Corrosion of dental NiCrMo alloys
Muller, A.W.J.

Citation for published version (APA):
Muller, A. W. J. (1990). Corrosion of dental NiCrMo alloys
Corrosion of Dental NiCrMo Alloys

Anthonie W.J. Muller
CORROSION OF DENTAL NiCrMo ALLOYS
CORROSION OF DENTAL NiCrMo ALLOYS

Academisch proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
Prof.Dr. S.K. Thoden van Velsen
in het openbaar te verdedigen in de Aula der Universiteit
(Oude Lutherse Kerk, ingang Singel 411, hoek Spui)
op dinsdag 18 september 1990, om 13.30 uur

door

Anthonie Wilhelmus Joseph Muller

geboren te Amsterdam

© 1990 by Anthonie W.J. Muller

This text is set in Adobe Garamond, Adobe Garamond Expert,
and in ITC Garamond Light Italic.

This thesis was printed at the Central Printing Office of
the University of Amsterdam.

ISBN 90-9003639-3
Contents

1. General introduction
 1-1 Corrosion in dentistry
 1-2 The essentials of the corrosion process
 1-3 Controversies in the electrochemical literature
 1-4 Controversies in the dental literature
 1-5 About this thesis

2. In vitro corrosion rate measurements
 2-1 Introduction
 2-2 First article: Measurement of the small corrosion current of a NiCr alloy by the potentiostatic deaeration method
 2-3 Second article: The corrosion rates of five dental Ni-Cr-Mo alloys determined by chemical analysis of the medium using ICP-AES, and by the potentiostatic deaeration method
 2-4 Third article: Determination of the corrosion rates of six dental NiCrMo alloys in an artificial saliva by chemical analysis of the medium using ICP-AES.
 2-5 Determinations of mass loss by other alloys
 2-5.1 Xerxes
 2-5.2 Vitallium
 2-5.3 Noble alloys
 2-5.4 Micro-Bond Ni/P2 in 0.1 M lactic acid + 0.1 M NaCl
 2-6 Commentary
 2-6.1 The methods
 2-6.2 Mass loss determinations
 2-6.3 The time dependency of the corrosion potential
 2-6.4 The time dependency of the corrosion current
 2-6.5 The $E_{corr}-\log (i_{corr})$ linearity
 2-6.6 Anodic current inhibition by oxygen
 2-6.7 Wear corrosion
 2-7 The relation between polarization resistance and corrosion current during passivation
 2-7.1 The Stern-Geary equation
 2-7.2 An equation for passive alloys similar to the Stern-Geary equation
 2-7.3 Battery behavior

The experimental work described in this thesis was carried out at the Department of Dental Materials, ACTA, Academic Centre for Dentistry, University of Amsterdam, Amsterdam, The Netherlands.

Chemical analysis was carried out at the Department of Analytical Chemistry, Faculty of Chemistry, University of Amsterdam.
3. In vivo electrical potential measurements
 3-1 Introduction
 3-2 First article: The determination of the electrical potential of a metallic restoration in the oral cavity
 3-3 Second article: Electrical potentials of restorations in subjects without oral complaints
 3-4 Commentary
 3-4.1 The method
 3-4.2 Significance
 3-4.3 Possible application

4. Conclusions

5. Summary / Samenvatting

References

Acknowledgements

Curriculum vitae

List of symbols

- β_a: anodic Tafel constant
- β_c: cathodic Tafel constant
- E_{cor}: corrosion potential
- E_{pit}: pitting potential
- F: Faraday's constant (96500 C/mol)
- i_{an}: anodic current density
- i_{ca}: cathodic current density
- i_{cor}: corrosion current density
- i_{pol}: potentiodynamic current density
- i_{pe}: potentiostatic current density
- R_{pol}: polarization resistance dV/di at the corrosion potential
- T: absolute temperature
- V: potential of the electrode with respect to the medium
1-1 Corrosion in dentistry

In dentistry, corrosion of metallic restorations merits attention as it plays or may play a role in the following phenomena, which are listed in order of their proximity to the restoration:

- Decreased strength of the restorations, leading to fracture, which terminates their proper functioning. This is important in marginal fracture of amalgam restorations [Sarka82], in the fracture of bridges, typically occurring at the soldering point [Muell81], and in the fracture of posts in root canals [Wirz82].
- Discoloration of restorations or their surroundings by precipitated corrosion products [Konis86].
- Secondary caries near restorations [Jahn85, Silva87].
- Gingivitis [Zande57].
- Leukoplakia [Hogew90] (white patches on the cheek or the tongue that cannot be brushed off), lichen planus and chronic ulceration [Jolly86]; leukoplakia (in 9% of the cases) and lichen planus can become malignant [Lind85,87]. Metallic restorations have been implicated in the etiology of these illnesses because of frequent remission after their removal [Lind86].
- Galvanism, a syndrome consisting of subjective complaints of oral pain, a metal taste or a general feeling of malaise [Axell85]. Galvanism can result in a patient's non-acceptance of extensive crown and bridge work.
- Systemic toxic or allergic reactions to corrosion products. The possible toxicity of mercury in dental amalgam continues to attract much interest [Green79, Bauer82]. The incidence of allergic reactions to dental metals is small, but not nil. Dental nickel alloys constitute a risk of allergic reactions, as 8% of the population is allergic to nickel [VanLo89,p.28].

Many types of alloys are used in dentistry: amalgams, noble metal casting alloys, with metals as gold and palladium as major components, and base metal casting alloys, such as cobalt-chromium and nickel-chromium (NiCr) alloys. The main components of dental alloys are given in Table 1.1.

The present study is an investigation of the corrosion behavior of dental NiCr alloys. For a general discussion of dental NiCr alloys the reader is referred to the references given in [Weber85, VanLo89, Merge89, Vreeb89].
Some dental NiCr alloys contain beryllium, which may constitute a health hazard for patients as well as for dental technicians. Moreover, beryllium strongly increases the corrosion rates of NiCr alloys [Covin85, Geis-86a]. As the use of beryllium in dental NiCr alloys is unnecessary [Weber82], its use is not considered in this thesis.

Table 1.1. Major Components of Dental Alloys and Their Applications

<table>
<thead>
<tr>
<th>Metal</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>Au</td>
</tr>
<tr>
<td>Platinum</td>
<td>Pt</td>
</tr>
<tr>
<td>Palladium</td>
<td>Pd</td>
</tr>
<tr>
<td>Mercury</td>
<td>Hg</td>
</tr>
<tr>
<td>Silver</td>
<td>Ag</td>
</tr>
<tr>
<td>Copper</td>
<td>Cu</td>
</tr>
<tr>
<td>Tin</td>
<td>Sn</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zn</td>
</tr>
<tr>
<td>Nickel</td>
<td>Ni</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Co</td>
</tr>
<tr>
<td>Chromium</td>
<td>Cr</td>
</tr>
</tbody>
</table>

TABLE 1.1. MAJOR COMPONENTS OF DENTAL ALLOYS AND THEIR APPLICATIONS

1. An oxidator, often oxygen, withdraws electrons from a metal (Fig. 1.1a). This is called the 'cathodic process'. The moving electrons constitute a current called the 'cathodic current'.
2. Due to the loss of negative charge, the metal becomes positively charged (Fig. 1.1b).
3. The positive metal discharges by sending positive metal ions into the medium, which results in material loss by the metal (Fig. 1.1c). This is called the 'anodic process', the associated current the 'anodic current'.

