Search for charged Higgs bosons produced in association with a top quark and decaying via $H^\pm \rightarrow \tau \nu$ using pp collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector

The ATLAS Collaboration

DOI
10.48550/arXiv.1603.09203
10.1016/j.physletb.2016.06.017

Publication date
2016

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):
Search for charged Higgs bosons produced in association with a top quark and decaying via \(H^\pm \rightarrow \tau v \) using pp collision data recorded at \(\sqrt{s} = 13 \) TeV by the ATLAS detector

The ATLAS Collaboration

A R T I C L E I N F O

Article history:
Received 31 March 2016
Received in revised form 2 June 2016
Accepted 9 June 2016
Available online 15 June 2016
Editor: W.-D. Schlatter

A B S T R A C T

Charged Higgs bosons produced in association with a single top quark and decaying via \(H^\pm \rightarrow \tau v \) are searched for with the ATLAS experiment at the LHC, using proton–proton collision data at \(\sqrt{s} = 13 \) TeV corresponding to an integrated luminosity of 3.2 fb\(^{-1}\). The final state is characterised by the presence of a hadronic \(\tau \) decay and missing transverse momentum, as well as a hadronically decaying top quark, resulting in the absence of high-transverse-momentum electrons and muons. The data are found to be consistent with the expected background from Standard Model processes. A statistical analysis leads to 95% confidence-level upper limits on the production cross section times branching fraction, \(\sigma(pp \rightarrow \text{top}) \times \text{BR}(H^\pm \rightarrow \tau v) \), between 1.9 pb and 15 fb, for charged Higgs boson masses ranging from 200 to 2000 GeV. The exclusion limits for this search surpass those obtained with the proton–proton collision data recorded at \(\sqrt{s} = 8 \) TeV.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

Following the discovery of a neutral scalar particle at the Large Hadron Collider (LHC) in 2012 [1,2], an important question is whether this new particle is the Higgs boson of the Standard Model (SM) or part of an extended Higgs sector. Charged Higgs bosons\(^1\) appear in several non-minimal scalar sectors, where a second doublet [3] or triplets [4–8] are added to the SM Higgs doublet. The observation of a charged Higgs boson would therefore clearly indicate physics beyond the SM.

The ATLAS and CMS collaborations have searched for light charged Higgs bosons, produced in top–quark decays, using proton–proton (pp) collisions at \(\sqrt{s} = 7–8 \) TeV in the \(\tau v \) [9–13] and \(cs \) [14, 15] decay modes. Using data collected at \(\sqrt{s} = 8 \) TeV, charged Higgs bosons heavier than the top quark were also searched for, using final states originating from both the \(\tau v \) and \(tb \) decay modes [11,13,16]. Vector-boson-fusion \(H^+ \) production was also searched for by ATLAS using the WZ final state [17]. No evidence of a charged Higgs boson was found in any of these searches.

For \(m_{H^\pm} \) greater than the top-quark mass \(m_{\text{top}} \), which is the mass range of interest in this paper, the main production mode of a charged Higgs boson at the LHC is expected to be in association with a top quark [18–20]. The corresponding Feynman diagrams are shown in Fig. 1. When calculating the corresponding cross section in a four-flavour scheme (4FS), b-quarks are dynamically produced, whereas in a five-flavour scheme (5FS), the b-quark is also considered as an active flavour in the proton. For model-dependent interpretations, 4FS and 5FS cross sections are averaged according to Ref. [21]. In two-Higgs-doublet models (2HDMs), the production and decay of the charged Higgs boson also depend on the parameter \(\tan \beta \), defined as the ratio of the vacuum expectation values of the two Higgs doublets, and the mixing angle \(\alpha \) between the CP-even Higgs bosons. In the alignment limit, where \(\cos(\beta - \alpha) \simeq 0 \), the decay \(H^\pm \rightarrow \tau v \) can have a substantial branch-

\(^1\) In the following, charged Higgs bosons are denoted \(H^\pm \), with the charge-conjugate \(H^- \) always implied. Similarly, generic symbols are used for their decay products.
ing fraction. In a type-II 2HDM, even when the decay $H^+ \rightarrow tb$ dominates, the branching fraction $\text{BR}(H^+ \rightarrow \tau \nu)$ can reach 10–15% at large values of $\tan \beta$ [22].

