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Abstract
Machine learning (ML) is increasingly used to automate impactful decisions, and the risks arising from this widespread use
are garnering attention from policy makers, scientists, and the media. ML applications are often brittle with respect to their
input data, which leads to concerns about their correctness, reliability, and fairness. In this paper, we describe mlinspect, a
library that helps diagnose and mitigate technical bias that may arise during preprocessing steps in an ML pipeline. We refer
to these problems collectively as data distribution bugs. The key idea is to extract a directed acyclic graph representation of
the dataflow from a preprocessing pipeline and to use this representation to automatically instrument the code with predefined
inspections. These inspections are based on a lightweight annotation propagation approach to propagate metadata such as
lineage information from operator to operator. In contrast to existing work, mlinspect operates on declarative abstractions
of popular data science libraries like estimator/transformer pipelines and does not require manual code instrumentation.
We discuss the design and implementation of the mlinspect library and give a comprehensive end-to-end example that
illustrates its functionality.

Keywords Data debugging · Machine learning pipelines · Data preparation for machine learning

1 Introduction

Machine learning (ML) is increasingly used to automate deci-
sions that impact people’s lives, in domains as varied as credit
and lending, medical diagnosis, and hiring, with the poten-
tial to reduce costs, reduce errors, and make outcomes more
equitable. Yet, despite their potential, the risks arising from
the widespread use of ML-based tools are garnering atten-
tion from policy makers, scientists, and the media [52]. In
large part this is because the correctness, reliability, and fair-
ness of ML models critically depend on their training data.
Preexisting bias, such as under- or over-representation of par-
ticular groups in the training data [12], and technical bias,
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such as skew introduced during data preparation [49], can
heavily impact performance. In this work, we focus on help-
ing diagnose and mitigate technical bias that arises during
preprocessing steps in an ML pipeline. We refer to these
problems collectively as data distribution bugs.

Data distribution bugs are often introduced during
preprocessing Input data for ML applications come from
a variety of data sources, and it has to be preprocessed
and encoded as features before it can be used. This prepro-
cessing can introduce skew in the data, and, in particular,
it can exacerbate under-representation of historically dis-
advantaged groups. For example, preprocessing operations
that involve filters or joins can heavily change the distribu-
tion of different groups represented in the training data [58],
and missing value imputation can also introduce skew [47].
Recent ML fairness research, which mostly focuses on the
use of learning algorithms on static datasets [14], is there-
fore insufficient because it cannot address such technical bias
originating from the data preparation stage. Furthermore, it
is important to detect and mitigate bias as close to its source
as possible [52].

Data distribution bugs are difficult to catch In part, this
is because different pipeline steps are implemented using dif-
ferent libraries and abstractions, and data representation often
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changes from relational data to matrices during data prepa-
ration. Further, preprocessing in the data science ecosystem
[44] often combines relational operations on tabular data
with estimator/transformer pipelines.1 These pipelines are
composable and nestable abstractions for operations on array
data. The approach originates from scikit-learn [37] and has
been adopted by libraries like SparkML [28] and TensorFlow
Transform.2 Tracing problematic featurized entries that may
be the result of nested function calls back to the pipeline’s
initial human-readable input is tedious work.

We need automated inspection of ML pipelines Due to
the pressures of their day-to-day activities, most data scien-
tists will not invest the necessary time and effort to manually
instrument their code or insert logging statements for trac-
ing, as required by model management systems [53,60]. We
envision support for data scientists in the form of automated
inspections of their pipelines, similar to the inspections used
by modern IDEs to highlight potentially problematic parts
of a program, such as the use of deprecated code. Once data
scientists become aware of such issues, they can use data
debuggers like Dagger [26] to drill down into the specific
intermediate pipeline outputs and explore the root cause of
the issue. We furthermore argue that, to be most beneficial,
automated inspections need to work with code natively writ-
ten with popular ML library abstractions.

Lightweight pipeline inspection with mlinspect We
design and implement mlinspect, a library that helps
data scientists automatically detect data distribution bugs in
their ML pipelines. The mlinspect library extracts logi-
cal query plans, modeled as directed acyclic graphs (DAGs)
of preprocessing operators, from pipelines that use popular
libraries like pandas and scikit-learn [37], and that combine
estimator/transformer pipelines and relational operators. The
pipeline code is then automatically instrumented to trace the
impact of operators on properties like the distribution of sen-
sitive groups in the data. In this way, mlinspect empowers
data scientists to automatically and comfortably check their
ML pipeline code for data distribution bugs.

Importantly, mlinspect provides a library-independent
interface to propagate annotations such as the lineage of
tuples across operators from different libraries and intro-
duces only constant overhead per tuple flowing through the
DAG. Thereby, mlinspect offers a general runtime for
pipeline inspection and allows for integration of many detec-
tion techniques for data distribution bugs that previously
required custom code, such as automated model validation
of data slices [42], identification of distortions with respect
to protected group membership in the training data [58], and
automated dataset sanity checking [21].

1 https://scikit-learn.org/stable/modules/compose.html.
2 https://github.com/tensorflow/transform.

We proposed the initial ideas for our approach in earlier
work [17]. In this paper, we give a comprehensive descrip-
tion of the approach and of the corresponding open source
library. We explain how to instrument estimator/transformer
pipelines (Sect. 3.2), provide implementation details for all
our components (Sect. 4), and add an extensive discussion of
related work (Sect. 6). We also present quantitative and qual-
itative experiments to evaluate mlinspect with respect to
its runtime overhead and usability.
In this paper, we make the following contributions:

– We describe hard-to-identify issues in ML preprocessing
pipelines with respect to the fairness and correctness of
the resulting models (Sects. 2, 3.3 ).

– We discuss the design of mlinspect, which enables
lightweight lineage-based inspection of ML preprocess-
ing pipelines. The mlinspect library bases its anal-
ysis on declarative abstractions of popular data science
libraries and does not require manual code instrumenta-
tion (Sect. 3).

– We describe how to efficiently implement the instrumen-
tation and inspections of mlinspect and how to enable
support for control flow (Sect. 4).

– We experimentally show that the runtime overhead of
mlinspect is linear in the number of input and output
records of instrumented operators and highlight perfor-
mance trade-offs (Sect. 5).