FIG. 1.1. The two partial reactions during the corrosion of a metal: the cathodic process, moving electrons (a), and the anodic process, moving metal ions (c).
It follows from Coulomb's law that a negative potential, as it repels electrons, accelerates the cathodic current, while a positive potential, repelling positive ions, accelerates the anodic current (Fig. 1.2).

\[V \]

\[i \]

FIG. 1.2. The distinct influence of the potential upon the two partial corrosion processes. The arrow indicates the direction of the coulomb force.

The corroding system stabilizes itself at the potential at which the two currents are equal (Fig. 1.3; point A). The potential of A is called 'the corrosion potential', \(E_{\text{cor}} \). The anodic current at this potential is called 'the corrosion current', \(i_{\text{cor}} \). The corrosion current is commonly used as a measure of the corrosion rate.

Note the simplicity of this mechanism for corrosion. Note also that in the previous description the concepts 'anodic current' and 'cathodic current' were used, but the concepts of 'anode' and 'cathode' were not: during uniform corrosion the anodic and cathodic current are present at the same place.

This formulation of the basic principles of the corrosion process was given by Wagner and Traud in 1938. Before 1938 other models for corrosion were used. The dissemination of the model of Wagner and Traud has been slow [Vette61, p. 598].

Galvanic corrosion

The corrosion pictured in Figs 1.1-3 is called uniform corrosion, as the metal is removed in a uniform way, i.e. everywhere at the same rate. A distinct type of corrosion is galvanic corrosion, a corrosion process that may occur when two different metals are combined and in which the corrosion of one metal is increased. Fig. 1.4 gives the classic example, zinc corroding in acid, where \(H^+ \) is the oxidator:

\[\text{current from one metal to another metal, carried by electrons:} \]

\[\text{in the medium: a compensating current carried by ions:} \]

platinum, a metal that reacts quickly with \(H^+ \) to give hydrogen, is connected to zinc, a metal that reacts slowly with \(H^+ \). \(H^+ \) takes up electrons on the site of the platinum, while zinc ions go into solution, and electrons move from the anode to the cathode. The zinc corrodes faster after the connection to the platinum. The zinc/platinum combination is called a 'galvanic cell' or 'galvanic

\[1 \text{ An anode is defined as a place where a current enters a medium, a cathode as a place where a current leaves the medium. Negative electrons entering a medium are equivalent to a current of positive charge leaving it, and constitute for this reason a cathodic current.} \]
couple'. Even traces of platinum can cause a large increase in the corrosion rate of zinc; such traces of platinum in zinc are called 'local elements'. It is emphasized that connecting the zinc to another noble metal, for instance gold, does not necessarily give such a large corrosion rate increase. The relevant property for the second metal is not its nobility, but the rate with which it can reduce the oxidator.

Passivation

Many base metals such as iron, nickel and chromium are protected from corrosion by 'passivation', a state in which the metal is covered by an oxide layer or by a precipitated salt. For the maintenance of passivation the potential of the metal must be higher than what is referred to as the 'passivation potential' (Fig. 1.5). A potential that has become lower may end passivation; the metal then starts to corrode in a normal way and is said to be in an 'active' state. Local disappearance of covering passive layers can cause local dissolving of the metal, a type of corrosion called 'pit corrosion'. A crevice can have a similar effect, possibly because of the absence of covering layer formation in the crevice; the associated type of corrosion is called 'crevice corrosion'. Wear can also cause enhanced corrosion, possibly by passive layer removal. In that case, one speaks of 'wear corrosion' or 'erosion corrosion'. For a more extensive discussion of these and other types of corrosion the reader is referred to the literature [Evans60, Kaes89, Fonna83].

Some metals lose the ability to passivate in the absence of oxygen [Uhlig79], an effect distinct from oxygen's oxidizing ability and its role as causal agent of the cathodic current. Small amounts suffice for oxygen to act as an inhibitor of the anodic current. Some researchers have even attributed all passivation to anodic current inhibition by oxygen. The role of oxygen during passivation is still controversial ([Bock70, p.1324], see also the references cited in [Covin86]).

![FIG. 1.5. Influence of the metal potential upon the anodic current of a passivating metal. Such a curve is commonly called a 'polarization curve'](image)

1-3 Controversies in the electrochemical literature

The preceding section showed that an oxidator that withdraws electrons from a metal is the cause of corrosion. Other, erroneous, causes have however commonly been proposed. Fallacies abounded, found their way into scientific journals, and were not criticized, a state of affairs that may be unique in science. Kaesche (1970) (my translation):

Among the numerous people active in the field of corrosion, who often have totally different educational backgrounds, there is no consensus on the proper formulation of the basic laws in this area of the corrosion of metals. Such a situation is unusual for a discipline that can in reality be treated entirely in a logical and systematic way.

The main fallacy was the idea that the presence of an anode and cathode causes corrosion. Because of this fallacy researchers asked the wrong questions; instead of wondering 'What is the oxidator?', or, 'Do medium components cause metal ion complexation or precipitation' or, 'Can this alloy reduce oxygen quickly?', they looked for the anode and cathode when investigating a case of corrosion; they appeared to assume to have 'solved the case' when they could point out an anode and cathode.

Confusion of uniform corrosion with galvanic corrosion is the origin of the idea that an anode and cathode are necessary for corrosion. From the possibility of increased corrosion by a combination of metals, it was conversely, and erroneously, concluded that for corrosion always a combination of different metals is necessary. Where such different metals were invisible, it was postulated that invisibly small amounts of a second component or metal were present, forming small galvanic couples called 'local elements', or the idea that different metals cause corrosion was generalized to the idea that 'different conditions on the surface of the metal' cause corrosion. An example from the dental literature [Wagner77] (my translation):

Corrosion can only occur when the two electrodes that are immersed in an electrolyte are electrically connected, i.e. when a closed circuit is present and an electric current can flow. The two electrodes can consist of two different metals that make contact; for instance, such a 'galvanic element' can be formed, in the mouth when an amalgam filling makes contact with a gold alloy.

If the active electrode areas are very small, i.e. a fraction of one square millimeter, then the corrosion cell is called a local element. Such local elements can be formed on two identical alloys. The components of a heterogeneous alloy, e.g. an amalgam, as well as the areas of different gold content in an inhomogeneously solidified gold alloy, can form such a local element. Entrapped foreign metals (stamped metal remained), oxides and sulphides can form local elements; they are also possible in homogeneous alloys with different stressed areas.

Local concentration differences in the electrolyte, such as occurs during different saturation of a metal surface, which cause oxygen-rich and oxygen-poor areas to arise, frequently give rise to the formation of a corrosion cell.