This paper describes a search for charged Higgs bosons in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS experiment. The production of a charged Higgs boson in association with a single top quark and its decay via $H^+ \rightarrow \tau \nu$ are explored in the mass range 200 to 2000 GeV, extending by 1000 GeV the mass range considered by the ATLAS collaboration during Run 1 of the LHC. The final state is characterised by the presence of a hadronic τ decay and missing transverse momentum arising from the H^+ decay, as well as a fully hadronic top-quark decay, resulting in the absence of high-transverse-momentum electrons and muons. The SM prediction is compared to the data, and results for the signal cross-section times branching fraction $\sigma(pp \rightarrow [b][H^+] \times \text{BR}(H^+ \rightarrow \tau \nu))$ are presented, together with an interpretation in the hMSSM benchmark model [23,24], in which the light CP-even Higgs boson mass m_h is set to 125 GeV, without choosing explicitly the soft-supersymmetry-breaking parameters.

2. Data and simulated events

The ATLAS experiment [25] consists of an inner detector with coverage in pseudorapidity η up to $|\eta| = 2.5$, surrounded by a thin 2 T superconducting solenoid, a calorimeter system extending up to $|\eta| = 4.9$ and a muon spectrometer extending up to $|\eta| = 2.7$ that measures the deflection of muon trajectories in the field of three superconducting toroid magnets. The innermost pixel layer, the insertable B-layer (IBL), was added between the first and second runs of the LHC, around a new, narrower and thinner beam pipe [26]. A two-level trigger system is used to select events of interest [27]. The integrated luminosity, considering only the data-taking periods of 2015 in which all relevant detector subsystems were operational, is 3.2 fb$^{-1}$ and has an uncertainty of 5%. It is derived following a methodology similar to that detailed in Ref. [28], from a calibration of the luminosity scale using x–y beam-separation scans performed in August 2015.

Simulated events of H^+ production in association with a single top quark are generated in the 4FS at the next-to-leading order (NLO) with MADGRAPH5_AMC@NLO v2.2.2 [29] using the NNPDF23LO [30] parton distribution function (PDF) set, interfaced to PYTHIA v8.186 [31] with the A14 set of tuned parameters (tune) [32] for the underlying event.

The main backgrounds are the production of tt pairs, single top quarks, $W+$jets, Z/γ^*+jets and electroweak gauge boson pairs ($WW/WZ/ZZ$), as well as multi-jet events. For the generation of tt pairs and single top quarks in the W- and s-channels, the Powheg-Box v2 [33,34] generator with the CT10 [35,36] PDF set in the matrix-element calculations is used. Electroweak t-channel single-top-quark events are generated using the Powheg-Box V1 generator. This generator uses the 4FS for the NLO matrix-element calculations together with the fixed four-flavour PDF set CT10F4. For this process, the top quark is decayed using MadSpin [37], thereby preserving all spin correlations. For all backgrounds above, the parton shower, the fragmentation and the underlying event are simulated using PYTHIA v6.428 [38] with the CTEQ6L1 [39] PDF set and the corresponding Perugia 2012 (P2012) tune [40],

The top-quark mass is set to 172.5 GeV for all relevant background and signal samples. The $t\bar{t}$ cross section is calculated at next-to-next-to-leading order (NNLO), including soft-gluon resummation to the next-to-next-to-leading logarithmic (NNLL) order, with $\text{Top}++ v2.0$ [41–47]. The single-top-quark samples are normalised to the approximate NNLO cross sections [48–50]. Events containing a W or Z boson with associated jets are simulated using MADGRAPH5_AMC@NLO v2.2.2 at LO with the NNPDF23LO PDF set, interfaced to PYTHIA v8.186 with the A14 underlying-event tune. These samples are normalised to the NNLO cross sections calculated with FEWZ [51–53]. Finally, diboson processes are simulated using the Powheg-Box v2 generator interfaced to the PYTHIA v8.186 parton shower model. The CT10 NLO set is used as the PDF for the hard-scatter process, while the CTEQ6L1 PDF set is used for the parton shower. The non-perturbative effects are modelled using the AZNLO tune [54]. The diboson samples are normalised to their NLO cross sections, as computed by the event generator.