– We provide a qualitative comparison of our approach to
related libraries for experiment tracking and provenance
capturing. We also conduct a user study, showing that
mlinspect is helpful to data scientists in their data
distribution debugging tasks (Sect. 5).

2 Data distribution bugs by example

We illustrate the need for assisting data scientists with the
inspection of their preprocessing pipelines with an exam-
ple from the medical domain, shown in Fig. 1. Consider a
data scientist who implements a Python pipeline that takes
demographic and clinical history data as input, and trains a
classifier to identify patients at risk for serious complications.
Further, assume that the data scientist is under a legal obliga-
tion to ensure that the resulting model works equally well for
patients across different age groups and races. This obliga-
tion is operationalized as an intersectional fairness criterion,
requiring equal false-negative rates for groups of patients
identified by a combination of age_group and race.

The pipeline first reads two CSV files, which contain
patient demographics and their clinical histories, respec-
tively. Next, the resulting dataframes are joined on the ssn
column. This join may introduce a data distribution bug (as
indicated by issue 1©) if a large percentage of the records of
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Fig. 1 Example of an ML pipeline that predicts which patients are at a
higher risk of serious complications, under the requirement to achieve
comparable false-negative rates across intersectional groups by age and
race. The pipeline is implemented using native constructs from the pop-
ular pandas and scikit-learn libraries. On the left, we highlight potential

issues identified by mlinspect. On the right, we show the corre-
sponding dataflow graph extracted by mlinspect to instrument the
code and pinpoint issues. (Operations on the test set are omitted for
readability)

some combination of age group and race do not have match-
ing entries in the clinical history dataset.

Next, the pipeline computes the average number of com-
plications per age group and adds the binary target label to the
dataset, indicating which patients had a higher than average
number of complications compared to their age group. Data
is then projected to a subset of the attributes, to be used by
the classification model. This leads to the second issue 2© in
the pipeline: the data scientist needs to ensure that the model
achieves comparable accuracy across different age groups,
but the age group attribute is projected out here, making it
difficult to catch this data distribution bug later in the pipeline.
The data scientist additionally filters the data to only contain
records from patients within a given set of counties. This may
lead to issue 3©: a data distribution bug may be introduced
if populations of different counties systematically differ in
age.

Next, the pipeline creates a feature matrix from the
dataset by applying feature encoders with scikit-learn’s
ColumnTransformer, before training a neural network
on the features. For the categorical attributes smoker,
county, and race, the pipeline imputes missing values
with mode imputation (using the most frequent attribute
value), and subsequently creates one-hot encoded vectors
from the data. The last_name attribute is replaced with
a corresponding vector from a pretrained word embedding,

and we normalize the numerical attributes num_children
and income.

This feature encoding part of the pipeline introduces sev-
eral potential issues: 4© the imputation of missing values
for the categorical attributes may introduce statistical bias
by attributing records with a missing value of race to the
majority race in the dataset; 5© depending on the legal con-
text (i.e., if the disparate treatment doctrine is enforced3), it
may be forbidden to use race as an input to the classifier;
6© we may not have vectors for rare non-western names in

the word embedding, which may in turn lead to lower model
accuracy for such records. As illustrated by this example,
preprocessing can give rise to subtle data distribution bugs
that are difficult to identify manually, motivating the devel-
opment of our automatic inspection library, mlinspect.

3 Design of mlinspect

The analysis of Python code for data science pipelines is dif-
ficult because, in contrast to SQL queries, these pipelines
are not built on top of an algebraic abstraction. Further,
these pipelines operate not only on relational data but also
on tensors, when converting input data to feature matri-
ces. However, popular data science libraries expose a set of

3 https://en.wikipedia.org/wiki/Disparate_treatment.
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declarative abstractions with some algebraic properties. For
example, pandas and pyspark both operate on dataframes
with SQL-like operations, and scikit-learn, SparkML, and
TensorFlow Transform4 rely on (potentially nested) estima-
tor/transformer chains.

This abstraction consists of an estimator that conducts an
aggregation over its inputs to create a reusable transformer.
The transformer applies a tuple-at-a-time transformation to
the data based on the state computed by its correspond-
ing estimator. This abstraction allows data scientists to
build nested pipelines of estimators and transformers that
combine common operations like feature transformations
(like one-hot encoding of categorical variables) with model
training and hyperparameter optimization (like k-fold cross-
validation). The estimator/transformer abstraction can be
seen as a declarative way to specify ML pipelines and has
recently been the subject of database-style research to opti-
mize execution time [50].

3.1 Overview

We propose mlinspect, a runtime for lightweight line-
age-based inspection of python scripts that uses existing
library code and does not require manual code instrumenta-
tion. In the current research prototype, we restrict ourselves
to scripts that use a combination of SQL-like operations on
dataframes and estimator/transformer pipelines, analogously
to our example in Sect. 2. This has the potential to cover a
wide range of existing ML code: According to results of a
recent analysis of several million Jupyter Notebooks, more
than 50% of these use pandas, and more than 25% use scikit-
learn [44]. The mlinspect library focuses on declarative
pipeline code, supports control flow, and has fallbacks for
when it encounters unsupported code snippets.

The mlinspect library extracts a directed acyclic graph
(DAG) representing the dataflow from ML pipelines with
logical operators like join, selection, projection, column
encoders, and missing value imputation. Based on this
extracted DAG, mlinspect automatically instruments the
code with predefined lightweight inspections that detect data
distribution bugs in the pipeline and give hints to users.

We now give a high-level overview of how mlinspect
executes and inspects data preprocessing operations based
on the architecture shown in Fig. 2. The execution takes
place as follows: (1) Users execute their data science pipeline
implemented in native pandas/sklearn code via mlinspect
and define the inspections to apply; (2) mlinspect auto-
matically instruments relevant function calls (Sect. 3.2) and
executes the instrumented program; (3) during the execu-

4 Note that TensorFlow Transform refers to estimators and transformers
as TensorFlow Transform Analyzers and TensorFlow Ops https://www.
tensorflow.org/tfx/tutorials/transform/simple?hl=en.

tion, mlinspect delegates instrumented function calls to
library-specific backends, which expose the inputs, annota-
tions, and outputs of operators to the configured inspections
(Sect. 3.3); (4) mlinspect extracts a dataflow representa-
tion of the program (Sect. 3.4) and maps the results of the
inspection to the corresponding operators. In the remainder
of this section, we detail the design of each component. We
will discuss implementation decisions in Sect. 4.