Another example of the fallacious 'different conditions at the metal surface cause corrosion' - idea [Dicke73]:

In metallic corrosion problems, the electrical potentials that cause the corrosion occur because of differences in dissolved oxygen concentration, differences in the concentrations of other materials, contact of different materials, or localized differences in the surface properties of the metal.
Kaesche discussed the problem of the confusion of uniform corrosion with galvanic corrosion lucidly (1970) (my translation):

Furthermore, the aforementioned zinc-platinum short-circuit cells can also be formed by platinum inclusions in otherwise pure zinc. If the electrodes of such short-circuit cells have very small surface areas then they are defined as local cells. . . . The essential finding that follows from observations of galvanic corrosion is foremost that the partial reactions of metal dissolving and hydrogen formation are, or can be, kinetically independent. Because of the electrical conductivity of metal and electrolyte they can occur within certain limits at arbitrary distances separated on the metal surface. The possible division of the metal surface in spatially separated anode and cathode, between which short-circuit currents can flow, indeed elucidates the essential characteristic of corrosion very well. But the occurrence of such galvanic short-circuit cells is only a possible effect of the independency of partial reactions, and not the essential characteristic. The local element hypothesis is consequently wrong when it supposes that corrosion can only occur under the influence of such short-circuit cells, and is also wrong when, if in the case of uniform corrosion nothing of this is seen, the hypothesis explains this with invisibly small 'local elements'.

A check of the corrosion literature now shows that the local element hypothesis is nevertheless being almost universally used for describing uniform corrosion, even in major monographs. Opposed to this, another group of authors, to which this author belongs, asserts that this way is misleading, basing their view on the well-known investigations of C. Wagner and W. Traud.

For a further discussion of confusion of uniform corrosion with galvanic corrosion the reader is referred to [Kaesche79,p.45] and [Vette61,p.598].

The quotes from [Wagner67] and [Dicke73] asserting that differential aeration of a reader is referred to [Kaesc79,p.45] and [Vette61,p.598].

As plaque, where a cathode is formed2. Although an anode and cathode are present, there is no enhanced corrosion (Fig.1.6c), metal can cause corrosion need clarification. In pits, crevices, or below biofilms such oxygen is absent, with oxygen reduction occurring at the aerated part of the metal, anodic current can then become very large.

concentration equal to half the normal corrosion is however incorrect, given the following counterexample (Fig.1.6). Let anodic current is demonstrating that differential expression 'differential aeration' is used to explain corrosion, the expression 'local oxygen absence' does so (Fig.1.7). Where in the literature the termination, because of local oxygen absence, of anodic current inhibition caused by oxygen' is more appropriate (but less elegant; the expression 'local anodic current enhancement by local oxygen absence' avoids the double negative, but does not elucidate the mechanism).

2 Absence of anodic current inhibition should be distinguished from another effect on a passive metal of a decrease in oxidizer concentration: absence of an oxidizer can end passivation by causing the corrosion potential to fall below the passivation potential.
1-4 Controversies in the dental literature

The preceding section stated that the proper formulation of the basic principles of the corrosion process in electrochemistry has been lacking for a long time. Not surprisingly, there is much uncertainty in dentistry about corrosion, in particular concerning in vivo corrosion rates and effects attributed to corrosion of all types of dental alloys. For instance, whether the effects attributed to dental restorations and listed in section 1-1, effects which have been known for a long time [Anonymous, Palmers, Grant, Morris, Davies], are indeed caused by these restorations is unclear. The literature on the subject is extensive [Solomon, Selke, Schri, Marx, Gasse, Brune], often vague, obscure or even plainly wrong: incorrect explanation of in vivo corrosion by the formation of a 'galvanic cell', and ignoring of uniform corrosion, frequent, even in text books on dental materials [Wills, Philip]. Other mistakes made are attribution of the cathodic current [Philip, p.292] to precipitation of a noble ion (noble ion presence in saliva should be considered as an effect of corrosion, not its cause) or to H⁺ - reduction. The latter reaction occurs only at potentials lower than ~ 60 mV, i.e. ~ 300 to ~ 420 mV for the salivary pH range of 5 to 7; most in vivo restoration potentials are higher (Chapter 3).

Another controversy is whether dental metallic restorations constitute a 'battery', a controversy already mentioned in 1888 [Anonymous]. One can compare two metallic dental restorations with the two poles of a battery, the human body with the inside of the battery, and the salivary fluid with the medium used in an electrolysis experiment. This commonly used model of two different restorations constituting a battery is attractive, but wrong. As the electrical resistance of the mucosa is only about 180 Ω [Ushiyama], the mucosa constitutes a conducting path between the saliva and the inside of the human body, a path that is lacking in a battery - electrolysis cell combination. Modification of the model by connecting the medium inside the battery with the medium of the electrolysis cell by means of a salt bridge removes its simplicity, while other problems remain. Hence a battery such as used in the household is not a good model for two different dental metallic restorations. The controversy may partly be a semantic one, though. If one defines a battery as a combination of electrodes that can furnish a permanent current, then neither a single dental metallic restoration nor two different dental metallic restorations constitute a battery. However, if one defines a battery as a combination of two metals that can furnish an electrical current of even a short duration, then the word 'battery' would be appropriate for dental restorations. A battery is however commonly associated with the ability to furnish a permanent current.

The literature on in vitro testing of metallic dental restorations is often of doubtful validity. Application of the polarization resistance method to passive metals is questionable, and the significance of the frequently published polarization curves is unclear. Where hard facts are rare, the tone of the literature may, while comparing alloys of different types, become remarkably strident, partisan and emotional. Klotzler (1986) gave the following table with some of the most extreme statements on dangers of new dental metals, after remarking (my translation):

Reference to possible dangers should not be confused with sowing panic. A business-like analysis is urgently needed, because the medical - biological aspects of the corrosion of dental alloys frequently are depicted in an undisciplined and excessively emotional way (see Table).

Similar strident negative remarks have of course also been made about dental amalgam. The presumed adverse effects of amalgam or metallic dental restorations intermittently attract the attention of the popular press [Kohler, Gettle]. Such publicity can be followed by a wave of patient complaints [Jones].

The very critical and sensational articles written in popular magazines at the beginning of this decade, have surely contributed to the complex symptomatology of the affected patients by increasing their awareness of oral symptoms.

Besides having to deal with the problem of the late emergence of a firm and universally accepted theoretical foundation of corrosion, the dental corrosion researcher is hampered by the complexity of the oral cavity. Metallic restorations are subject to wear, suggesting the possibility of wear corrosion; crevices and cavities may be present inside the restoration and at the restoration - tooth interface, suggesting the possible occurrence of crevice corrosion. Uniform corrosion at the restoration - saliva interface may be complex, as saliva contains many substances, which are listed in Table 1.2. In general the concentrations of salivary components vary strongly per individual as well as with time [Davies]. The many substances present in saliva can cause adsorption reactions and metal ion complexation and precipitation, processes which can strongly influence corrosion.

Table 1.2: The composition of saliva. Compiled from data given by [Silva, Shann, Jenkins, Palmers, Niel, Ben-A].