Whenever applicable, PHOTOS++ v3.52 [55] is employed for photon radiation from charged leptons, and EVTGEN v1.2.0 [56] is used to simulate b- and c-hadron decays. Multiple overlaid pp collisions (pile-up, with 14 collisions per bunch-crossing on average) are simulated with the soft QCD processes of PYTHIA v8.186 using the MSTW2008LO [57–59] PDF set and the A2 underlying-event tune [60]. All simulated signal and background samples are processed through a simulation [61] of the detector geometry and response using GEANT4 [62]. Finally, they are processed through the same reconstruction software as the data.

In the following, the backgrounds are categorised based on the type of reconstructed objects identified as the visible decay products1 of the hadronically decaying τ candidate ($\tau_{\text{had-vis}}$). Only simulated events having a true hadronically decaying τ at generator level (τ_{had}) or with a charged lepton (electron or muon) misidentified as a $\tau_{\text{had-vis}}$ are kept. Backgrounds arising from a jet misidentified as a $\tau_{\text{had-vis}}$ are estimated with a data-driven method.

3. Object reconstruction and identification

In the ATLAS experiment, hadronic jets are reconstructed from energy deposits in the calorimeters, using the anti-k_t algorithm [63,64] with a radius parameter $R = 0.4$. In the following, jets are required to have a transverse momentum $p_T > 25$ GeV and $|\eta| < 2.5$. A multi-variate technique (Jet Vertex Tagger) relying on jet energy and tracking variables to determine the likelihood that a given jet originates from pile-up [65] is applied to jets with $p_T < 50$ GeV and $|\eta| < 2.4$. Jets arising from b-hadron decays are identified by using an algorithm that combines impact parameter information with the explicit identification of secondary and tertiary vertices within the jet into a b-tagging score [66,67]. The minimal requirement imposed on the b-tagging score in this analysis corresponds to a 70% efficiency to tag a b-quark-initiated jet in tt events, with rejection rates of 400 for light-quark-initiated jets, 27 for $\tau_{\text{had-initiated}}$ jets and 8 for c-quark-initiated jets, enhanced with respect to Run 1 by the use of the IBL and an improved algorithm. The tagging efficiencies from simulation are corrected based on the results of flavour-tagging calibrations performed with data [68].

Candidates for identification as $\tau_{\text{had-vis}}$ arise from jets that have $p_T > 10$ GeV and for which one or three charged-particle tracks are found within a cone of size4 $\Delta R = 0.2$ around the axis of

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

1 This refers to all τ decay products except the neutrinos.

4 $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, where $\Delta \eta$ and $\Delta \phi$ are differences in pseudorapidity and azimuthal angle, respectively.
the $\tau_{\text{had-vis}}$ candidate [69,70]. These objects are further required to have a visible transverse momentum (p_T^τ) of at least 40 GeV and to be within $|\eta| < 2.3$. The output of boosted decision tree (BDT) algorithms [71] is used in order to distinguish $\tau_{\text{had-vis}}$ candidates from jets not initiated by hadronically decaying τ-leptons. This is done separately for decays with one or three charged-particle tracks, and for varying values of the identification efficiency. In this analysis, a working point corresponding to a 55% (40%) efficiency for the identification of 1-prong (3-prong) $\tau_{\text{had-vis}}$ objects is used, with rejection rates of $\mathcal{O}(10^2)$ for jets.

In this analysis, events with isolated electron or muon candidates with a transverse energy or momentum above 20 GeV are rejected. Electron candidates [72] are reconstructed from energy deposits (clusters) in the electromagnetic calorimeter, associated with a reconstructed track in the inner detector. The pseudorapidity range for the electromagnetic clusters covers the fiducial volume of the detector, $|\eta| < 2.47$ (the transition region between the barrel and end-cap calorimeters, $1.37 < |\eta| < 1.52$, is excluded). Quality requirements on the electromagnetic clusters and the tracks, as well as isolation requirements in a cone around the electron candidate based on its transverse energy and the tracking information, are then applied in order to reduce contamination from jets. The muon candidates are reconstructed from track segments in the muon spectrometer, and matched with tracks found in the inner detector within $|\eta| < 2.5$ [73]. The final muon candidates are refitted using the complete track information from both detector systems. They must fulfill quality requirements including a p_T-dependent track-based isolation requirement in a cone of variable size around the muon, which has good performance under high pile-up conditions and/or when a muon is close to a jet.

