of Physics, Nanjing University, Jiangsu, China
*Deceased