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration [mM] (typical values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>HCO₃⁻</td>
</tr>
<tr>
<td>Phosphate</td>
<td>PO₄³⁻</td>
</tr>
<tr>
<td>Urea</td>
<td>CO(NH₂)₂</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
</tr>
<tr>
<td>Thiocyanate</td>
<td>SCN⁻</td>
</tr>
<tr>
<td>Cyanide</td>
<td>CN⁻</td>
</tr>
<tr>
<td>Hydrosulfide</td>
<td>HS⁻</td>
</tr>
<tr>
<td>Sodium</td>
<td>Na⁺</td>
</tr>
<tr>
<td>Potassium</td>
<td>K⁺</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca²⁺</td>
</tr>
<tr>
<td>Proteins</td>
<td>2.7 g/L</td>
</tr>
<tr>
<td>pH range</td>
<td>4-7</td>
</tr>
</tbody>
</table>

Similar strident negative remarks have of course also been made about dental amalgam. The presumed adverse effects of amalgam or metallic dental restorations intermittently attract the attention of the popular press [Kohler, Gettle]. Such publicity can be followed by a wave of patient complaints [Jones]:

The very critical and sensational articles written in popular magazines at the beginning of this decade, have surely contributed to the complex symptomatology of the affected patients by increasing their awareness of oral symptoms.

Besides having to deal with the problem of the late emergence of a firm and universally accepted theoretical foundation of corrosion, the dental corrosion researcher is hampered by the complexity of the oral cavity. Metallic restorations are subject to wear, suggesting the possibility of wear corrosion; crevices and cavities may be present inside the restoration and at the restoration - tooth interface, suggesting the possible occurrence of crevice corrosion. Uniform corrosion at the restoration - saliva interface may be complex, as saliva contains many substances, which are listed in Table 1.2. In general the concentrations of salivary components vary strongly per individual as well as with time [Davies]. The many substances present in saliva can cause adsorption reactions and metal ion complexation and precipitation, processes which can strongly influence corrosion.

Table 1.2: The composition of saliva. Compiled from data given by [Silva, Shann, Jenkins, Palmers, Niel, Ben-A].

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration [mM] (typical values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>HCO₃⁻</td>
</tr>
<tr>
<td>Phosphate</td>
<td>PO₄³⁻</td>
</tr>
<tr>
<td>Urea</td>
<td>CO(NH₂)₂</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
</tr>
<tr>
<td>Thiocyanate</td>
<td>SCN⁻</td>
</tr>
<tr>
<td>Cyanide</td>
<td>CN⁻</td>
</tr>
<tr>
<td>Hydrosulfide</td>
<td>HS⁻</td>
</tr>
<tr>
<td>Sodium</td>
<td>Na⁺</td>
</tr>
<tr>
<td>Potassium</td>
<td>K⁺</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca²⁺</td>
</tr>
<tr>
<td>Proteins</td>
<td>2.7 g/L</td>
</tr>
<tr>
<td>pH range</td>
<td>4-7</td>
</tr>
</tbody>
</table>
1-5 About this thesis

The present study was started as an investigation of the corrosion of dental NiCr alloys, which were introduced in dentistry around 1967 [O'Bri77]. Their introduction was controversial because of the known ability of NiCr alloys to generate toxic and allergic reactions outside the oral cavity. Such reactions can be related to released corrosion products. In a pilot study the corrosion rates of dental NiCr alloys were however found to be very low [Newma81]. Although these alloys do not give many clinical problems, one would like to have at one's disposal a testing method to select those alloys which corrode the least. Weber [1982] (my translation):

up till now there doesn't exist worldwide a uniform corrosion test method and/or biological test method, with which one could eliminate inadequate alloys.

From the controversies mentioned in the preceding sections it was concluded that indisputable results are needed; there is little sense in acquiring more questionable data. For this reason it was decided to develop methods to accurately measure relevant parameters such as the in vitro corrosion rate of dental NiCr alloys, whose study was my primary task, and the in vivo potential of restorations.

Postlethwaite's (1981) 'potentiostatic deaeration method' was employed for measuring corrosion rates; its results were checked by chemical analysis of the medium of a test cell. In this manner verified data are obtained. The potentiostatic deaeration method is simple. Passivation is generally considered to be firstly a reaction between a metal and water (inhibition by oxygen is 'secondary'). Hence the change in the potentiostatic current caused by deaeration, which can be measured experimentally, equals the cathodic oxygen reduction current. At the corrosion potential this cathodic oxygen reduction current equals the corrosion current (Fig.1.3). This measurement method for the corrosion current has been described only once previously, where it was applied to iron corroding in pilot-plant pipelines carrying water and aqueous slurries [Posd81].

Chapter 2 gives the text of three articles on the method. The first article describes the experimental set-up used to apply the method to Micro-Bond N/P2. Additional mass loss determinations were done in a small test cell, of which the medium was analyzed by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry). A good accordance was found between the results of the two methods. One advantage of these methods is that they allow the determination of the time dependency of i_{cor}. It was discovered that i_{cor} decreases almost inversely with time. The existence of an inhibiting effect of oxygen upon the anodic current was demonstrated.

The second article describes the application of the method to the measurement of the corrosion rates of 5 additional dental NiCrMo alloys. One week after immersion i_{cor} varied between 0.2 and 40 nA/cm²; the mass loss varied between 0.4 and 4 µg Ni/cm². A linearity was found between E_{cor} and log(i_{cor}) as they evolved with time. This relation was the same for all alloys, and was explained by assuming that the cathodic polarization curve was independent of the immersion time and of the alloy, and that it was intersected by a slowly decreasing (i.e., shifting to the left on an Evans plot) anodic curve.

The third article describes the application of medium chemical analysis to the measurement of mass loss in artificial saliva.

In section 2-7 an equation similar to the Stern-Geary equation (which is used in the polarization resistance method) is derived from the information obtained on the anodic and cathodic current of NiCrMo alloys. Because of this similarity the Stern-Geary equation may yield good results for NiCrMo alloys, but such good results are not necessarily to be expected for other passive alloys.

In order to allow comparison of the in vivo and in vitro potentials of dental alloys the method for measuring the in vivo potential of a restoration was improved (Chapter 3). Disturbance of the restoration surface was minimized: polishing and abrasion were avoided, and the probe tip that made contact to the restoration was insulated by soft wax (section 3-2). The potentials of all the restorations of 28 students were measured (section 3-3).

Chapter 4 gives the conclusions of the author and Chapter 5 gives a summary of this thesis in English and in Dutch.
CHAPTER 2

In vitro corrosion rate measurements

2-1 Introduction

The following pages contain three articles on determinations of corrosion rates of dental NiCrMo alloys. The first article describes in detail the two methods used, the 'potentiostatic deaeration method', and chemical analysis of the medium by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectroscopy). The next article applies the two methods to five dental NiCrMo alloys. In the first two articles a simple medium is used: in order to minimize the chance that electrochemical reactions differing from corrosion reactions would occur, the medium contained only a phosphate buffer and KCl. In the third article the medium has changed. Chemical analysis of the medium is applied to the same alloys, after their immersion in a modified Fusayama artificial saliva [Meyer77] to which thiocyanate has been added, but in which sulphide is absent. Next, the results are given of other mass loss determinations. These results have not been submitted for publication. They mainly concern determinations of the mass loss of Vitallium (a CoCr alloy), and some noble dental alloys, in the modified Fusayama solution mentioned above. Subsequently, a commentary to the articles and results is given. At the end of the chapter a formula for passive alloys similar to the Stern-Geary equation is derived. The limits of applicability of this formula are discussed.