When tracks overlap geometrically, the following procedures are applied, in this order. Every $\tau_{\text{had-vis}}$ candidate that overlaps with a loosely identified electron or muon, within a cone of size ΔR of 0.4 or 0.2, respectivley, is removed. Then, reconstructed jets are discarded if an electron or a $\tau_{\text{had-vis}}$ candidate fulfilling the selection criteria above is found within a cone of size $\Delta R = 0.2$.

The magnitude E_T^{miss} of the missing transverse momentum [74] is reconstructed from the negative vector sum of transverse momenta of reconstructed and fully calibrated objects (collected in the hard term), as well as from reconstructed tracks associated with the hard-scatter vertex which are not in the hard term (collected in the soft term). In order to mitigate the effects of pile-up, the E_T^{miss} is refined by using object-level corrections for the identified electrons, muons, jets and $\tau_{\text{had-vis}}$ candidates in the hard term. As the soft term contains only tracks associated with the hard-scatter vertex, it is robust against pile-up.

4. Event selection and background modelling

Charged Higgs bosons are searched for in the topology $pp \rightarrow [b\bar{b}]H^+ \rightarrow [b\bar{b}](jjb)(\tau_{\text{had-vis}})$. Events collected using an E_T^{miss} trigger with a threshold at 70 GeV are considered. After ensuring that no jets are consistent with having originated from instrumental effects or non-collision background, each event is required to contain one $\tau_{\text{had-vis}}$ with $p_T^\tau >40$ GeV (only the highest-p_T^τ candidate must fulfill the identification criteria described in Section 3), three or more jets with $p_T > 25$ GeV, of which at least one is b-tagged, no electron or muon with a transverse energy or momentum above 20 GeV, and to have $E_T^{\text{miss}} > 150$ GeV. For the selected events, the transverse mass m_T of the $\tau_{\text{had-vis}}$ and E_T^{miss} system is defined as:

$$m_T = \sqrt{2p_T^\tau E_T^{\text{miss}} (1 - \cos \Delta \phi_{r,miss})},$$

where $\Delta \phi_{r,miss}$ is the azimuthal angle between the $\tau_{\text{had-vis}}$ and the direction of the missing transverse momentum. This discriminating variable takes values lower than the W boson mass for $W \rightarrow \tau \nu$ decays in background events and lower than the H^+ mass for signal events, in the absence of detector resolution effects. A requirement of $m_T > 50$ GeV is applied in order to reject events with mismeasured E_T^{miss}, where $\tau_{\text{had-vis}}$ is nearly aligned with the direction of the missing transverse momentum.

The E_T^{miss} trigger efficiency is measured in data and then used to reweight the simulated events, rather than relying on the E_T^{miss} trigger in the simulated samples. This measurement is performed in a control region of the data that is orthogonal to the signal region described above, while retaining as many similarities as possible. For this purpose, events passing a single-electron trigger with a transverse energy threshold at 24 GeV are considered and required to contain exactly one electron matched to the corresponding trigger object, exactly one $\tau_{\text{had-vis}}$ and two or more jets, of which at least one is b-tagged. Both the electron and the $\tau_{\text{had-vis}}$ fulfill loose identification criteria in order to improve the statistical precision, with little impact on the measured E_T^{miss} turn-on curve.

