Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC

ATLAS Collaboration

1. Introduction

The observation of a massive long-lived highly ionising particle (HIP) possessing a large electric charge \(|q| > e \), where \(e \) is the elementary charge, would represent striking evidence for physics beyond the Standard Model. Examples of putative particles which can give rise to HIP signatures include Q-balls [1], stable micro black-hole remnants [2], magnetic monopoles [3] and dyons [4]. Searches for HIPs are made in cosmic rays [5] and at colliders [3]; recent collider searches were performed at LEP [6–8] and the Tevatron [9–12]. Cross sections and event topologies associated with HIP production cannot be reliably predicted due to the fact that the coupling between a HIP and the photon is so strong that perturbative calculations are not possible. Therefore, search results at colliders are usually quoted as cross section limits in a range of charge and mass for given kinematics [3]. Also, for the same reason, limits obtained at different collision energies or for different types of collisions cannot be directly compared; rather, they are complementary.

HIP searches are part of a program of searches at the CERN Large Hadron Collider (LHC) which explore the multi-TeV energy regime. Further motivation is provided by the gauge hierarchy problem, to which proposed solutions typically postulate the existence of hitherto unobserved particles with TeV-scale masses. HIPs at the LHC can be sought at the dedicated MoEDAL plastic-track experiment [13] or, as in this work, via their active detection at a multipurpose detector.

Due to their assumed large mass (hundreds of GeV), HIPs are characterised by their non-relativistic speed. The expected large amounts of energy loss per unit length \((dE/dx)\) through ionisation (no bremsstrahlung) are mainly due to the high particle charge, but also due to the low speed. The ATLAS detector is well suited to detect HIPs. A HIP with sufficient kinetic energy would leave a track in the inner detector tracking system of ATLAS and lose its energy on its way to and through the electromagnetic calorimeter, giving rise to an electron-like signature. The presence of a HIP can be inferred from measurements of the proportion of high-ionisation hits in the inner detector. In addition, assuming isolation, the lateral extent of the energy deposition in the calorimeter is a sensitive discriminant between HIPs and Standard Model particles.

The ranges of HIP charge, mass and lifetime for which unambiguous conclusions can be drawn are determined by the chosen trigger and event selections. The choice of an electromagnetic trigger limits the phase space to HIPs which stop in the electromagnetic calorimeter of ATLAS. The search is optimised for data collected at relatively low instantaneous luminosities (up to \(10^{31} \text{ cm}^{-2}\text{s}^{-1}\)), for which a low (10 GeV) trigger transverse energy threshold is available. In the barrel region of the calorimeter, this gives access to energy depositions corresponding to HIPs with electric charges down to 6e. Standard electron reconstruction algorithms are used, which implies that tracks which bend like electrically charged particles are sought. Particles with magnetic charge, or electric charge above 17e, are not addressed here due to the bending along the beam axis in the case of a monopole, and due to effects from delta electrons and electron recombination in the active detector at the corresponding values of energy loss \((dE/dx > 2 \cdot 10^3 \text{ MeV}/\text{cm})\). For such types of HIPs, more detailed studies are needed to assess and minimise the impact of these
effects on the selection efficiency. The 1000 GeV upper bound in mass sensitivity is determined by trigger timing constraints, as a significantly heavier HIP (with charge 17e or lower) would be delayed by more than 12 ns with respect to $\beta = 1$ when it stops in the electromagnetic calorimeter (this corresponds to $\beta < 0.3$), and would thus risk being triggered in the next proton bunch crossing. The search is sensitive to HIP lifetimes larger than 100 ns since a particle which decays much earlier in the calorimeter (even after stopping) would spoil the signature of a narrow energy deposition.

2. The ATLAS detector

The ATLAS detector [14] is a multipurpose particle physics apparatus with a forward–backward symmetric cylindrical geometry and near 4π coverage in solid angle. A thin superconducting solenoid magnet surrounding the inner part of the ATLAS detector produces a field of approximately 2 T along the beam axis.