2-2 First article

Measurement of the Small Corrosion Current of a NiCr Alloy by the Potentiostatic Deaeration Method

A.W.J. MULLER and C.L. DAVIDSON

Department of Clinical Materials Science, Faculty of Dentistry, ACTA, University of Amsterdam, Louwesweg 1, 1066 EA Amsterdam, The Netherlands

Abstract

Postlethwaite's corrosion current measurement method consists of stabilization of the potential of a corroding specimen by a potentiostat, followed by deaeration; the magnitude of the subsequent potentiostat current rise is equated with the corrosion current [Post81]. In the present study the method was applied to a dental alloy with a low corrosion rate, Micro-Bond N/P. The medium was a 20 mM KCl / 5 mM phosphate buffer solution (pH 7) at 37°C. The measured corrosion current decreased almost inversely with the immersion time, from about 40 nA cm⁻² after five hours to about 0.5 nA cm⁻² after one week. The mass loss of the alloy due to corrosion was determined independently by chemical analysis of the medium (5 ml) of a small corrosion cell. The corrosion current calculated from the mass loss is about 25 nA cm⁻² after five hours after immersion, decreasing to about 2 nA cm⁻² after one week.
Introduction
Measurements of low corrosion rates (less than 0.1 mil yr\(^{-1}\), equivalent to about 200 nA cm\(^{-2}\)) are considered to be both difficult and tedious to perform with conventional weight-loss or chemical analytical techniques [Fonta83,p.345]. Low rates are measured with electrochemical techniques based on the Stern-Geary equation [Stern57]. Limitations of these electrochemical techniques have been discussed [Gonza85]. One of these limitations, the difficulty in determining Tafel slopes (the slopes must be known to apply the techniques), was our motivation for looking for another electrochemical method to measure the corrosion rates of the alloys we were investigating. The method chosen, the 'potentiostatic deaeration method' [Postl81], has to our knowledge not previously been applied to the measurement of small corrosion currents.

Small corrosion currents are present during corrosion of Micro-Bond N/P\(^2\) in a 5 mM phosphate buffer (pH 7) containing 20 mM KCl at 37°C. Micro-Bond N/P\(^2\) is a passivating NiCr alloy used in prosthetic dentistry (composition in weight %: 66.15 Ni, 13.5 Cr, 7.5 Ga, 7 Mo, 5 Fe, 0.75 Si). The corrosion rates of nickel-chromium dental alloys are of interest because of possible allergic and toxic reactions in the oral cavity due to their corrosion products [Counc85].

Materials and Methods

FIG. 2.1. The test cell: (a) plexiglass lid, (b) cylindrical glass vessel, (c) glass stirrer, (d) connection to an electrical motor, (e) specimen holder, (f) reference electrode holder, (g) counter electrode, (h) gas inlet, (i) gas outlet, (j) groove with seal, (k) heat bath at 37°C.

Cell design. - The test cell for the electrochemical experiments is described in Fig. 2.1. The specimen holder consisted of a G0097 Electrode Holder connected to a K105 Specimen Holder (PAR, New Jersey, USA). The O-rings of the K105 Specimen Holder were greased lightly with silicon grease (Midland Siliconics Ltd., Barry, UK). The area of the specimen in contact with the medium was 1 cm\(^2\). Glued to the lid of the cell was a G0095 Reference Electrode Bridge Tube, containing a K77 Saturated Calomel Reference Electrode (both PAR). A Luggin capillary separated the tube from the medium. The counter electrodes were two G0091 Graphite Rods (PAR). An IKA RE 16 mixing motor (Janke & Kunkel, Staufen, Germany, rotation rate 500 rpm) was connected to the glass stirrer. Silicone rubber stoppers were used throughout. The seal in the lid groove was made of President (Coltène, Switzerland), a vinyl/polysiloxane impression material used in dentistry. Air was pumped by a diaphragm pump (Schwarzer Pratetision, Essen, Germany). A gas bottle or the air pump was manually connected to the flow rate meter (SHORATE 150, Model 1355 Brooks meter: Emerson, Veenendaal) which led to the gas inlet of the corrosion cell. The gas flow rate was kept at 500 liter hr\(^{-1}\); at this rate the current returned to the baseline within 20 min after the start of reaeration. The purified nitrogen (5.0 quality: 99.9999% pure) and the oxygen-nitrogen mixtures (composition: 40, 10, 5, 1 and 0.10 % oxygen) were supplied by Hoekloos (Amsterdam) in gas bottles.
Instrumentation. - Between potentiostatic experiments a Hewlett Packard 34703A voltmeter (input impedance > 1010 Ω) measured the corrosion potential (E_{corr}) with respect to the saturated calomel reference electrode. The measured SCE potentials were converted to NHE potentials by adding 241 mV.

The potentiostat was built at the Analytical Chemistry Department of the Free University of Amsterdam as an electrochemical HPLC (High Performance Liquid Chromatography) detector. The potentiostat first amplified the current and then damped it by means of a 1 pole low-pass filter (cutoff frequency 1 Hz). Noise, 'hum', and an offset due to dc leakage currents contribute significantly to the potentiostat signal of a small current (hum: noise at harmonics of the power supply frequency). The offset did not interfere with the current rise measurement. The amplified hum signal, however, can approach the internal supply voltage, giving distortion; for this reason the signal was visually checked by means of an oscilloscope. Distortion of this kind limited the smallest usable input current range to -10...+10 nA.

Noise and hum in the potentiostat output signal were suppressed by digital averaging, using a Lab Master analog-digital converter (Scientific Solutions Inc., Ohio, USA), an Olivetti M24 microcomputer, and the READPOTS computer program (written by the authors) that calculated the average of 600 signal values sampled in one minute. This 1 min average was stored on a floppy disk. The resolution of the system at the current range of 10 nA was 0.005 nA, i.e. the least significant bit in the 12 bit AD converter signal. The READPOTS program also calibrated the potentiostat by calculating the conversion factors for the various input current ranges after measuring the internal potentiostat calibration currents.

Materials. - Cylindrical specimens (thickness 3 mm, diameter 15.5 mm) of MicroBond N/P² (Austenal Dental, Chicago, USA) were cast by Tolmeijer's Dental Laboratory (Amhlem, The Netherlands). Before immersion a specimen was wet ground to a 600 grit finish, deaned ultrasonically for 2 min in distilled water, degreased for 2 min first in acetone and then in chloroform, and dried in air.