3.2 Instrumentation and annotation propagation

Instrumentation and DAG extraction at runtime We con-
duct all instrumentation necessary for inspection before the
execution of the pipeline and extract the DAG at runtime dur-
ing a single execution of the pipeline, as follows. During the
execution of each instrumented function call, corresponding
operator nodes are added to the DAG. For this, mlinspect
generates a unique identifier for each DAG node. Whenever a
dataframe object is returned from an instrumented function,
mlinspect adds a new attribute that contains the identifier
of the DAG operator that produced the dataframe. For exam-
ple, when processing the pd.merge(df_a, df_b) call,
mlinspect retrieves the DAG node identifiers for df_a
and df_b and adds a new DAG node, in this case a JOIN,
with nodes representing df_a and df_b as parents. There
might be cases where a user pipeline contains operators that
mlinspect cannot recognize (e.g., custom transformers
in a scikit-learn pipeline). Such operators are ignored and
not represented in the DAG, and execution continues with
the remaining known operations. Due to this fallback, the
library does not fail for pipelines where it recognizes only
a subset of the relevant dataflow operations, but still applies
all inspections and checks on a best-effort basis.

Handling control flow Early mlinspect versions [17]
lacked support for control flow in pipelines; they created
the DAG based on the pipeline code after execution, using
module information obtained through Python’s inspect
module. This made it difficult to deal with conditional code
such as loops, where the number of iterations depends on
runtime variables. The current DAG extraction method sup-
ports pipelines with control flow by building up the DAG
dynamically at runtime based on the actual execution of the
program. If there are branches in the user code, only oper-
ators from the executed branch are contained in the DAG.
As a consequence, mlinspect now runs and instruments
pipeline code contained in custom functions, which leverage
loops and branches. This approach enables easy instrumenta-
tion of relevant function calls, even if they happen indirectly
(as is the case with nested scikit-learn pipelines). We refer to
Sect. 4.3.2 for further details.

Annotation propagation The data flowing through the
preprocessing pipeline is further enriched with user-definable
“annotations” that propagate through operators and can be
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Fig. 2 Architecture of mlinspect. We apply checks and inspections to an instrumented ML pipeline written by the user. The instrumentation
layer delegates the execution of the inspections to library-specific backends and creates a DAG representation of the pipeline

created, read, and modified by the inspection code. This
annotation propagation mechanism offers a simple library-
independent interface to propagate annotations (e.g., for
tracking the lineage of tuples) across operators from differ-
ent libraries. We base the design of our inspections on this
annotation propagation mechanism. Each inspection retains a
fixed-size state that is reset after each operator and is invoked
only once for each DAG operator. The inspection has access
to the output tuples of the operator and the corresponding
annotated inputs. The following listing details the abstract
operations performed by such an inspection. At runtime, the
visit_op method is called for each operator invocation
and provided with information about the operator as well
as an iterator over the annotated input rows. The inspection
then produces the corresponding output annotations and can
optionally annotate the logical operator in the DAG with the
computed result (such as a histogram of the outputs) via the
op_annotation_after_visit method.

Users have to specify the inspections to apply in advance,
which allows only the state that is required for the actual
inspections configured by the user to be materialized. This
avoids materializing arbitrary information from the pipeline.

As long as each row annotation has a fixed size limit, and
each inspection only uses a fixed-size state, the overhead of
the framework is constant per inspected tuple. This approach
does not introduce additional memory overhead, as there is

only the constant overhead of a fixed number of additional
function calls per user function call.

We maintain a mapping between the input rows of an oper-
ator and their corresponding output rows and then expose
this mapping along with the corresponding annotated inputs
to each inspection. This input/output mapping is constructed
differently depending on operator semantics. Operators like
projection and transformers are guaranteed to have the same
number of input and output elements, listed in the same order.
For operators like selection, join, and train–test split, the map-
ping is maintained by generating an identifier column, which
is transparently pushed through the operator and removed
immediately afterward to hide it from user code. Note that
only one possible source tuple (and not all possible sources)
is tracked for aggregation operators and for duplicate elimi-
nation, as the performance overhead of detailed provenance
tracking using the full provenance semiring framework [18]
would be too significant, introducing dependencies between
all input–output pairs [3].

Function call capturing To allow inspections to access
the output of an operator such as a join, along with the cor-
responding input rows and their annotations, arguments and
return values of function calls must be efficiently captured.
For this, the abstract syntax tree (AST) from the Python
parser is modified before compiling and executing the code.
A function call is added before the user code to “monkey
patch” functions from libraries like pandas and scikit-learn
that are supported by mlinspect. Monkey patching [55]
allows mlinspect to extend or modify functionality of
third-party libraries at runtime by completely replacing
the original implementation of a function. These monkey
patched functions internally call the original, unpatched ver-
sion of the function, delegate the execution of the inspections,
and create new DAG operator nodes corresponding to the
function. mlinspect also captures the exact function call
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location and source code snippet corresponding to each DAG
operator. See Sect. 4.3.1 for implementation details.

Backends for popular Python libraries The
mlinspect library is designed based on the semantics of
preprocessing operations from popular Python frameworks
like scikit-learn and pandas. The instrumentation based on
captured function calls described so far is independent of
the specific library. Importantly, libraries differ in their data
representation choices and in what data preprocessing oper-
ations they support. So, pandas functions can be directly
mapped to DAG operators, and each operation is executed
eagerly. In contrast, scikit-learn encourages users to first
declaratively define a nested pipeline using components like
the ColumnTransformer, which allows passing specific
columns to specific transformers like one-hot encoders. Once
a pipeline is defined in a declarative way, data is passed
to the nested pipeline object in a second, separate step.
The function calls that actually process data, such as the
fit/transform calls of transformers contained in scikit-
learn pipeline objects, may not be directly visible in user
code. The user pipeline only calls the fit method once
on the final pipeline object, and the pipeline then internally
calls the fit and transform functions of the transform-
ers and estimators it contains. We introduce library-specific
backends in mlinspect to handle the operations and data
representations of popular libraries like scikit-learn.