Inner detector (ID) tracking is performed by silicon-based detectors and an outer tracker using straw tubes with particle identification capabilities based on transition radiation (Transition Radiation Tracker, TRT). The TRT is divided into barrel (covering the pseudorapidity range $|\eta| < 1.0$) and endcap ($0.8 < |\eta| < 2.0$) components. A track gives a typical number of straw hits of 36. At the front-end electronics of the TRT, discriminators are used to compare the signal against low and high thresholds. While the TRT has two hit threshold levels, there is no upper limit to the amount of ionisation in a straw which will lead to a signal [15], guaranteeing that highly ionising particles would not escape detection in the TRT. Rather, they would produce a large number of high-threshold (HT) hits along their trajectories. The amount of ionisation in a straw tube needed for a TRT HT hit is roughly equivalent to three times that expected from a minimum ionising particle.

Liquid-argon sampling electromagnetic (EM) calorimeters, which comprise accordion-shaped electrodes and lead absorbers, surround the ID. The EM calorimeter barrel ($|\eta| < 1.475$) is used in this search. It is segmented transversely and divided in three layers in depth, denoted first, second, and third layer, respectively. In front of the accordion calorimeter a thin presampler layer is used to correct for fluctuations of energy loss. The typical cell granularity ($\Delta \eta \times \Delta \phi$) of the EM barrel is 0.003 × 0.1 in the first layer and 0.025 × 0.025 in the second layer. The signal expected for a HIP in the considered charge range lies in a region in time and energy where the electronic response in EM calorimeter cells is well understood and does not saturate. The robustness of the EM calorimeter energy reconstruction has been studied in detail and pulse shape predictions are consistent with the measured signals [16].

The stopping power of a HIP in the ATLAS detector depends on its charge, mass, and energy, as well as the material budget along its path. Details of the latter are given in Ref. [17] in terms of number of radiation lengths X_0, as a function of depth and pseudorapidity. The integrated radiation length between the interaction point and the exit of the TRT is 0.5 X_0 at $\eta = 0$ and 1.5 X_0 at $|\eta| = 1.3$. The additional amount of material before the first layer of the EM calorimeter is 2.0 X_0 at $\eta = 0$ and 3.5 X_0 at $|\eta| = 1.3$. The thicknesses of the first, second and third EM layers are 4.5 X_0, 16.5 X_0 and 1.5 X_0 at $\eta = 0$ and 3 X_0, 20 X_0 and 5 X_0 at $|\eta| = 1.3$, respectively.

A data-driven method is used in this work to estimate backgrounds surviving the final selections (see Section 4.2). However, in order to demonstrate that the distributions of the relevant observables are understood, a sample of simulated background events is used. The background sample, generated with Pythia [18] and labeled “Standard Model”, consists mostly of QCD events in which

![Fig. 1. Distributions of pseudorapidity η (top) and kinetic energy E_{kin} (bottom) at origin for heavy fermions produced with the Drell–Yan process. The latter is given with a requirement of $|\eta| < 1.35$. The distributions for the three different masses are normalised to the same number of entries.](image-url)
the hard subprocess is a strong 2-to-2 process with a matrix element transverse momentum cut-off of 15 GeV, but also includes contributions from heavy quark and vector boson production. A true transverse energy larger than 17 GeV in a typical first level trigger tower is also required. This sample contains $4 \cdot 10^7$ events and corresponds roughly to an integrated luminosity of 0.8 pb$^{-1}$.

4. Trigger and event selection

The collected data sample corresponds to an integrated luminosity of 3.1 \pm 0.3 pb$^{-1}$, using a first level trigger based on energy deposits in the calorimeters. At the first level of the trigger, so-called trigger towers with dimension $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ are defined. In each trigger tower the cells of the electromagnetic or hadronic calorimeter are summed. EM clusters with fixed size $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ are sought and are retained if the total transverse energy (E_T) in an adjacent pair of their four trigger towers is above 5 GeV. Further electron-like higher level trigger requirements are imposed on the candidate, including $E_T > 10$ GeV, a matching to a track in the ID and a veto on hadronic leakage [23]. The efficiency of this trigger for the data under consideration is measured to be (94.0 \pm 1.5)$\%$ for electrons with $E_T > 15$ GeV and is well described by the simulation. The simulation predicts that a highly charged particle which stops in the EM barrel would be triggered with a similar efficiency or higher.