The medium was a 20 mM KCl / 5 mM phosphate buffer (pH 7) solution. The buffer was made by mixing appropriate amounts of NaH₂PO₄ and K₂HPO₄; the pH, measured at room temperature, was 7.0 ± 0.1. The chemicals were supplied by Merck (pro analysis quality). Between potentiostatic experiments the medium was in free contact with the air but to minimize evaporation no air was bubbled through. When water loss was perceived, distilled water was added.

Electrochemical techniques. - Fig. 2.2 illustrates the deaeration method [Posd81]. At the corrosion potential (E_{corr}) the anodic corrosion current (I_{corr}) equals the cathodic oxygen reduction current. The potential of the corroding specimen during aeration (E_{aer}) is stabilized by a potentiostat. The solution is subsequently purged of oxygen, which causes the cathodic current to disappear. This results in a rise in the potentiostat current equal in magnitude to I_{corr}. The solution is aerated after 1 h. A baseline for determining the magnitude of the deaeration current rise is obtained in this study by interpolating the potentiostat currents measured before and after deaeration. During a potentiostatic experiment the potentiostat was connected to the electrodes and set to E_{corr}. Air bubbling was started. After a delay of 10 min current recording was started (the delay gave a more linear baseline). The current was recorded for 1 h. Then the solution was deaerated for 1 h by purging with pure nitrogen and subsequently aerated again for 1 h. Hereafter current recording and aeration ceased, and the electrodes were reconnected to the voltmeter.

The method for estimating the current rise and the associated error is illustrated in Fig. 2.3.
The measured corrosion current was studied as a function of immersion time (t). The first of a series of potentiostatic deaeration experiments was performed a few hours after immersion; the subsequent experiments took place one, two, four, and six days later.

Some other types of potentiostatic experiments were also performed:

1. The influence of variable partial pressure of oxygen (pO₂) on the potentiostatic current was investigated. It follows from Eq. [3.3.14] in [Bard80] that the cathodic current i_c due to a redox couple, at a potential V far below its equilibrium potential \(E_{eq} \) can be described by:

\[
 i_c = i_{e0} \cdot \exp\left(-\frac{V - E_{eq}}{\beta_c}\right)
\]

(2-1),

where \(\beta_c \) equals the Tafel constant of the current, \(e \) the concentration of the oxidator, and \(i_{e0} \) a constant independent of \(e \) and \(V \). According to Henry’s Law the concentration of oxygen in solution is proportional to pO₂. Hence one can write

\[
 i_c = i_{e0} \cdot \frac{k_H}{\beta_c} \cdot pO_2 \cdot 10
\]

(2-2),

in which \(k_H \) is Henry’s constant for oxygen in water. \(E_{eq} \) depends on pO₂; an expression for \(E_{eq} \) follows from the reaction equation:

\[
 O_2 + 4H^+ + 4e^- \rightarrow 2H_2O
\]

Hence:

\[
 E_{eq} = E_0 + \frac{RT}{4F} \ln[pO_2][H^+]^{1/4}
\]

\[
 = E_0 + \frac{2303RTpH}{4F} + \frac{2303RT}{4F} \log pO_2
\]

(2-3)

\[
 = E_0 + 0.015 \log pO_2
\]

(2-4)

where \(E_0 \) equals the sum of the first two terms in Eq. (2-3).

Substituting Eq. (2-4) in Eq. (2-2) gives:

\[
 i_c = i_{e0} \cdot \frac{k_H}{\beta_c} \cdot pO_2 \cdot 10
\]

\[
 = i_{e0} \cdot \frac{k_H}{\beta_c} \cdot pO_2 \cdot 10
\]

(2-5)

A typical value of \(\beta_c \) is 0.12, but lower values have also been found [Horne68]. This gives for the expected exponent of pO₂ in Eq. (2-5) a value of 1.13 or higher.

Because of this almost linear dependency between the cathodic current and pO₂ the current was expected to disappear quickly after purging with pure N₂. As a check on the dependency nitrogen-oxygen mixtures with varying pO₂ were bubbled through the medium: 1, 5, 10% oxygen, air (20.95% oxygen), and 40% oxygen (Fig. 2.6).

In Fig. 2.6 the curve of the 1 min averages was smoothed by three-point averaging twenty times. Three-point averaging consisted of replacing each \(n \)th min average by the average, with weight factors of \(1/4 \), \(1/2 \) and \(1/4 \), of the \(n-1 \)th, \(n \)th and \(n+1 \)th min averages. The smoothed curve is indicated by the broken line.

2. A potential step of 70 mV was applied in order to detect whether the ‘secondary rise’ (see the Results section) was anodic or cathodic by observing whether the step caused the secondary rise to increase or to decrease in magnitude (Fig. 2.4). The recording of the potentiostat current was started 1 h after the application of the voltage step.

3. The secondary rise was further investigated by adding a small amount of oxygen to the purging gas. First, nitrogen containing 0.10% oxygen was bubbled through the medium for 2 h. Next pure nitrogen was bubbled through for 1.5 h, after which nitrogen containing 0.10% oxygen was bubbled through again, for 1 h.

Mass loss determination. The test cell used during the mass loss determinations by medium chemical analysis is described in Fig. 2.5. The inner diameter of the silicon rubber ring was 13 mm, the volume of the medium 5 ml. The rubber ring was lightly greased with silicon grease. After placement of the specimen the cell was turned upside down, bringing the specimen into contact with the medium. The cell was kept at 37°C. Immersion times were 1, 4, and 8 h, and 1, 3 and 7 days. The concentrations C of Ni, Cr, Mo, Ga and Fe in the medium were determined by ICP-AES.
(Inductively Coupled Plasma - Atomic Emission Spectroscopy) at the Analytical Chemistry Department of the University of Amsterdam. Detection limits were 5 ppb for Ni, Cr and Fe, 40 ppb for Mo, and 50 ppb for Ga. From the measured concentrations a corrosion current was calculated by the method described in the Appendix.

The CURVFIT program (written by the authors) fitted \(\log i_{\text{corr}} \) vs \(\log t \), and \(\log c \) vs \(\log t \), by the method of weighted least squares [DeLev86] to the relations:

\[
\log i_{\text{corr}}(t) = a \log t + b, \\
\log c(t) = a \log t + b,
\]

which are equivalent to:

\[
i_{\text{corr}}(t) = i_0 t^a \\
c(t) = c_0 t^a
\]

where \(i_0 \) and \(c_0 \) equal 10 \(\text{b} \). The weight factors were obtained by taking the inverse square of the errors \(\varepsilon \) (Fig.2.3).

Results
A change in stirring rate or gas flow rate intermittently influenced the measured \(E_{\text{corr}} \) during corrosion potential measurements and the measured current during potentiostatic experiments. On one occasion, for instance, turning the mixer motor off caused the measured \(E_{\text{corr}} \) to drop about 20 mV in 10 min; turning the motor on again caused the \(E_{\text{corr}} \) to increase 10 mV in 10 min. Hence, care was taken to keep the stirring rate and gas flow rate constant, especially while changing gases.

During potentiostatic experiments the averaged measured currents of consecutive minutes often differed less than 0,01 nA.