The “jet $\rightarrow \tau_{\text{had-vis}}$” background includes multi-jet events and other processes where a quark- or gluon-initiated jet is reconstructed and selected as a $\tau_{\text{had-vis}}$ candidate. This background is estimated with a data-driven method that relies on the measurement of the rate at which jets are misidentified as $\tau_{\text{had-vis}}$, hereafter referred to as the fake factor (FF). For this purpose, a control region populated primarily with misidentified $\tau_{\text{had-vis}}$ candidates is defined by using the same requirements as for the signal region, except that $E_T^{\text{miss}} < 80$ GeV and that the number of b-tagged jets is zero. The FF is defined as the ratio of the number of misidentified $\tau_{\text{had-vis}}$ candidates fulfilling the nominal object selection to the number of misidentified $\tau_{\text{had-vis}}$ candidates satisfying an “anti-$\tau_{\text{had-vis}}$” selection. This anti-$\tau_{\text{had-vis}}$ selection is defined by inverting the $\tau_{\text{had-vis}}$ identification criteria while maintaining a loose requirement on the E_T output score, which selects the same kind of objects mimicking $\tau_{\text{had-vis}}$ candidates as those fulfilling the identification criteria. In order to account for differences between gluon-, light-quark- and b-quark-initiated jets, FFs are parameterised as functions of p_T, the type of τ_{had} decay via the measured number of charged and neutral particles (η^FF) [70], and the b-tagging score, as illustrated in Fig. 2. For each type of τ_{had} decay, the threshold value for the b-tagging score of the $\tau_{\text{had-vis}}$ candidate is optimised to keep enough entries in each of the two bins, below and above the threshold. After correcting for $\tau_{\text{had-vis}}$ candidates not fulfilling the identification criteria but matching a true τ_{had} at generator level, the number of events with a misidentified $\tau_{\text{had-vis}}$ in the signal region (N_{fakes}) is derived from the subset of anti-$\tau_{\text{had-vis}}$ candidates as follows:

$$N_{\text{fakes}} = \sum_i N_{\text{anti-}} \tau_{\text{had-vis}}(i) \times \text{FF}(i),$$

where the index i refers to each bin in terms of p_T, type of τ_{had} decay and b-tagging score, in which the FF is evaluated.

Backgrounds arising from events in which an electron or muon is misidentified as a $\tau_{\text{had-vis}}$ only contribute at the level of 5% to the total background, with misidentified muons contributing about one order of magnitude less than misidentified electrons. These backgrounds are estimated with simulation and include contributions from tt, single-top-quark, $W/Z +$ jets and diboson processes. If an electron is misidentified as a $\tau_{\text{had-vis}}$, a correction factor is applied to the event in order to account for the misidentification rate measured in a $Z \rightarrow ee$ control region in data, where one electron is reconstructed as a $\tau_{\text{had-vis}}$. Charged leptons from in-flight decays in multi-jet events are accounted for in the misidentified jet $\rightarrow \tau_{\text{had-vis}}$ background estimate.
The backgrounds with a true $τ_{\text{had}}$ are estimated using simulation. The two dominant processes, $t\bar{t}$ and $W→τν$, are validated in two dedicated control regions, which differ from the nominal event selection by the requirements that $m_τ<100$ GeV and that the number of b-tagged jets be zero. The $W→τν$ background is normalised to the data through an overall scale factor. The total (statistical and systematic) uncertainties in the SM prediction are shown in the lower plot.

The expected number of background events in the signal region is shown in Table 1, together with the hypothetical contribution from charged Higgs bosons with a mass of 200 or 1000 GeV, and with $\sigma(pp→[b][H^±])×BR(H^±→τνv)$ set to the prediction from the hMSSM scenario for $\tanβ=60$ (for a given mass, the expected signal yield increases quadratically with $\tanβ$). The calculation of the production cross section is based on Refs. [22,75–78], while HDECAY [79] is used for computing the branching fraction. The signal acceptance at 200 (1000) GeV is 1.5% (12%), as evaluated with respect to simulated samples where both the $τ$-lepton and the associated top quark decay inclusively. The event yield observed in 3.2 fb$^{-1}$ of data is also shown in Table 1 and found to be consistent with the expectation for the background-only hypothesis.
5. Systematic uncertainties

Several sources of systematic uncertainty, affecting the normalisation of signal and background processes or the shape of their distributions, are considered. The individual sources of systematic uncertainty are assumed to be uncorrelated. However, when applicable, correlations of a given systematic uncertainty are maintained across all processes. All systematic uncertainties are symmetrised with respect to the nominal value.

