PCI of complex coronary lesions, new stent technologies, and clinical outcomes
Beijk, M.A.M.

Citation for published version (APA):
# Table of Contents

Chapter 1  General introduction and outline of the thesis  
Part I:  Treatment of complex coronary lesions  

Chapter 2.1 A retrospective analysis of consecutive patients undergoing nonurgent percutaneous coronary intervention comparing bare metal stents with drug-eluting stents using the National Institute for Clinical Excellence criteria.  
*Coron Artery Dis. 2011 Jan;22(1):32-9*  

Chapter 2.2 Long-term follow-up after non-urgent percutaneous coronary intervention in unprotected left main coronary arteries.  
*Catheter Cardiovasc Interv. 2010 Jun 1;75(7):1026-36*  

Chapter 2.3 One-year clinical outcome after treatment of bare-metal stent in-stent restenosis with the paclitaxel-eluting stent in an unselected cohort.  
*Int J Cardiol. 2010 Dec 3;145(3):608-9*  

Chapter 3  Bifurcation lesions  

Chapter 3.1 Percutaneous treatment of bifurcated lesions: a simple technique with a single bare metal R stent provides favourable long term clinical results.  
*EuroInterv. 2006;1:409-416*  

Chapter 3.2 One-year clinical outcome after provisional T-stenting for bifurcation lesions with the endothelial progenitor cell capturing stent compared with the bare-metal stent.  
*Atherosclerosis. 2010 Dec;213(2):525-31*  

Chapter 3.3 Twelve-month clinical outcomes after coronary stenting with the GenousTM bio-engineered R stentTM in patients with a bifurcation lesion from the e-HEALING registry.  
*Submitted*  

Part II:  New Stent technologies  

Chapter 4  Endothelial progenitor cell capturing stent  

Chapter 4.1 Genous endothelial progenitor cell-capturing stent system: a novel stent technology.  

Chapter 4.2 GenousTM endothelial progenitor cell capturing stent versus the Taxus Liberté stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study.  
*Eur Heart J. 2010 May;31(9):1055-64*
Chapter 4.3 Two-year follow-up of the Genous™ endothelial progenitor cell capturing stent versus the Taxus Liberté stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-center, pilot study.

Chapter 4.4 Design and rationale of the TRI-stent adjudication study (TRIAS) program.

Chapter 4.5 One-year outcome of the TRIAS high risk study; a multi-center, randomized trial comparing Genous™ EPC capturing stents with drug-eluting stents.

Chapter 4.6 One-year clinical outcome in an unselected patient population treated with the genous™ endothelial progenitor cell capturing stent.
Catheter Cardiovasc Interv. 2011 May 1;77(6):809-17

Chapter 4.7 Significant intimal hyperplasia regression between 6 and 18 months following Genous™ endothelial progenitor cell capturing stent placement.
Int J Cardiol. 2011 Mar 3;147(2):289-91

Chapter 5 Everolimus-eluting stent

Chapter 5.1 XIENCE V everolimus-eluting coronary stent system: a novel second generation drug-eluting stent.

Chapter 5.2 Two-year results of a durable polymer everolimus-eluting stent in de novo coronary artery stenosis (The SPIRIT FIRST Trial).
EuroIntervention. 2007 Aug;3(2):206-12

Chapter 5.3 Two-year clinical, angiographic, and intravascular ultrasound follow-up of the XIENCE V everolimus-eluting stent in the treatment of patients with de novo native coronary artery lesions: the SPIRIT II trial.

Part III: Predictors of clinical outcomes

Chapter 6 Predictors of clinical outcomes

Chapter 6.1 Multiple biomarkers at admission significantly improve the prediction of mortality in patients undergoing primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction.
J Am Coll Cardiol. 2010 Dec 28;57(1):29-36
<table>
<thead>
<tr>
<th>Chapter 6.2</th>
<th>Cystatin C for enhancement of risk stratification in patients undergoing non-urgent percutaneous coronary intervention. Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6.3</td>
<td>Toll-like receptor 4 gene polymorphisms show no association with the risk of clinical or angiographic restenosis after percutaneous coronary intervention. <em>Pharmacogenet Genomics. 2010 Sep;20(9):544-52</em></td>
</tr>
</tbody>
</table>

**Part IV: Summary and conclusions**

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Summary and conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 8</td>
<td>Samenvatting en conclusies</td>
</tr>
<tr>
<td></td>
<td>List of publications</td>
</tr>
<tr>
<td></td>
<td>Dankwoord</td>
</tr>
<tr>
<td></td>
<td>Curriculum vitae</td>
</tr>
<tr>
<td></td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>385</td>
</tr>
</tbody>
</table>