The effect upon the potentiostatic current of bubbling nitrogen with varying \(p_0^2 \) content through the medium is illustrated in Fig. 2.6 (the peak inside the 1 % \(p_0^2 \) valley is attributed to a temporary decrease of the gas flow rate).

Ten minutes were sufficient to stabilize the potentiostatic current after a change of \(p_0^2 \). The difference between the potentiostatic current during purging with \(N_2 \) and with an \(O_2 / N_2 \) mixture is associated with the cathodic current \(i_c \). This current is plotted vs \(p_0^2 \) on a log-log plot in Fig. 2.7: a straight line is obtained, and the CURVFIT program yielded a value of 0,832 for the exponent of \(p_0^2 \).

The CURVFIT program (written by the authors) fitted \(\log i_{\text{corr}} \) vs \(\log t \), and \(\log c \) vs \(\log t \), by the method of weighted least squares [DeLev86] to the relations:
The curve obtained during a potentiostatic deaeration experiment deviated from the one in Fig. 2.2. The curve consisted of an 'initial rise' that ended within 20 min, and a 'secondary rise' that started after about 60 min (Fig. 2.8).

After a voltage step of 70 mV the initial rise decreased from 2.0 to 1.2 nA cm\(^{-2}\), while the secondary rise increased from 0.6 to 1.2 nA cm\(^{-2}\) (Fig. 2.9); hence the secondary rise is anodic.

Further investigation of the secondary rise by varying pO\(_2\) in the purging gas between 0.10 % and zero showed that 0.10 % oxygen sufficed to inhibit the secondary rise (Fig. 2.10).
FIG. 2.14. Results of run 3 of potentiostatic experiments.

Figs 2.12-14 give the results of the potentiostatic experiments of three runs; icor values were obtained from these figures by the method described in Fig. 2.3. For larger immersion times (t > 100 h) the main source of error in icor was given by the e_2 term (Fig. 2.3): the potentiostat current during reaeration tended to remain higher than its pre-deaeration value.

After plotting log icor vs log t straight lines could be drawn through the points (Fig. 2.15). The corrosion current as a function of time can consequently be written as Eq. (2-6a). The CURVFIT program yielded for i_0 values of resp. 209, 158 and 290 nA cm$^{-2}$ hour$^{-1}$, and for a values of resp. -1.12, -1.02, and -1.15, for the three runs.

FIG. 2.15. Corrosion current of Micro-Bond Ni/Fe versus immersion time. Error bars are indicated only when the error is larger than 10%.

FIG. 2.16. Linear relation on a log-log plot between determined Ni$^{2+}$ concentrations (in ppb) in the medium of the corrosion cell and the immersion time. The line has been obtained by regression analysis.

Only nickel and iron concentrations were measurable during chemical analysis of the medium of the test cell for mass loss determinations. Molybdenum could be detected in two cells, at its detection limit. No chromium or gallium was detected. The iron concentration was about 20 ppb and independent of the immersion time. The nickel concentration increased with the immersion time, and was linear on a log c vs log t plot (Fig. 2.16). The nickel concentration as a function of immersion time can consequently be written as:

$$c(t) = c_0 \cdot h^a$$ \hspace{1cm} (2-7).

The CURVFIT program yielded values of 77.6 for c_0 and 0.261 for a (h in hours). From these values the following corrosion current was obtained (see the Appendix):

$$i_{\text{cor}}(t) = 69.7 \cdot h^{-0.739} \text{ [nA cm}^{-2}\text{]}. $$

This current is depicted in Fig. 2.15 and can be seen to be in good agreement with the currents obtained by the potentiostatic experiments, especially at an immersion time of 24 h; the current decreases with a somewhat smaller slope than the currents obtained from the potentiostatic experiments.
Discussion

The results - An influence of stirring rate upon the measured potentials of a reference electrode with a porous plug as liquid junction has been described previously [Illin81, Brezi83]. The influence of stirring rate and gas flow rate found in this study is attributed to the same effect occurring in the Luggin capillary. The influence could be eliminated by keeping the stirring rate and gas flow rate constant and for this reason it was not further investigated.

Figs 2.6 and 2.7 show that i_0 is indeed almost linearly dependent on pO_2. Hence extrapolation of i_0 to a pO_2 value zero results in the value zero and it follows that small amounts of oxygen probably do not cause a significant cathodic current. For this reason it was assumed that there was no need to purify the purging gas of traces of oxygen.

It is pointed out in the Materials and Methods section that the exponent of pO_2 was expected to be larger than 1,13. Instead a value of 0,832 was found. Hence equations (2-1) and (2-5) do not adequately describe the kinetics of oxygen reduction in our experiments.

The initial rise is attributed to the disappearance of the cathodic oxygen reduction current. The secondary rise can be explained by an anodic mechanism and by a cathodic mechanism (Fig.2.4). The anodic mechanism is slow depassivation: it is assumed that oxygen stabilizes passivation, as follows from the oxygen adsorption theory of passivation [Uhlig79]. The cathodic mechanism is a slowly decreasing cathodic current due to slow depletion (by desorption or reduction) of adsorbed oxygen. The presence of such a cathodic current (i_ads) would imply that the initial rise is lower than the corrosion current by an amount i_ads (Fig.2.17). However, the secondary rise is anodic (Fig.2.9), hence it cannot be explained by the reduction of slowly depleted adsorbed oxygen. Consequently the secondary rise supports the view that oxygen plays a role during passivation by inhibiting the anodic current. It is known that small amounts of oxygen can inhibit the corrosion of some passivating alloys [Covin86].

The late appearance of the secondary rise can be explained by: (i) slow desorption or slow reduction of adsorbed oxygen that is causing inhibition of the anodic current, or, (ii) the existence of a critical oxygen concentration for the inhibition of the anodic current. Only after prolonged deaeration would the oxygen concentration drop below this critical concentration.

Replotting vs log t this curve becomes a straight line having the same slope as the curves in Fig. 2.11 but lying 250 mV higher. This curve showed no initial decrease.

Linear log i vs log t curves resembling Fig. 2.15 have been obtained during potentiostatic experiments on passivating alloys such as 18Cr-8Ni stainless steels and during scratching experiments with these alloys [Burst83a,84]. In neutral and alkaline mediums the exponent of t in these experiments is about - 1 as well [Kirch87]. It is emphasized that the results pictured in Fig. 2.15 have been obtained under conditions differing from the experiments described in [Burst83a,84], as the potential at which our potentiostatic experiments were performed was different for each experiment.

The shapes of the E_cor vs t curves of the three runs in Fig. 2.15 are quite similar. However, there is a substantial difference between the corrosion currents of the distinct runs, the corrosion current of run 3 being twice the corrosion current of run 2. The cause of this variability is not known.

For a Ni80Cr10Mo alloy (which composition resembles the composition of Micro-Bond Ni/P2) a mass loss by corrosion of 4 µg cm^-2 has been given for an immersion time of one week at pH 7 [Geis-88]. From Eq. (2-7) a mass loss is calculated for the same period of 1,5 µg cm^-2, which has the same magnitude.