In order to assess the impact of most detector-related systematic uncertainties, in particular those arising from the simulation of pile-up and object reconstruction, the event selection is re-applied after shifting a particular parameter to its ±1 standard-deviation value. All instrumental systematic uncertainties arising from the reconstruction, identification and energy scale of electrons, muons, (b-tagged) jets and $\tau_{\text{had-vis}}$ candidates are considered. They are propagated to the reconstructed $E_{\text{T}}^{\text{miss}}$ and an additional uncertainty in its soft term is taken into account. The dominant detector-related systematic uncertainties for this search arise from the reconstruction and identification of $\tau_{\text{had-vis}}$ candidates, from the jet energy scale, from the $E_{\text{T}}^{\text{miss}}$ energy scale and from the b-tagging efficiency. Their impacts on the predicted event yield for the dominant background process ($t\bar{t}$) are, respectively, 12%, 11%, 3% and 2%. Systematic uncertainties arising from the reconstruction, identification and energy scale of electrons and muons are found to be negligible. The luminosity uncertainty of 5% is applied directly to the event yields of all simulated events.

The efficiency of the $E_{\text{T}}^{\text{miss}}$ trigger is measured in a control region of the data, as described in Section 4. The parameterisation of the efficiency shows a small dependence on the identification criteria (loose versus nominal) for the electron and the $\tau_{\text{had-vis}}$ candidate, as well as on the minimum number of jets chosen for the control region. This results in small variations of the measured fit function. These variations, as well as the limited statistical precision of the bins used for the fit function and the resulting parameterisation, are accounted for as systematic uncertainties. In the signal region, the total systematic uncertainty arising from the $E_{\text{T}}^{\text{miss}}$ trigger efficiency measurement is about 2%.

In the estimation of backgrounds with jets misidentified as $\tau_{\text{had-vis}}$, the dominant systematic uncertainties arise from the level of contamination of $\tau_{\text{had-vis}}$ objects matching a true τ_{had} decay at generator level and fulfilling the anti-$\tau_{\text{had-vis}}$ Selection (varied by 50%), from the statistical limitation due to the control sample size and from the requirement on the BDT score in the anti-$\tau_{\text{had-vis}}$ control sample. When changing the latter, different fractions of gluon- and quark-initiated jets populate the anti-$\tau_{\text{had-vis}}$ control region. The event topology (in particular the shape of the $E_{\text{T}}^{\text{miss}}$ and $\Delta\Phi_{E_{\text{T}}^{\text{miss}}}$ distributions) also depends on the requirement imposed on the BDT score. The corresponding systematic uncertainty is assessed by considering the shape of the m_T distribution obtained for two alternative cuts on the BDT score, which are symmetric around the nominal cut value. The impacts of the three systematic uncertainties listed above on the event yield of the background with jets misidentified as $\tau_{\text{had-vis}}$ are, respectively, 8%, 6% and 2%.

The dominant background process with a true τ_{had} is the production of $t\bar{t}$ pairs and single-top-quark events, for which an overall cross-section uncertainty of 6% is adopted, incorporating scale, PDF+α_s and top-quark mass uncertainties [47,80,81]. In addition, systematic uncertainties due to the choice of parton shower and hadronisation models are derived by comparing $t\bar{t}$ events generated with Powheg-Box interfaced to either Pythia 8.210 or Herwig++, v2.71 [82], which uses the EPOS5 [83] LO jet generation, by setting the corresponding parameters in Pythia to a range of values not excluded by the experimental data. Finally, the uncertainty due to the choice of matrix-element generator is evaluated by comparing samples generated with MadGraph5_AMC@NLO or Powheg-Box, both using the CTEQ6L1 PDF set and interfaced to Herwig++. The impacts of the three systematic uncertainties listed above on the event yield of the $t\bar{t}$ background are, respectively, 16%, 7% and 15%.

For the sub-leading background process with a true τ_{had}, $W \rightarrow \tau \nu$, a systematic uncertainty of 3% is assigned to the overall renormalisation factor, as obtained by changing various selection criteria for the control region enriched with such background events. For Z+jets and diboson production, theoretical uncertainties of 5% and 6% are considered, respectively, combining PDF+α_s and scale variation uncertainties in quadrature.