Offline electron candidates have cluster sizes of $\Delta \eta \times \Delta \phi = 0.075 \times 0.175$ in the EM barrel, with a matched track in a window of $\Delta \eta \times \Delta \phi = 0.05 \times 0.1$ amongst reconstructed tracks with transverse momentum larger than 0.5 GeV. Identification requirements corresponding to “medium” electrons [24], implying track and shower shape quality cuts, are applied to the candidates. These cuts filter out backgrounds but have a negligible impact on the signal, for which the cluster width is much narrower than for typical electrons. The cluster energy is estimated correcting for the energy deposited outside the active calorimeter regions, assuming an EM shower.

Further offline selections on the cluster transverse energy ($E_T > 15$ GeV) and pseudorapidity ($|\eta| < 1.35$) are imposed. The E_T selection guarantees that the trigger efficiency is higher than 94% for the objects under study. The restriction of $|\eta| < 1.35$ excludes the transition region between the EM calorimeter barrel and endcap, reducing the probability for backgrounds to fake a narrow energy deposition.

4.1. Selection cuts

A loose selection based on TRT and EM calorimeter information is also imposed on the candidates to ensure that the quality of the track and cluster associated to the electron-like object is good enough to ensure the robustness of the HIP selection variables, and to provide a data sample with which to estimate the background rate. Only candidates with more than 10 TRT hits are retained. In addition to the $E_T > 15$ GeV cut for the EM cluster associated with the candidate, a significant fraction of the total cluster energy is required to be contained in six calorimeter cells amongst the first and second EM layers. This is done by requiring the summed energy in the three most energetic cells in each of the first and second layers to be greater than 2 and 4 GeV, respectively. Following these selections, 137 503 candidates remain in the data.

Two sets of observables are used in the final selection. The ID-based observable is the fraction, f_{HT}, of TRT hits on the track which pass the high threshold. The calorimeter-based discriminants are the fractions of energies outside of the three most energetic cells associated to a selected EM cluster, in the first and second EM calorimeter layers: w_1 and w_2.

The f_{HT} distribution for loosely selected candidates is shown in Fig. 2. The data extend up to $f_{HT} = 0.8$. The prediction of the signal simulation for a HIP of mass 500 GeV and charge 10e is also shown. It peaks at $f_{HT} \sim 1$ and has a small tail extending into the Standard Model region.

The distributions of w_1 and w_2 also provide good discrimination between signal and background, as shown in Fig. 3. For a signal, energy is deposited only in the few cells along the particle trajectory (as opposed to backgrounds which induce showers in the EM calorimeter) and the distributions peak around zero for both variables. The shapes of the measured distributions are well described by the background simulation. A faint double-peak structure is visible in data and in background simulations for the f_{HT}, w_1 and w_2 distributions in Figs. 2 and 3, where the main peak (closest to the signal) corresponds to electrons and the secondary peak corresponds to hadrons which fake the electron identification signature.

Finally, the following HIP selection is made: $f_{HT} > 0.65$, $w_1 < 0.20$ and $w_2 < 0.15$. For signal particles, these cuts reject only candidates in the tails of the distributions, and varying them has a minor impact on the efficiency; this feature is common to all considered charge and mass points. The cut values were chosen to yield a very small (≪ 1 event) expected background (see Section 4.2) while retaining a high (∼ 96%) efficiency for the signal. No candidates in data or in simulated Standard Model events pass this selection.

4.2. Data-driven background estimation

A data-driven method is used to quantify the expected background yield after the HIP selection. Potential backgrounds consist mainly of electrons. For Standard Model candidates, the ID and calorimeter observables are correlated in a way that further suppresses the backgrounds (see Fig. 4). The background estimation assumes that f_{HT} is uncorrelated with w_1 and w_2 and is thus conservative.

