Estimates of familial risks from family data are biased when ascertainment of families is not independent of family history: Author's response

Boparai, K.S.; Reitsma, J.B.; Dekker, E.

DOI
10.1136/gut.2010.227280

Publication date
2011

Document Version
Final published version

Published in
Gut

Citation for published version (APA):
Boparai, K. S., Reitsma, J. B., & Dekker, E. (2011). Estimates of familial risks from family data are biased when ascertainment of families is not independent of family history: Author's response. Gut, 60(8), 1163. https://doi.org/10.1136/gut.2010.227280

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.


Authors’ response

Patients with hyperplastic polyposis syndrome (HPS) harbour multiple colorectal hyperplastic polyps and are at risk of developing colorectal cancer (CRC).1–6 In a recent study we determined the RR of CRC (5.4; 95% CI 3.7 to 7.8) and HPS (59; 95% CI 13 to 121) in first-degree relatives (FDRs) of patients with HPS, compared with the general population.7 Win et al raised concerns that probands in our study might have been preferentially ascertained because of a known family history (to any degree of genetic relatedness) of CRC which would lead to an ascertainment bias. This would then overestimate the familial risk of CRC. As discussed in the original paper, the majority of probands included in our cohort were symptomatic and thus did not encompass preferentially ascertained individuals with a known family history of CRC. At closer analysis, only 3/57 probands (5%) presented at our clinic because of a positive family history of CRC and none had a known family history of HPS. If these probands and their FDRs (n=19) were excluded and the data reanalysed, the RR of CRC in FDRs would become 5.0 (95% CI 3.3 to 7.4), which is only marginally lower than the original estimate. However, because we included all probands satisfying the criteria for HPS irrespective of the reason for presentation, we believe ascertainment was in fact independent of family history.

Besides the bias risk mentioned by Win et al, other potential biases should be taken into consideration. First, the majority of probands included in this study were diagnosed because they were symptomatic and thus represent a selected population. The largely symptomatic probands included in this study were diagnosed because they were symptomatic and thus represent a selected population. If these probands and their FDRs had a known family history of HPS, if these probands and their FDRs had a known family history of HPS, then overestimate the familial risk of CRC. This would lead to an ascertainment bias. This would lead to an ascertainment bias. This would lead to an ascertainment bias.

Second, it was presumed in our study that more colonooscopies were performed in FDRs in response to a diagnosis of CRC in probands. This would lead to higher frequencies of colonooscopies in FDRs than in the general population, possibly leading to more diagnoses. To avoid this bias we did not use follow-up data from FDRs after the time of diagnosis of CRC in a proband (censoring). It is still possible that more colonooscopies have been performed in FDRs as a result of HPS diagnosis in the absence of CRC in the proband, although a diagnosis of HPS in the time frame of our study was not considered an indication for colonooscopic screening of relatives.

As an alternative for familial CRC analysis, Win et al suggest comparing family histories of patients with HPS and non-HPS patients who, as a whole, had the same a priori risk of being diagnosed with HPS. In our opinion, an ideal study would be to perform colonooscopic screening in all FDRs of patients with HPS as well as a corresponding control group from the general population. Such data may become available from large-scale colonooscopic screening studies.

In all, we were well aware of the potential biases that could have inflated our estimates of RR and accordingly applied various measures to avoid these. We therefore believe that our study provides a fair representation of patients with HPS, their FDRs and the associated familial risk of CRC in a clinical setting.

K S Boparai,1 J B Reitsma,2 E Dekker1
1Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands; 2Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands

Correspondence to Evelien Dekker, Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands; e.dekker@amc.uva.nl

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Published Online First 21 October 2010

Gut 2011;60:1163. doi:10.1136/gut.2010.227280

REFERENCES


Analysis of deaths occurring within the Nottingham trial of faecal occult blood screening for colorectal cancer

We read with interest the analysis of deaths occurring within the Nottingham trial of faecal occult blood screening for colorectal cancer performed by Whynes and colleagues,1 reported in a recent issue of Gut. While the aims of this study are to be commended, we have some concerns regarding the interpretation of ages at death and the methodology used to assign deprivation scores.

With respect to age at death, ‘those who participated in screening died at a more advanced age than the controls who, in turn, enjoyed a longer lifespan than non-participants.’ One interpretation that is consistent with this finding is that, among the intervention group, those who lived longer were more likely to participate in screening and those who died youngest were less likely to participate in screening.

In assigning a deprivation score to each trial participant based solely on the Index of Multiple Deprivation of the address of their corresponding general practice Whynes et al make two broad assumptions. First, they assume that the level of deprivation experienced by the population in the general practice building is located reflecting this level of deprivation experienced by the registered practice population itself. Second, they assume that the general practice deprivation score adequately reflects the deprivation experience of individuals who participated in the Nottingham trial. The second assumption is an inherent problem with area-based measures of deprivation, which is that they assume that all individuals have the socioeconomic characteristics of the area in which they live. The first assumption, however, may invalidate the Index of Multiple Deprivation as it is used in the study. McLean et al7 found that analyses that employed this methodology significantly underestimated the relationship between deprivation and ill health. This might be due to general practice populations being distributed over large geographical areas that may not reflect the location of the GP surgery. Additionally, general practices may be located in areas significantly different to the areas in which registered patients live. Thus, the validity of these assumptions remains questionable and thus the relative contribution of socioeconomic circumstances on these results becomes less certain.

Therefore, the interpretation of age at death within each of the trial arms,
Authors' response
K S Boparai, J B Reitsma and E Dekker

Gut 2011 60: 1163 originally published online October 21, 2010
doi: 10.1136/gut.2010.227280

Updated information and services can be found at:
http://gut.bmj.com/content/60/8/1163.1.full.html

These include:

References
This article cites 4 articles, 2 of which can be accessed free at:
http://gut.bmj.com/content/60/8/1163.1.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/