Systematic uncertainties in the H^+ signal generation are estimated as follows. The uncertainty arising from the QCD scale is obtained by varying the factorisation and renormalisation scale up and down by a factor of two. The largest variation of the signal acceptance is then symmetrised and taken as the scale uncertainty, 4–8% depending on the H^+ mass hypothesis. The variation of the signal acceptance with various PDF sets is estimated using LHAPDF [84], but is found to be negligible for all signal samples. Finally, the impact of A14 tune variations on the signal acceptance is estimated by adding in quadrature the positive and negative excursions from a subset of tune variations that cover underlying-event and jet-structure effects, as well as different aspects of extra jet production. This uncertainty amounts to 8–10% and is of the same order as the sum in quadrature of the detector-related systematic uncertainties for the H^+ signal samples.

6. Results

In order to test the compatibility of the data with the background-only and signal+background hypotheses, a profile likelihood ratio [85] is used, with m_T as the discriminating variable. The statistical analysis is based on a binned likelihood function for this distribution. All systematic uncertainties from theoretical or experimental sources are implemented as nuisance parameters. The parameter of interest (or signal strength) $\mu \equiv \sigma(pp \rightarrow [bH]^\pm \times BR(H^\pm \rightarrow \tau \nu))$, and the nuisance parameters are simultaneously fitted by means of a negative log-likelihood minimisation. Expected limits are derived using the asymptotic approximation of the distribution of the test statistic [86].

Fig. 5 shows the m_T distribution obtained after a fit with the background-only hypothesis, together with the m_T distributions corresponding to two H^+ mass hypotheses: 200 and 1000 GeV. The binning shown in Fig. 5 is also used in the statistical analysis. The SM predictions are found to be consistent with the data, and exclusion limits are set on $\sigma(pp \rightarrow [bH]^\pm \times BR(H^\pm \rightarrow \tau \nu))$ by rejecting the signal hypothesis at the 95% confidence level (CL) using the CL$_{s}$ procedure [87]. Fig. 6 shows the observed and expected exclusion limits. They agree within the uncertainties over the explored H^+ mass range. The observed limits range from 1.9 pb to 15 fb in the mass range 200–2000 GeV. For the largest charged Higgs boson mass hypotheses, the exclusion limits show very little dependence on m_{H^+}, as there is only one bin entering the fit for $m_{H^+} > 500$ GeV. The impact from the various sources of systematic uncertainty on the expected 95% CL exclusion limits is summarised in Table 2, for H^+ mass hypotheses of 200 and 1000 GeV. The impact of the systematic uncertainties reported in Section 5 only represents the relative change in event yields. In the limit setting procedure, however, m_T shape variations are also taken into account, leading to a different relative importance of the various systematic uncertainties. Those with a large impact over the ex-
explored mass range are the $\tau_{\text{had-vis}}$ identification and energy-scale uncertainties, the $t\bar{t}$ background modelling uncertainties, and the statistical precision in the estimation of the background with a jet misidentified as a $\tau_{\text{had-vis}}$. For the larger H^+ mass hypotheses, the signal modelling uncertainties also have a significant impact. The total uncertainty is dominated by the statistical uncertainty.

The limits in Fig. 6 are presented together with an illustrative signal prediction in the hMSSM benchmark scenario. Fig. 7 shows the 95% CL exclusion limits on $\tan\beta$ as a function of m_{H^+} in the context of the hMSSM, compared with the Run 1 results. Values of $\tan\beta$ in the range 42–60 are excluded for a charged Higgs boson mass of 200 GeV. At $\tan\beta = 60$, above which no reliable theoretical calculations exist, the H^+ mass range from 200 to 340 GeV is excluded. The limits of this search surpass those obtained with the pp collision data at $\sqrt{s} = 8$ TeV [11].

7. Conclusion

A search for charged Higgs bosons produced in association with a single top quark and subsequently decaying via $H^+ \rightarrow t\nu$ is performed, based on fully hadronic final states. The dataset used for this analysis contains 3.2 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV, recorded in 2015 by the ATLAS detector at the LHC. The background-only hypothesis is found to be in agreement with the data. Upper limits are set on the production cross section times branching fraction between 1.9 pb and 15 fb for a charged Higgs boson mass range of 200–2000 GeV. In the context of the hMSSM, values of $\tan\beta$ in the range 42–60 are excluded for a charged Higgs boson mass of 200 GeV. At $\tan\beta = 60$, above which no reliable theoretical calculations exist, the H^+ mass range from 200 to 340 GeV is excluded.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Mo-