Execution of inspections Each backend is responsible for
hiding library implementation details from the inspections.
The pandas backend, for example, is responsible for calling
the inspections as necessary whenever it is alerted of a pan-
das function call. For this, it has access to the arguments and
return values as described before. The backend then needs to
map operator output rows to operator input rows and their cor-
responding annotations. It needs to create efficient iterators to
expose the input/output rows in a specific format. Afterward,
the backend stores the resulting new annotations created by
the inspection in an efficient manner (e.g., as attributes of the
processed dataframe in the case of pandas).

This annotation propagation functionality is enough to
implement a variety of useful inspections. For example, basic
fine-grained lineage tracking on the row level can be imple-
mented with a simple inspection on top of the annotation
propagation approach as follows: unique identifier annota-
tions are generated for each row after the data source operator
and are propagated forward through the DAG. For selec-
tions, projections, and transformers, annotations are directly
forwarded through the DAG. For joins, combinations of
identifier annotations from all join inputs are created and
forwarded.

Optimizable inspections based on dataframe operators
In addition to the generic interface for inspections written in
Python, a second interface for inspections is supported. In
this interface, inspections have to be expressed in terms of

operations on dataframes. This approach is less general than
the standard approach (which allows for arbitrary Python
code), but is much more performant, because inspections
can be jointly executed with the user code operations, and
common optimizations from query processing such as scan
sharing and projection pushdowns can be applied. We discuss
implementation details in Sect. 4.3.2. Note, this approach is
still in an experimental stage and not yet part of the open-
source release.

3.3 Automatic inspections and checks

Inspections serve as the basis for detecting data distribu-
tion bugs in ML pipelines. They annotate the extracted
DAG with information like computed histograms for dif-
ferent DAG nodes. On top of the extracted and annotated
DAG, mlinspect provides checks, a rule-based approach
to verify constraints on the DAG, for example, by com-
paring the change in a histogram to a threshold. Before
execution, mlinspect determines which inspections are
required based on the checks specified by the user. It then
instruments the pipeline and executes it using a minimal
set of inspections, based on what is required by the checks
and directly specified by the user. After the execution of the
instrumented pipeline and the DAG extraction, each check
can access the final result to evaluate its constraint.

In the following, we discuss a set of more complex auto-
matic inspections and checks for ML preprocessing pipelines
that are enabled by our lineage-based annotation propagation
approach.

Algorithmic fairness In recent years, problems with
respect to the fairness of ML-based decision-making sys-
tems have been uncovered [52]. Such problems are often
difficult to detect and are the focus of mlinspect. As dis-
cussed in the example from Sect. 2 and outlined in previous
work [58], operations like join and selection can acciden-
tally filter out records from protected groups and thereby
introduce or exacerbate under-representation of historically
disadvantaged groups in the data. The mlinspect library
provides an inspection that computes histograms of opera-
tor outputs based on protected groups, and alerts the user
if group membership proportions change drastically after an
operator. A related problem is the low coverage of some pop-
ulation groups identified by a combinations of attributes [7].
For tracing group membership in coverage-related problems,
mlinspect forward-propagates annotations identifying
the groups of interest and materializes the annotated input
and final output of the complete pipeline.

Furthermore, there are legal restrictions on the usage of
demographic features such as gender, race, or disability sta-
tus in automated decision making. One can check the operator
DAG against a list of sensitive features and alert the user
about the places in the code where such features are used.
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ML models may also perform particularly badly for spe-
cific demographic groups in the data (e.g., yielding higher
false-positive rates for recidivism predictions for African
Americans [6]). The identification of such groups is in the
focus of recent research [42]. This identification might be
difficult in cases where the attribute required to identify the
protected group is projected out early in the pipeline or is only
available as a specific dimension of the feature matrix during
feature transformation. To address this, mlinspect sup-
ports inspections that forward-propagate sensitive column
annotations and then materialize the minimum amount of
information needed for analyzing performance for different
groups: rows only containing the predicted label and the sen-
sitive columns.

Methodology and robustness Additionally, inexperi-
enced data scientists may make methodological mistakes,
such as fitting featurizers on the whole data instead of the
training set only, forgetting to scale numerical features even
though the model requires that (as in the case of L2 regular-
ization), or selecting hyperparameters on the test set instead
of the validation set. Such issues can impact fairness-related
metrics as well [47]. All of these issues can be identified by
analyzing the extracted operator DAG. Furthermore, there
may be robustness issues in the pipeline. For example, some
scikit-learn transformers cannot handle null values. One can
identify such cases from the operator DAG and recommend
that the user applies a simple imputation technique. Another
problem that can be detected by analyzing histograms of
operator outputs is class imbalance. The DAG can be ana-
lyzed to see whether the data scientist already addresses these
with resampling or reweighing and alert her otherwise.

Data quality Data quality testing in the form of unit tests
for data as offered by libraries like Deequ [48] can also be
implemented using mlinspect. Data unit tests typically
evaluate constraints based on aggregate statistics of the data
such as the completeness (ratio of non-NULL values) of a
column or the number of distinct values in a column. The
mlinspect library can compute these data quality statistics
over all intermediate results of a pipeline.

3.4 Algebraic definition of themlinspect
dataflow graph

Data preparation pipelines that use declarative abstrac-
tions such as pandas data slicing, scikit-learn’s Column
Transformer, or SparkML pipelines have a natural
directed acyclic graph (DAG) representation [46]. Data
sources in this DAG are typically comprised of tables or files
holding relational data. The data flowing through the DAG
is either collections of relational tuples or tensors. The oper-
ators are either relational operators like join, selection, and
projection (consuming relational data and producing rela-
tional data), standard feature encoders like one-hot encoders

(consuming relational data and producing vectors), or stan-
dard ML preprocessing operations like normalization or
concatenation (consuming vectors and producing vectors). In
the following, we list the operations supported by the current
implementation of mlinspect in Table 1, and discuss their
formalization. We would like to note that we focus on com-
mon operations from pandas and scikit-learn in our current
research prototype. That said, the instrumentation approach
of mlinspect is general, and extending its capabilities to
support additional functions can be done with moderate engi-
neering effort.