The yield of particle candidates passing the loose selection $N_{\text{loose}} = 137 503$ can be divided into the following: N_0, N_1, N_{fHT}, and N_{w}, which represent the number of candidates which satisfy both of the selections, neither of the selections, only the f_{HT} selection, and only the w_1 and w_2 selections taken together, respectively. Even in the presence of a signal, N_1, N_{fHT} and N_{w} would be dominantly composed of background events. The probability of a background candidate passing the TRT requirement is
then \(P_{fHT} = \frac{N_{fHT}}{N_{bkg} + N_{fHT} \cdot P_w} \) and the probability to pass the calorimeter requirements is \(P_w = \frac{N_w}{N_{fHT} + N_w} \), leading to an expectation of the number of background candidates entering the signal region: \(N_{bkg} = N_{bkg} \cdot P_{fHT} \cdot P_w \). The data sample yields \(N_0 = 0 \), \(N_1 = 137\,342 \), \(N_{fHT} = 18 \) and \(N_w = 143 \), leading to \(P_{fHT} = (1.3 \pm 0.3) \cdot 10^{-4} \) and \(P_w = (1.0 \pm 0.1) \cdot 10^{-3} \). The expected number of background candidates surviving the selection, and thereby the expected number of background events, is thus \(N_{bkg} = 0.019 \pm 0.005 \). The quoted uncertainty is statistical.

5. Signal selection efficiency

5.1. Efficiencies in acceptance kinematic regions

The probability to retain a signal event can be factorised in two parts: acceptance (probability for a HIP in a region where the detector is sensitive) and efficiency (probability for this HIP to pass the selection cuts). The acceptance is defined here as the probability that at least one signal particle will be in the range \(|\eta| < 1.35 \) and stop in the second or third layer of the EM calorimeter. If this condition is satisfied, the simulation predicts a high probability to trigger on, reconstruct and select the event. This corresponds to the dark region in Fig. 5, which shows the predicted selection efficiency mapped as a function of the initial HIP pseudorapidity and kinetic energy, in the case of \(|q| = 10e \) and \(m = 500 \, \text{GeV} \). Such acceptance kinematic regions can be parametrised with three values defining three corners of a parallelogram. These parameters are summarised in Table 1. For HIPs produced inside such regions, the candidate selection efficiency is flat within 10% and takes values between 0.5 and 0.9 depending on the charge and mass (see Table 2). For \(|q| = 17e \), the main source of inefficiency is the requirement on the number of TRT HT hits, which contributes up to 20% signal loss. This is largely due to the presence of track segments from delta electrons, which have a non-negligible probability to be chosen by the standard electron track matching algorithm. For low charges, inefficiencies are dominated by the cluster \(E_t \) cut, typically accounting for \(\sim 6\% \) loss. Other contributions, like trigger, electron reconstruction, and electron identification, can each cause 1–6% additional inefficiency.

5.2. Efficiencies for Drell–Yan kinematics

The estimated fractions of signal events where at least one candidate passes the final selection, assuming they are produced

![Fig. 3. Distributions of \(w_1 \) and \(w_2 \) following the loose selection. Data (dots) are compared with area-normalised signal \((|q| = 10e \) and \(m = 500 \, \text{GeV} \), dashed lines) and Standard Model background (shaded area) simulations. Negative values are caused by pedestal fluctuations. Dotted lines show the selection cut values.](image1)

![Fig. 4. Contours of \(w_2 \) versus \(f_{HT} \) distributions following loose selection, showing the density of entries on a log scale. Data and signal Monte Carlo \((|q| = 10e \) and \(m = 500 \, \text{GeV} \)) are shown, and no candidates in the data appear near the signal region. The correlation factor between \(w_2 \) and \(f_{HT} \) in the data is positive (coefficient 0.15); the same trend is also true for the correlation between \(w_1 \) and \(f_{HT} \) (coefficient 0.18).](image2)

Table 1

| \(|q| \) | \(m \) \([\text{GeV}]\) | \(E_{\text{min}}(q=0) \) | \(E_{\text{min}}(\eta=1.35) \) | \(E_{\text{max}}(q=0) \) |
|------|----------|----------------|-----------------|-----------------|
| 6e | 200 | 40 | 50 | 50 |
| 6e | 500 | 50 | 70 | 70 |
| 6e | 1000 | 60 | 130 | 80 |
| 10e | 200 | 50 | 80 | 90 |
| 10e | 500 | 80 | 110 | 130 |
| 10e | 1000 | 110 | 150 | 180 |
| 17e | 200 | 100 | 150 | 190 |
| 17e | 500 | 150 | 190 | 260 |
| 17e | 1000 | 190 | 240 | 350 |