Table 2

<table>
<thead>
<tr>
<th>Source of systematic uncertainty</th>
<th>Impact on the expected limit (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental luminosity trigger</td>
<td>2.0</td>
</tr>
<tr>
<td>$\tau_{\text{had-vis}}$ jet</td>
<td>0.4</td>
</tr>
<tr>
<td>E_{miss}</td>
<td>0.3</td>
</tr>
<tr>
<td>Fake factors</td>
<td></td>
</tr>
<tr>
<td>statistical limitation</td>
<td>4.5</td>
</tr>
<tr>
<td>true τ_{had} contam.</td>
<td>-0.1</td>
</tr>
<tr>
<td>anti-τ_{had} BDT score</td>
<td>0.2</td>
</tr>
<tr>
<td>Signal and background models</td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$ cross section</td>
<td>0.2</td>
</tr>
<tr>
<td>$t\bar{t}$ modelling</td>
<td>7.5</td>
</tr>
<tr>
<td>H^+ signal modelling</td>
<td>1.4</td>
</tr>
</tbody>
</table>

![Fig. 5](image-url) Distribution of m_{H^+} after full event selection and a fit to the data with the background-only hypothesis. The horizontal axis starts at $m_{H^+} = 50$ GeV and is in logarithmic scale. Two H^+ signal hypotheses are included separately on the stack. The signal sample at 200 (1000) GeV is scaled to 5 (10) times the cross section predicted at $\tan\beta = 60$ in the hMSSM benchmark scenario. Bins are 10 GeV in width up to 310 GeV and then have a varying size. The last bin includes all overflow events. The total (statistical and systematic) uncertainties in the SM prediction are shown in the lower plot.

![Fig. 6](image-url) Observed and expected 95% CL exclusion limits for heavy charged Higgs boson production as a function of m_{H^+} in 3.2 fb$^{-1}$ of pp collision data. The prediction for $\sigma(pp \rightarrow (b|b)H^+) \times \mathcal{B}(H^+ \rightarrow t\nu)$ as a function of the charged Higgs boson mass is also shown as a dotted-dashed line, for $\tan\beta = 60$ in the hMSSM benchmark scenario.

![Fig. 7](image-url) 95% CL exclusion limits on $\tan\beta$ as a function of m_{H^+}, shown in the context of the hMSSM, for the regions in which reliable theoretical calculations exist ($\tan\beta \leq 60$). As a comparison, the two lighter dashed curves (in red in the web version of this article) in the upper-left corner show the observed and expected exclusion limits from Run 1 analyses of pp collisions measured at $\sqrt{s} = 8$ TeV by ATLAS [11].
rocce; FOM and NWO, Netherlands; RCN, Norway; MNI SW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRK, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aisteira programmes co-financed by EU-ESF and the Greek NSF; BSE, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana; Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-TI (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

Laboratório de Instrumentação e Física Experimental de Partículas – LIP, Lisbon; (b) Faculdade de Ciências, Universidade de Lisboa, Lisbon; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisbon; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teórica y del Cosmos and CAPE. Universidade de Granada, Granada (Spain); (g) Dep Fisica and CERITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Riveau Universitaire de Physique des Hautes Énergies – Université Hassan II, Casablanca; (b) Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayad, LPHEA, Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Énergie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States

Department of Physics, University of Washington, Seattle, WA, United States

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shiniou University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby, BC, Canada

SLAC National Accelerator Laboratory, Stanford, CA, United States

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto, ON, Canada

TRIUMF, Vancouver, BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada

Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford, MA, United States

Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States

INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Department of Physics, University of Illinois, Urbana, IL, United States

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IBB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, WI, United States

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, CT, United States

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Also at Department of Physics, King’s College London, London, United Kingdom.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at TRIUMF, Vancouver, BC, Canada.

Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States.

Also at Department of Physics, California State University, Fresno, CA, United States.

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

Also at Departamento de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.

Also at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.

Also at Tomsk State University, Tomsk, Russia.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at National Institute of Physics and Nuclear Engineering, Bucharest, Romania.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

Also at Louisiana Tech University, Ruston, LA, United States.

Also at Instituto Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.