Dataframe algebra We introduced our operators as a
mixture of relational algebra operators with estimator/trans-
former pipelines. However, relational algebra is insufficient
to formalize mlinspect operators because it operates on
unordered collections, while typical exploratory operations
on dataframes (like printing the first or last n rows) assume
an ordered data representation [39]. Estimator/transformer
pipelines in scikit-learn also fundamentally rely on order:
transformers map over a list and transform the data without
changing the order (e.g., when converting categorical strings
to one-hot vectors). Model training methods also assume that
their inputs are ordered, by implicitly associating each fea-
turized datapoint with its corresponding label. Furthermore,
support for linear algebra is crucial for typical ML pipelines,
because many operations, especially for feature processing,
have a natural representation as matrix operations and are
internally implemented on numerical array data structures. In
addition, dataframes in libraries like pandas offer many spe-
cialized methods that do not have an equivalent in relational
algebra [39]. Examples include the TRANSPOSE operation
that interchanges rows and columns, and the TOLABELS
operation that projects a column out to use it as a row label.

Peterson et al. [39] observed that dataframes combine
operations from relational algebra, linear algebra and spread-
sheets and proposed a novel dataframe algebra to unify them.
We use this algebra as a basis for the abstract representation
of ML pipelines, in order to formalize our approach. Because
mlinspect currently focuses on ML pipelines that use
relational operations and estimator/transformer operators, we
only require a subset of the dataframe algebra.

Operator formalization Peterson et al. [39] define a
dataframe as a tuple ( Amn , Rm , Cn , Dn), where Amn is an
array of entries from the domain � ∗, Rm is a vector of row
labels from � ∗, Cn is a vector of column labels from � ∗,
and Dn is a vector of n domains from Dom, one per column,
representing the schema of the dataframe. Each component
of the tuple can be left unspecified. Since Dn can be left
unspecified, there is a schema induction function S(·) that,
when applied to a column of Amn , returns its domain i . Func-
tion p(·) can be used to get the values of the column. This
definition allows to represent matrices as dataframes with a
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Table 1 Functions supported by mlinspect and their corresponding operators in the dataflow representation of the pipeline

Function call Operator

(’pandas.io.parsers’, ’read_csv’) Data Source

(’pandas.core.frame’, ’DataFrame’) Data Source

(’pandas.core.frame’, ’__getitem__’), arg type: strings Projection

(’pandas.core.frame’, ’__getitem__’), arg type: series Selection

(’pandas.core.frame’, ’dropna’) Selection

(’pandas.core.frame’, ’replace’) Projection (Mod)

(’pandas.core.frame’, ’__setitem__’) Projection (Mod)

(’pandas.core.frame’, ’merge’) Join

(’pandas.core.groupbygeneric’, ’agg’) Groupby/Agg

(’sklearn.compose._column_transformer’, ’ColumnTransformer’), column selection Projection

(’sklearn.compose._column_transformer’, ’ColumnTransformer’), concatenation Concatenation

(’sklearn.preprocessing._encoders’, ’OneHotEncoder’) Transformer

(’sklearn.preprocessing._data’, ’StandardScaler’) Transformer

(’sklearn.impute._base’, ’SimpleImputer’) Transformer

(’sklearn.preprocessing._discretization’, ’KBinsDiscretizer’) Transformer

(’sklearn.tree._classes’, ’DecisionTreeClassifier’), Estimator

(’tensorflow.python.keras.wrappers.scikit_learn’, ’KerasClassifier’),...

(’sklearn.model_selection._split’, ’train_test_split’) Split (Train/Test)

(’sklearn.preprocessing._label’, ’label_binarize’) Projection (Mod)

(’sklearn.pipeline’, ’fit’), arg: train data Train Data

(’sklearn.pipeline’, ’fit’), arg: train labels Train Labels

homogeneous numeric schema Dn , with null labels Rm and
Cn . See Figure 3 in Peterson et al. [39] for an illustration.

We detail the representation of the one-hot encoder
operator in this algebra as an example. Given a DF =
( Am,1, Rm , C1, D1) with a categorical string column, the
one-hot encoder is a map operator M AP(DF , f ) with the
output ( A′

mn′ , Rm , C ′
n′ , D′

n′ ), and the function f : Dn →
D′

n′ , where A′
mn′ is the result of the function f as applied

to each row, C ′
n′ is the resulting column labels, and D′

n′ is
the resulting vector of domains. For a one-hot encoder, f
is a function that transforms each categorical string into an
n′-dimensional vector, where n′ is the domain cardinality of
D1, with only a single nonzero entry in the dimension corre-
sponding to the string value in a given row. The cardinality
n′ of the string column becomes the number of dimensions
of the one-hot vectors and, thus, also the number of columns
in the result dataframe. The column labels C ′

n′ , in this case,
are generated by combining the attribute and string values.

In general, our operators map to this algebra as follows.
Our DAGs start with one or multiple Data Source oper-
ators. In the dataframe algebra, the initial data inputs are
not operators, rather, they are modeled as leaf nodes in their
DAG. Our operator Projection has the same semantics
as the PROJECTION operator in the dataframe algebra. The
corresponding operator for our Projection (Mod) is a
MAP because the dataframe algebra does not have extended

projections but uses the MAP operator instead to also han-
dle that functionality. Our Selection and Join operators
work exactly like their equivalents in the dataframe alge-
bra, SELECTION and JOIN. Our Group by Agg operator
works like the GROUPBY operator in the dataframe alge-
bra that can directly apply aggregation functions. Note that
the GROUPBY operation in the data frame algebra is more
powerful than ours, in that it offers a collect aggrega-
tion function that can group rows into multiple dataframes,
which we do not support. The MAP function in the dataframe
algebra applies a function uniformly to every row. Our
Transformers have the same semantics as these MAPs.
Our Estimator can also be expressed as a MAP that does
not produce an output. The Split (Train/Test) and
its two outputs can be expressed using a MAP to add a tempo-
rary column, a SELECT to filter records using this column,
and a PROJECT to remove the temporary column afterward.
The Concatenation can be used to append the columns
of multiple dataframes that have the same number of records.
In the dataframe algebra, this can be done using TRANS-
POSE to interchange the columns and the rows, followed by
a UNION of the two dataframes, and then a TRANSPOSE
again.

Additionally, we enrich our DAG representation of ML
pipelines with other information inferred from the pipeline
code, which is potentially helpful for further analysis. Exam-
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ples for this are the Train Data and Train Label
DAG nodes that mark the data on which estimator.fit
was called. Clearly, identifying the exact version of train
and test data used to fit the ML model greatly simplifies the
implementation of inspections. When formalizing our DAG
operators, these operators can be ignored, as they result in
no-op label nodes that do not change the semantics of the
ML pipeline query but they simplify its analysis.