Table 2

| \(m \) \([\text{GeV}]\) | \(|q| = 6e \) | \(|q| = 10e \) | \(|q| = 17e \) |
|------|----------|----------|----------|
| 200 | 0.822 ± 0.026 | 0.820 ± 0.015 | 0.484 ± 0.012 |
| 500 | 0.868 ± 0.021 | 0.856 ± 0.014 | 0.617 ± 0.011 |
| 1000 | 0.558 ± 0.019 | 0.858 ± 0.012 | 0.700 ± 0.012 |
with Drell–Yan kinematics, are shown in Table 3 for the values of charge and mass considered in this search. The dominant source of loss (70–85% loss) is from the kinematic acceptance, i.e., the production of HIPs with $|\eta| > 1.35$, as well as when their stopping before they reach the second layer of the EM calorimeter, or after they reach the first layer of the hadronic calorimeter. The relative contributions from these various types of acceptance loss depend on mass and charge, as well as the kinematics of the assumed production model. The Drell–Yan production model implies that the fraction of HIPs produced in the acceptance region of pseudorapidity $|\eta| < 1.35$ is larger with increasing mass (see Fig. 1). Also, with the assumed energy spectra (bottom plot in Fig. 1), the acceptance is highest for intermediate charges ($|q| = 10e$), since HIPs with low charges tend to punch through the EM calorimeter and HIPs with high charges tend to stop before reaching it.

6. Systematic uncertainties

The major sources of systematic uncertainties affecting the efficiency estimation are summarised below. These mainly concern possible imperfections in the description of HIPs in the detector by the simulation.

- The recombination of electrons and ions in the sampling region of the EM calorimeter affects the measured current and thus the total visible energy. Recombination effects become larger with increasing dE/dx. In the ATLAS simulation, this is parametrised by Birks’ law [25]. To estimate the uncertainty associated with the approximate modeling of recombination effects, predictions from the ATLAS implementation of Birks’ correction [26] are compared to existing data of heavy ions punching through a layer of liquid argon [27–29]. In the range $2 \cdot 10^2 \text{ MeV/cm} < dE/dx < 2 \cdot 10^3 \text{ MeV/cm}$, which corresponds to typical HIP energy losses in the EM calorimeter for the charges and masses under consideration, the uncertainty in the simulated visible energy fraction is $\pm 15\%$. This introduces between 4% and 23% uncertainty in the signal selection efficiency. The impact is largest for charge 6e, for which a lower visible energy would be more likely to push the candidate below the 15 GeV cluster E_T threshold.
- The fraction of HIPs which stop in the detector prior to reaching the EM calorimeter is affected by the assumed amount of material in the Geant4 simulation. Varying the material density within the assumed uncertainty range ($\pm \sim 10\%$ [30]), independently in the ID and EM calorimeter volumes, leads to a 6% uncertainty in signal acceptance.
- The modeling of inactive or inefficient EM calorimeter regions in the simulation results in a 2% uncertainty in the signal efficiency.
- Cross-talk effects between EM calorimeter cells affect the w_1 and w_2 variables and this may not be accurately described by the simulation for large energy depositions per cell. The resulting uncertainty in signal efficiency is 2%.
- Secondary ionisation by delta electrons affects the track reconstruction and the calorimeter energy output. The amount of delta electrons in ATLAS detectors as described in Geant4 depends on the cutoff parameter (the radius beyond which delta electrons are considered separate from the mother particle). Varying this parameter results in a 3% uncertainty in the signal efficiency.
- For clusters delayed by more than 10 ns with respect to the expected arrival time of a highly relativistic particle, which corresponds to $\beta < 0.37$, there is a significant chance that the event is triggered in the next bunch crossing by the first level EM trigger. In most of the mass and charge range considered in this search, more than 99% of the particles which are energetic enough to reach the EM calorimeter and pass the event selection are in the high-efficiency range $\beta > 0.4$. The only exception is $|q| = 6e$ and $m = 1000 \text{ GeV}$, for which the β distribution after selection peaks between 0.32 and 0.47. The trigger efficiency loss is corrected for, resulting in an additional 25% uncertainty for this particular case.
- Uncertainties in the choice of parametrisation for the parton density functions (pdfs) of the proton have an impact on the event kinematics. To test this effect, events were generated (see Section 3) with 7 different pdfs from various sources [19, 31–34]. Assuming that acceptance variations due to the choice of pdf are Gaussian, the resulting relative uncertainty in the acceptance is 3%.
- The relative uncertainty in efficiency due to MC statistics is of the order of 2%.

