PCI of complex coronary lesions, new stent technologies, and clinical outcomes

Beijk, M.A.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>General introduction and outline of the thesis</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I: Treatment of complex coronary lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 2.1</td>
<td>A retrospective analysis of consecutive patients undergoing nonurgent percutaneous coronary intervention comparing bare metal stents with drug-eluting stents using the National Institute for Clinical Excellence criteria. Coron Artery Dis. 2011 Jan;22(1):32-9</td>
<td>25</td>
</tr>
<tr>
<td>Chapter 2.3</td>
<td>One-year clinical outcome after treatment of bare-metal stent in-stent restenosis with the paclitaxel-eluting stent in an unselected cohort. Int J Cardiol. 2010 Dec 3;145(3):608-9</td>
<td>57</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Bifurcation lesions</td>
<td></td>
</tr>
<tr>
<td>Chapter 3.2</td>
<td>One-year clinical outcome after provisional T-stenting for bifurcation lesions with the endothelial progenitor cell capturing stent compared with the bare-metal stent. Atherosclerosis. 2010 Dec;213(2):525-31</td>
<td>81</td>
</tr>
<tr>
<td>Chapter 3.3</td>
<td>Twelve-month clinical outcomes after coronary stenting with the GenousTM bio-engineered R stentTM in patients with a bifurcation lesion from the e-HEALING registry. Submitted</td>
<td>97</td>
</tr>
<tr>
<td>Part II: New Stent technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Endothelial progenitor cell capturing stent</td>
<td></td>
</tr>
<tr>
<td>Chapter 4.2</td>
<td>GenousTM endothelial progenitor cell capturing stent versus the Taxus Liberté stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study. Eur Heart J. 2010 May;31(9):1055-64</td>
<td>133</td>
</tr>
</tbody>
</table>
Chapter 4.3 Two-year follow-up of the GenousTM endothelial progenitor cell capturing stent versus the Taxus Liberté stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-center, pilot study.

Chapter 4.4 Design and rationale of the TRI-stent adjudication study (TRIAS) program.

Chapter 4.5 One-year outcome of the TRIAS high risk study; a multi-center, randomized trial comparing GenousTM EPC capturing stents with drug-eluting stents.

Chapter 4.6 One-year clinical outcome in an unselected patient population treated with the genous™ endothelial progenitor cell capturing stent.
Catheter Cardiovasc Interv. 2011 May 1;77(6):809-17

Chapter 4.7 Significant intimal hyperplasia regression between 6 and 18 months following Genous™ endothelial progenitor cell capturing stent placement.
Int J Cardiol. 2011 Mar 3;147(2):289-91

Chapter 5 Everolimus-eluting stent

Chapter 5.1 XIENCE V everolimus-eluting coronary stent system: a novel second generation drug-eluting stent.

Chapter 5.2 Two-year results of a durable polymer everolimus-eluting stent in de novo coronary artery stenosis (The SPIRIT FIRST Trial).
EuroIntervention. 2007 Aug;3(2):206-12

Chapter 5.3 Two-year clinical, angiographic, and intravascular ultrasound follow-up of the XIENCE V everolimus-eluting stent in the treatment of patients with de novo native coronary artery lesions: the SPIRIT II trial.

Part III: Predictors of clinical outcomes

Chapter 6 Predictors of clinical outcomes

Chapter 6.1 Multiple biomarkers at admission significantly improve the prediction of mortality in patients undergoing primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction.
J Am Coll Cardiol. 2010 Dec 28;57(1):29-36
Chapter 6.2 Cystatin C for enhancement of risk stratification in patients undergoing non-urgent percutaneous coronary intervention.

Submitted

Chapter 6.3 Toll-like receptor 4 gene polymorphisms show no association with the risk of clinical or angiographic restenosis after percutaneous coronary intervention.

Pharmacogenet Genomics. 2010 Sep;20(9):544-52

Chapter 6.4 p27kip1-838C>A single nucleotide polymorphism is associated with restenosis risk after coronary stenting and modulates p27kip1 promoter activity.

Circulation. 2009 Aug 25;120(8):669-76

Part IV: Summary and conclusions

Chapter 7 Summary and conclusions

Chapter 8 Samenvatting en conclusies

List of publications

Dankwoord

Curriculum vitae