Discussion As we already pointed out, the major differ-
ence between the dataframe algebra and the relational algebra
is order preservation. Relational algebra operates on sets of
tuples, while dataframes are modeled as ordered collections
of tuples, and operations on them preserve this order. This
property is a fundamental obstacle for the efficient pushdown
[23] of the execution of ML pipelines and inspections into
relational databases, as we would either need to implement
order-preserving variants of common relational operators, or
introduce artificial sort columns and always sort query results
based on them.

4 Implementation

We now discuss the salient aspects of the implementation
of mlinspect and revisit the example from Sect. 2. Our
research prototype is available at: https://github.com/stefan-
grafberger/mlinspect.

4.1 Overview

Our research prototype contains the core operator DAG
extraction functionality, and it implements instrumentation,
checks, and inspections for pandas and scikit-learn. We offer
implementations of representative inspections, including an
inspection that materializes the first row output by each oper-
ator, an inspection that tracks the detailed lineage of all rows
flowing through the DAG, data quality inspections, and an
inspection that computes histograms of operator outputs for
sensitive groups. In addition, we offer implementations of
checks, which evaluate a constraint on the outputs of our
inspections, such as a threshold comparison of the magni-
tude of change in the proportions of certain groups in the
data after a filter.

4.2 Inspections

Some checks only require the extracted DAG for analy-
sis. An example for this is the NoIllegalFeatures
check, which inspects the names of projected attributes used
as features to ensure that no illegal features, such as gen-
der or race, are used. Other checks only require simple
inspections that investigate an operator in isolation. An exam-
ple is the NoMissingEmbeddings check, which simply

ssn smoke
123 Y
456 N
789 Y

ssn cost
123 100
789 200

ssn smoke cost
123 Y 100
789 N 200

smoke cost
Y 100
N 200

[p1]
[p2]
[p3]

[c1]
[c2]

[p1, c1]
[p3, c2]

[p1, c1]
[p3, c2]

Fig. 3 Lineage tracking by propagating identifier annotations through
operators

counts the null values in the outputs of embedding opera-
tors. Another example are inspections for data unit testing.
Data unit tests typically evaluate constraints based on aggre-
gate statistics of the data such as the completeness (ratio of
non-NULL values) of a column or the number of distinct val-
ues in a column. Often, these statistics only require a single
pass over the data and can therefore be pipelined with the
actual execution of an operator. The Completeness and
NumDistinctValues inspections compute these statis-
tics by iterating over the values of a given column and
maintaining the counts for NULL/non-NULL values (for
completeness) or a hashmap containing the number of occur-
rences per distinct value.

In general, however, inspections need to work with the
data annotations flowing through the operators at runtime,
as described in the previous sections. In the following, we
discuss two such cases in detail: lineage tracking and change
detection for proportions of protected groups.

Lineage tracking It is simple to integrate lineage track-
ing into mlinspect directly using the built-in annotation
propagation mechanisms. As part of lineage tracking, unique
identifier annotations for all input tuples are generated and
forwarded according to operator semantics (e.g., for a join, a
combination of the identifier annotations of matching tuples
are forwarded).

We implement lineage tracking (Fig. 3) via the lineage
inspection. To illustrate our approach, we use a pandas code
snippet that joins a table of patient data with a table of cost
data, and projects the result to the attributes smoke and
cost.

The visit_op(self, op_context, row_
iterator) function of the inspection is called first, as
patient data is loaded on line 1. The inspection then
checks the type of the current operator. In our example, oper-
ator type, data source, is contained in the op_context.
After checking this, the inspection generates unique iden-
tifiers for each row. This process is repeated for the cost
data source on line 2. The third call to visit_op corre-
sponds to the join, which results from the pd.merge call
on line 3. There, visit_op operates on five-tuples com-
prised of the output row from the join, the corresponding
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rows from the two dataframes patient and cost, and the
annotations for the two input rows. The two input annota-
tions are then combined to create the output annotation. For
projection on smoke and cost on line 4, we only need to
forward-propagate the existing input annotations.

One notable case not shown here is lineage inspection for
the groupby operator type, where the aggregation follow-
ing the groupby is treated as a new data source. We expect
that the detailed lineage information from aggregations is not
relevant for many ML use cases, which often mostly apply
global aggregations (e.g., for normalizing features), where
each tuple depends on the whole input anyways. We leave a
more fine-grained treatment of aggregations for future work.

Change detection for proportions of protected groups
In our running example (Fig. 1 in Sect. 2), we briefly
discussed an inspection to discover the introduction of
accidental changes in the proportions of protected groups.
This refers to the issues 1©, 2©, 3© and 4© from the
example and requires the histogram inspection to (i) trace
the group membership variables age_group and race
through the DAG, and handle the fact that age_group
is projected out early (issue 2©). We designed a custom
check called NoBiasIntroducedFor for such cases.
Internally, this check uses the HistogramForColumns
inspection, which we will now explain. Consider the follow-
ing selection statement:

Figure 4 shows how this selection might affect an exam-
ple dataset flowing through it. Before the selection, the two
age_groups, 60 and 20, are distributed evenly. After the
selection, the majority of data points is in the age_group
60. This is an artifact of the strong correlation between the
attribute county and the attribute age_group. Our simple
example illustrates a common real-world trend, namely, that
geographic and demographic attributes are often correlated.

To detect such distribution changes, we apply the
HistogramForColumns([’age_group’]) inspec-
tion that annotates both the DAG node before the selection
and the selection DAG node itself with an age_group his-
togram of the outputs. After inspection execution and DAG
extraction, the NoBiasIntroducedFor check can then
look at these two annotated DAG nodes. For each sensitive
attribute, it checks whether there is a significant distribution
change of group memberships, and, if so, alerts the user.

We use a simple detection strategy that is easy for users to
understand and configure. We start by calculating the group
membership ratio compared to the overall number of people
in the data. Here, this group membership ratio for people
with age_group=20 is 0.5 before the selection and 0.33
after it. We compute the relative change before and after the
selection as (0.33 − 0.5)/ 0.5 = −0.34. We then compare
this quotient to a test threshold, set to −0.3. If the change is

age_group county
60 CountyA
60 CountyA
20 CountyA
60 CountyB
20 CountyB
20 CountyB

age_group county

60 CountyA
60 CountyA
20 CountyA

50% vs 50%

66% vs 33%

Fig. 4 Histogram-based change detection for the proportions of pro-
tected groups in operators such as selections and joins. Here, in the
beginning, the two age groups are distributed evenly, with a drastic
change after the operator application

below that minimal threshold, as is the case in our example,
we warn the user. This approach is especially sensitive to
changes in the proportion of minority groups.