Other effects, like event pile-up and electron pick-up by positively charged particles, have been investigated and found to be negligible. Efficiency systematics are dominated by Birks’ correction. The relative uncertainties in the signal selection efficiencies (Tables 2 and 3), obtained by adding all effects in quadrature, are shown in Table 4.

Table 4

Relative systematic uncertainties in efficiency, combining in quadrature all the effects described in the text.

| m [GeV] | $|q| = 6e$ | $|q| = 10e$ | $|q| = 17e$ |
| --- | --- | --- | --- |
| 200 | 25% | 17% | 28% |
| 500 | 11% | 10% | 10% |
| 1000 | 9% | 9% | 9% |

Fig. 5. Probability to pass all selection criteria as a function of pseudorapidity and kinetic energy at origin, for a HIP with charge 10e and mass 500 GeV. The dark region corresponds to the kinetic range where the particle stops in or near the second layer of the EM calorimeter barrel and is parametrised with three energy values (dashed parallelogram, see Table 1).
Open access
This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References
University of Washington, Seattle, Department of Physics, Box 351600, Seattle, WA 98195-1600, United States
University of Sheffield, Department of Physics and Astronomy, Hounsfield Road, Sheffield S3 7RH, United Kingdom
Shinshu University, Department of Physics, Faculty of Science, 3-1-1 Asahi, Matsumoto-shi, JP, Nagano 390-8562, Japan
Universität Siegen, Fachbereich Physik, D 57068 Siegen, Germany
Simon Fraser University, Department of Physics, 8888 University Drive, CA, Burnaby, BC V5A 1S6, Canada
SLAC National Accelerator Laboratory, Stanford, California 94309, United States
Comenius University, Faculty of Mathematics, Physics & Informatics\(^\text{(a)}\), Mlynska dolina f2, SK-84248 Bratislava; Institute of Experimental Physics of the Slovak Academy of Sciences, Dept. of Subnuclear Physics\(^\text{(b)}\), Watsonova 47, SK-04353 Košice, Slovak Republic
University of Johannesburg, Department of Physics\(^\text{(a)}\), PO. Box 524, Auckland Park, Johannesburg 2006; School of Physics, University of the Witwatersrand\(^\text{(b)}\), Private Bag 3, Wits 2050, Johannesburg, South Africa
Stockholm University, Department of Physics\(^\text{(a)}\); The Oskar Klein Centre\(^\text{(b)}\), AlbaNova, SE-106 91 Stockholm, Sweden
Royal Institute of Technology (KTH), Physics Department, SE-106 91 Stockholm, Sweden
Stony Brook University, Department of Physics and Astronomy, Nicolls Road, Stony Brook, NY 11794-3800, United States
University of Sussex, Department of Physics and Astronomy Pevensey 2 Building, Falmer, Brighton BN1 9QH, United Kingdom
University of Sydney, School of Physics, AU, Sydney NSW 206, Australia
Institute of Physics, Academia Sinica, TW, Taipei 11529, Taiwan
Technion, Israel Inst. of Technology, Department of Physics, Technion City, IL, Haifa 32000, Israel
Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Ramat Aviv, IL, Tel Aviv 69978, Israel
Aristotle University of Thessaloniki, Faculty of Science, Department of Physics, Division of Nuclear & Particle Physics, University Campus, GR-54124, Thessaloniki, Greece
The University of Tokyo, International Center for Elementary Particle Physics and Department of Physics, 7-3-1 Hongo, Bunkyo-ku, JP, Tokyo 113-0033, Japan
Tokyo Metropolitan University, Graduate School of Science and Technology, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
Tokyo Institute of Technology, Department of Physics, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
University of Toronto, Department of Physics, 80 Saint George Street, Toronto M5S 1A7, Ontario, Canada
TRIUMF\(^\text{(a)}\), 4004 Wesbrook Mall, Vancouver, B.C. V6T 2A3; York University\(^\text{(b)}\), Department of Physics and Astronomy, 4700 Keele St., Toronto, Ontario, M3J 1P3, Canada
University of Tsukuba, Institute of Pure and Applied Sciences, 1-1 Minami-Osawa, Tsukuba-shi, JP, Ibaraki 305-8571, Japan
Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, United States
University of Antonio Narino, Centro de Investigaciones, Cra 3 Este No.47A-15, Bogota, Colombia
University of California, Irvine, Department of Physics & Astronomy, CA 92697-4575, United States
University of British Columbia, Department of Physics, 6224 Agricultural Road, CA, Vancouver, B.C. V6T 1Z1, Canada
Instituto de Física Corpuscular (IFIC), Centro Mixto UVEG-CSIC, Apdo. 22085 ES-46071 Valencia, Dept. Física At. Mol. y Nuclear; Dept. Ing. Electrónica; Univ. de Valencia, and Inst. de Microelectrónica de Barcelona (IMB-CNM-CSIC), 08193 Bellaterra, Spain
University of British Columbia, Department of Physics, 6224 Agricultural Road, CA, Vancouver, B.C. V6T 1Z1, Canada
University of Victoria, Department of Physics and Astronomy, PO. Box 3055, Victoria B.C., V8W 3P6, Canada
Waseda University, WISE, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
The Weizmann Institute of Science, Department of Particle Physics, PO. Box 26, IL-76100 Rehovot, Israel
University of Wisconsin, Department of Physics, 1150 University Avenue, WI 53706 Madison, Wisconsin, United States
Julius-Maximilians-Universität-Würzburg, Physikalisches Institut, Am Hubland, 97074 Würzburg, Germany
Bergische Universität, Fachbereich C, Physik, Pauflach 100127, Gauss-Strasse 20, D-40207 Wuppertal, Germany
Yale University, Department of Physics, PO Box 208121, New Haven CT, 06520-8121, United States
Yerevan Physics Institute, Al'ianian Brothers Street 2, AM-375036 Yerevan, Armenia
Centre de Calcul CERN/IN2P3, Domaine scientifique de la Doua, 27 bis du 11 November 1918, 69622 Villeurbanne Cedex, France