What is not encountered in this example is the removal
of a group membership attribute. If projection is used to
remove the attribute age_group, we annotate each row
with its corresponding age_group value and propagate
these row annotations forward. Subsequent operations like
join, selection, and missing value imputation, which may
change group proportions in the data, rely on these propa-
gated group membership annotations to compute a histogram
of group memberships of all inspected operator outputs, and
test them for distribution changes.

We implement additional inspections to compute his-
tograms of intersectional group membership. We also pro-
vide a check for calculating the removal probabilities of
different demographic groups in the data. This check detects
cases where filter-like operations that affect only a small
subset of the data disparately impact specific demographic
groups.

4.3 Execution of inspections, checks, and
DAG extraction

Next, we discuss the detailed execution of inspecting a pre-
processing script with mlinspect. The execution proceeds
according to the following steps (which we detail in the
remainder of this section):

1. Preparation: Determination of a minimal required set of
inspections based on the inspections and checks specified
by the user.

2. Instrumentation: Instrumentation of function calls in the
AST of the user program.

3. Execution of the instrumented program: Delegation of
the execution of inspections to library-specific backends;
joint execution with pipeline operations; creation of the
dataflow DAG.

4. Results: Evaluation of checks using the DAG and the
inspection results.
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4.3.1 Preparation

Determining a minimal required set of inspections The
first step consists of determining which inspections to exe-
cute. Users have two ways to specify inspections: they can
either use the check API or specify inspections they are inter-
ested in directly. We collect all of the required inspections
from these two sources and build a unified set with them.

Capturing relevant function calls As discussed in
Sect. 3.2, we instrument the user code via monkey patch-
ing and callback functions. It is crucial to only patch relevant
function calls, due to the high amount of additional func-
tion calls for the callback functions. Determining whether a
given function call is relevant for us (e.g., maps to an operator
in our DAG) is difficult without executing the code. Monkey
patching allows us to create specific patches for function calls
relevant for mlinspect, while leaving other function calls
unaffected. We leverage the Python package gorilla5,
which simplifies monkey patching, while also retaining the
original unpatched version of the function. When a user
executes source code with mlinspect, AST nodes corre-
sponding to the following code before and after the original
user code are added. The two added function calls only need
to be executed once per user script and patch all functions
supported by mlinspect from libraries like pandas and
scikit-learn.

Handling indirect function calls Monkey patching affects
all calls to a patched function, even though we only want to
execute inspections for calls relevant to the user pipeline.
An example for a problematic case is the constructor
pandas.DataFrame(...), which is internally used by
Pandas as well. As we are only interested in the invocations
by our user program, we detect whether a certain operation is
directly called by the user program as follows: In the patched
code, we call the Python function sys._getframe to
determine the source code filename of the stack frame of
the call and check whether the source file is the root level file
executed by mlinspect.

Example We present the code for a simplified exam-
ple of our instrumentation technique, which adds support
for the sklearn function label_binarize (which cre-
ates a binary vector from a categorical column with two
distinct values). We initiate the patching of the method
label_binarize in the package sklearn.
preprocessing via gorilla’s annotations. Next, we imple-
ment a patched version of the function, which creates a new
DAG operator and retrieves the corresponding DAG parent

5 https://pypi.org/project/gorilla/.

node and the input annotations required for our inspections.
Afterward, we call both the backend responsible for the oper-
ation (the SklearnBackend in this case), as well as the
original function and insert the newly created operator node
to our DAG. We would like to note that adding support for
a new API function to mlinspect only requires a similar
patching implementation, which makes it easy to extend our
library with moderate engineering efforts.

Indirect data processing ML pipelines often contain
several functions calls that only lead to data processing indi-
rectly. Scikit-learn’s ColumnTransformer pipeline step
for specifying a set of feature transformations on a dataframe
is an example for this. The user code defines a nested pipeline
first and then passes the data to it in a second step by calling
fit on the final pipeline object. The resulting fit calls on
the contained transformers such as a OneHotEncoder or
the projections required by the ColumnTransformer are
only executed indirectly. Our approach identifies and han-
dles these indirect calls by patching the constructors of the
pipeline steps and using the source code location retrieved
during the constructor invocation to determine that the fit
calls originate from the user pipeline code (and must there-
fore be handled by the system).

Tracking source code locations of operators Python
stack frames only contain the line number of the corre-
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sponding operations. mlinspect can add extra function
calls to the AST to track code locations. The AST of the
user program, extracted by the Python parser, contains more
detailed information: nodes have the attributes lineno and
coloffset that indicate the start of the code location, and
one can also determine where the snippet corresponding to an
operator ends (the end_lineno and end_coloffset).
These two attributes are provided by a recent addition to
the parser in Python 3.8. Instrumentation is conducted with
an ast.NodeTransformer in Python, where the code
locations are directly added as arguments to callback func-
tions. This more detailed tracking is configurable, as the
additional function calls introduce a minor overhead. We
experimentally evaluate the overheads of different instru-
mentation techniques in Sect. 5.1.4.

4.3.2 Execution of the instrumented program

After instrumenting the user pipeline code, the instrumented
AST is compiled and executed, which triggers the execu-
tion of the patched functions and the build up of the DAG
as described in Sect. 3.2. The execution of each inspection
is delegated to the corresponding backend, e.g., inspections
for a merge call on a pandas dataframe will be handled by
the pandas backend. The API for the different backends com-
prises of two functions: before_call and after_call,
where the before_call function can modify the input
before the original function is called. In case of a pandas
merge call, for example, an index column is introduced
to later associate output rows with the corresponding input
rows. The after_call method then executes the inspec-
tions and removes metadata such as the index column.

Handling control flow We discuss the implementation
details for handling control flow (Sect. 3.2). In order to be
able to work with pipelines containing control flow, a DAG is
built from the actual execution of the program, instead of just
relying on information in the AST (as in previous versions
of mlinspect [17]). This prior approach does not allow
for the determination of which branches are executed. The
current version directly patches function calls, independently
of where they occur. Based on these function calls, the DAG
is built up dynamically at runtime. During the execution of
a patched function, the current stack frame is investigated to
determine whether the function call is relevant for the inspec-
tions, as described in Sect. 4.3.1. We carefully implemented
the corresponding logic to ensure a low overhead for repeated
function calls that are not of interest to mlinspect, and
experimentally evaluate this overhead in Sect. 5.1.4.

Efficient execution of our Python-based inspections via
scan-sharing We implement inspections to both consume
and produce iterators, based on for-comprehensions and the
yield keyword in Python.

The inspections are supplied with an iterator over their
input rows. To create the iterator, three different arguments
are needed: the output of the operator, the corresponding
input, and the annotations for the input. They all have the
same order and an equal number of rows, so one can scan
over those three list-like elements at the same time to cre-
ate the row_iterator. However, we only want to do a
single scan over this even if we have multiple inspections.
The only complication is that each inspection has its own
separate annotations for each record. The following listing
shows how scan-sharing is done with Python iterators and the
itertools library6. It starts by creating multiple iterators
over the input and output rows, one copy per inspection. For
each inspection, an iterator is constructed over the inspec-
tion’s annotations of the input rows. Finally, the functions
zip and map are used to create a single iterator that outputs
simple data class objects with the current input row, the input
row annotation, and the output row. These data class object
iterators are the input for the inspections.

The function itertools.tee internally uses one iter-
ator over the input and one over the output and buffers the
values until each duplicated iterator processed the value.
All inspections consume the iterator elements at the same
pace, so only one pass over the data is being made and
itertools.tee only needs to buffer the current input
and output row. This approach is based on the banana split
law [20] for loop fusion. When we have multiple functions
that we can express using a fold (e.g., computing the count or
the sum for a numerical column), we can build a single fold
function that combines them to conduct the same computa-
tion with a single pass over the data. Here, the visit_op
functions of each inspection work similarly to folds. There-
fore, we can apply the fusion from the banana split law, to
avoid repeated scans over the data.

Handling different types of data Backends also provide
a custom function to create datatype-specific iterators for all
datatypes that can currently be passed around in the supported
ML pipelines. For example, the following listing shows the
code to create iterators for pandas dataframes.

6 https://docs.python.org/3/library/itertools.html.
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Table 2 Overview of the internal operator types

Operator(s) Operator type

Data Source, Group by Agg Data Source

Projection (Mod), Transformer, Unary map

Train Data, Train Labels

Concatenation N-ary map

Selection, Train/Test-Split Unary resampling

Join Join

Estimator Sink

We provide corresponding implementations for other
datatypes like the ndarray in numpy, the Series in pan-
das, the sparse matrix csr_matrix in scipy, and plain
Python list objects. Our support for tensors is currently
restricted to two-dimensional cases where it is obvious
which dimensions correspond to the rows and columns of
a dataframe. A prime example for this is feature matrices
built from vectorized input samples. We leave support for
operations on higher-dimensional tensors (e.g., to represent
images, pixels, and channels in three dimensions) for future
work.

Instrumentation for different operator types To exe-
cute our inspections, we only need to differentiate between a
small set of different types of operators, as listed in Table 2.
We base the classification on the number of parent opera-
tors, whether the operator produces output data, and whether
the operator can change the order or number of elements. A
Data Source-type operator does not get input data from
a parent operator and does produce an arbitrary output. A
Unary map uses the data from one parent operator as input
and outputs one output row per input row without changing
the existing order of elements. The N-ary map has data
from multiple parent operators as input, each of them having
the same number of elements, and maps n-tuples of input
rows to one output row without changing the existing order
of elements. Unary resampling receives data from one
parent operator as input, and can arbitrarily reorder or drop
input elements to produce its output. A Join-type opera-
tor receives input data from multiple parent operators, and
combines and reorders them in arbitrary ways to produce its
output. A Sink-type operator gets input data from a parent
operator but does not produce any output data.

The previous examples assumed the operator type of a
unary map. In the following, we describe how to handle the
remaining types of operators. Data source operator types are

simpler because we do not have input data or input annota-
tions we need to consider. The N-ary map works analogously:
we can associate row annotations, input, and the correspond-
ing output based on them having the same order and number
of elements. The only difference is that we have multiple
input dataframes instead of a single one, each with its own
annotations. The sink also works analogously; we can asso-
ciate input and input annotations based solely on the order and
number of elements. Functions for operators of the type unary
resampling require more complex logic to associate input
rows, input annotations and the corresponding output rows.
For them, an index column to the input data using the call-
back functions like before_call needs to be added. After
execution, this column is removed during the after_call
function to hide it from the user code. We then utilize these
index columns as follows. We start by concatenating the
input and the input annotations. Next, we read the index
column and join the annotated input with the output. Subse-
quently, we create iterators over this join result, giving us the
required for input, output, and the different annotations. The
remaining execution proceeds analogously to the unary map
function. In the case of joins, we need to apply the described
indexing techniques for both join inputs. In the majority of
cases, we use pandas dataframes as data structure to store the
actual annotations. They are convenient because we can then
leverage joins and concatenation in pandas for the execution
of inspections. Once the data is inside a scikit-learn pipeline,
we switch to plain Python lists to store the annotations.

Optimizable inspections based on dataframe opera-
tors A drawback of our Python-based inspections is the high
runtime overhead inherited from Python and a lack of vec-
torization, which typically requires calling external C code.
Due to this, we design an alternative, less general but more
efficient method for executing inspections. As outlined in
Sect. 3.2, we also support the implementation of inspections
based on dataframe operators. The core idea is to model both
the inspections and the user program operations as dataframe
operators and execute them jointly. This approach is less
general than allowing users to write arbitrary python code
for inspections, but has a much lower overhead, as we can
leverage optimized operator implementations (which apply
vectorization) and common techniques from query optimiza-
tion.

For this approach, inspections are again expressed via two
functions, one for computing output annotations for each row
and one for computing the final annotations for the current
DAG operator. However, instead of relying on the Python
generator abstraction, these functions return a partial query
plan comprised of dataframe operators. For the annotation
propagation, inspections still operate on output rows of the
instrumented user operations and the corresponding anno-
tated input rows, but express the computation of the output
annotations for each row with dataflow operators.
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