\(^{a}\) Also at IP, Portugal.
\(^{b}\) Also at Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal.
\(^{c}\) Also at CPPM, Marseille, France.
\(^{d}\) Also at TRIUMF, Vancouver, Canada.
\(^{e}\) Also at FPNCs, AGH-UST, Cracow, Poland.
\(^{f}\) Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
\(^{g}\) Also at Università di Napoli Parthenope, Napoli, Italy.
\(^{h}\) Also at Institute of Particle Physics (IPP), Canada.
\(^{i}\) Also at Louisiana Tech University, Ruston, United States.
\(^{j}\) Also at Universidade de Lisboa, Lisboa, Portugal.
\(^{k}\) At California State University, Fresno, United States.
\(^{l}\) Also at Faculdade de Ciencias, Universidade de Lisboa and at Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa, Portugal.
\(^{m}\) Also at California Institute of Technology, Pasadena, United States.
\(^{n}\) Also at University of Montreal, Montreal, Canada.
\(^{o}\) Also at Baku Institute of Physics, Baku, Azerbaijan.
\(^{p}\) Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
\(^{q}\) Also at Rutherford Appleton Laboratory, Didcot, UK.
\(^{r}\) Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
\(^{s}\) Also at Department of Physics and Astronomy, University of South Carolina, Columbia, United States.
\(^{t}\) Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
\(^{u}\) Also at Institute of Physics, Jagiellonian University, Cracow, Poland.
\(^{v}\) Also at Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa, Portugal.
\(^{w}\) Also at Department of Physics, Oxford University, Oxford, UK.
\(^{x}\) Also at CEA, Gif sur Yvette, France.
\(^{y}\) Also at LPNHE, Paris, France.
\(^{z}\) Also at Nanjing University, Nanjing Jiangsu, China.
\(^*\) Deceased.