The current calculated from the potentiostatic deaeration method and the current calculated from the mass loss do not necessarily have to be the same. Chemical analysis of the medium yields the matter entering the medium, whereas the electrochemical method yields the matter entering the passive layer. If, for instance, the thickness of the passive layer increases, then the ‘electrochemical current’ would be larger than the ‘mass loss current’. In the present case the mass loss current seemed to be larger than the electrochemical current for immersion times longer than 24 hours, suggesting that the thickness of the passive layer decreases with longer immersion times.

![Diagram](image_url)
The potentiostatic deaeration method - The method allows the measurement of very small corrosion currents (about 1 nA cm\(^{-2}\)) in a simple and straightforward way, with minimal disturbance (Fig.2.15); below 1 nA cm\(^{-2}\) the measuring error increases rapidly with decreasing \(t_{cor}\) (Fig.2.15).

One advantage of the method is that the corrosion current is measured directly [Postl81]. A second advantage is the absence of potential scanning during measurement. Potential scanning may cause charging of ions inside the passive layer, and the associated current may mask the anodic and cathodic currents that occur during corrosion. The corroding specimen is minimally disturbed by the method. One can consequently perform a series of measurements on a single specimen, enabling a more accurate determination of the corrosion current as a function of time, as the specimen particularity can be separated from other causes of variability.

The measuring system yields 1 min averages: fluctuations containing frequencies larger than about 16 mHz (1/60 s) are averaged out. If these fluctuations have the nature of noise [Hladk82, Seral86] then they constitute a background normally resulting in inaccurate measurement of the potentiostat current; the high repeatability of the 1 min averaged currents can be attributed to this background-noise suppression. If the fluctuations are caused by cyclic electrochemical processes then their removal is a disadvantage. However, the READPOTS computer program can easily be adapted to perform signal analysis of the potentiostat signal, e.g. the determination of the power spectrum of higher frequency components. This would allow the detection of cyclic processes during measurement.

The main disadvantage of applying the method to the measurement of small corrosion currents is the uncertainty concerning interference by adsorbed oxygen (Fig.2.17). To give interference, adsorbed oxygen should not be desorbed during deaeration, and its reduction rate should be neither too low nor too high. If its reduction rate is very low, \(i_{ads}\) is very small; if its reduction rate is very high, \(i_{ads}\) is very high at first but then decays rapidly as the adsorbed oxygen is depleted. We have no evidence of the presence of oxygen irreversibly adsorbed to Micro-Bond N/P\(^2\), nor evidence concerning its reduction rate.

Some noble metals (Pd, Pt, Ru, Rh, Ir, Ru, but not Au) can chemisorb oxygen reduction equivalents of 100 to 500 \(\mu\)C cm\(^{-2}\) [Bockr69]; note that these metals are not present in Micro-Bond N/P\(^2\). If an amount of 100 \(\mu\)C cm\(^{-2}\) is reduced in one hour this results in an \(i_{ads}\) of about 27 nA cm\(^{-2}\), which has the same magnitude as the initial rise measured in this study. Large coverage with adsorbed oxygen is associated in the case of noble metals with large cathodic oxygen reduction currents at low potential [Bockr69]. From unpublished potentiodynamic experiments it follows that the cathodic oxygen reduction current of Micro-Bond N/P\(^2\) is small at about 0 mV. This makes a large coverage of the alloy by adsorbed oxygen less plausible. Nevertheless, the presence of a significant \(i_{ads}\) during deaeration can never be ruled out.
The corrosion rates of five dental NiCrMo alloys determined by chemical analysis of the medium using ICP-AES, and by the potentiostatic deaeration method

A.W.J. MULLER*, F.J.M.J. MAESSEN* and C.L. DAVIDSON*

* Department of Dental Materials Science, ACTA, University of Amsterdam, Louwesweg 1, 1066 EA Amsterdam, The Netherlands
* Department of Analytical Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Abstract
The corrosion rates of five dental NiCrMo alloys in a 20 mM KCl/5 mM phosphate buffer (pH 7) were determined by chemical analysis of the medium and by the potentiostatic deaeration method. The corrosion current of four alloys decreased almost inversely proportional with time, reaching values in the range 0.1 - 10 nA/cm² after one week. The corrosion current of the alloy with the lowest molybdenum content (4 %) showed an initial decrease as well, but started to rise after one day, reaching a value of 25 nA/cm² after one week. A linear relation was found between the E_{corr} and log (i_{corr}) of all the alloys for the entire immersion time.

Introduction
As nickel and chromium are known allergens and carcinogens [Counc85], the corrosion rates of dental NiCrMo alloys are of interest. The corrosion current, a measure of the corrosion rate, can be obtained by the polarization resistance method, which calculates the current from Tafel slopes and polarization resistance by means of the Stern-Geary equation [Stern57]. However, the results of this method do not always agree with the results of mass loss experiments [Callo76]. Several causes of this limited applicability have been given [Gonza85]. In the case of nickel submerged in sea water the method underestimated the corrosion rates compared to weight loss by an order of magnitude [Callo76]. In unpublished potentiodynamic investigations of NiCrMo alloys the polarization resistance method could not be applied: it was impossible to obtain Tafel slopes due to the nonlinearity of the anodic and cathodic branches of the potentiodynamic curve on a log i vs E plot. In addition, the shape of the potentiodynamic curve of dental NiCrMo alloys depends on the scanning rate [Geis-87a], which cannot be reconciled with the assumptions made by Stern and Geary in their derivation of the Stern-Geary equation.

These difficulties were the motivation for measuring the corrosion rates of NiCrMo alloys by two other methods instead, chemical analysis of the medium and the potentiostatic deaeration method. The latter method measures the corrosion current directly: a potentiostat maintains the specimen potential measured in the presence of oxygen, i.e. the corrosion potential; the corrosion current is equated with the potentiostat current after oxygen removal [Postl81, Mull89a]. Recently the two methods have been applied to the measurement of the corrosion rate of Micro-Bond N/P² in a 5 mM phosphate (pH 7) and 20 mM KCl solution (37°C) [Mulle89a]. Good agreement was found between the corrosion currents obtained by these methods. The present study extends these investigations to five other dental NiCrMo alloys. Because the experimental data are evaluated in this study in a slightly different way, the data from the previous study are re-evaluated as well. The composition of the alloys is given in Table 2-7. Hereafter the abbreviations CER, W77, NP2, FOR, RES and W88 are used for Ceramalloy II, Wiron 77, Micro-Bond N/P², Forte, Resistal P, and Wiron 88.
TABLE 2.1. TRADE MARK, MANUFACTURER, AND COMPOSITION (%) OF THE INVESTIGATED NiCrMo ALLOYS ARANGED ACCORDING TO INCREASED Mo-CONTENT. X INDICATES AN UNCERTAIN PERCENTAGE OF ACCOMPANYING ELEMENTS; THE CONTENT OF WHICH IS GENERALLY SMALLER THAN 1 %.

<table>
<thead>
<tr>
<th>Trade Mark</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Others</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramalloy II</td>
<td>73</td>
<td>18</td>
<td>4</td>
<td>Si 4, B 1</td>
<td>[Schoe84]</td>
</tr>
<tr>
<td>(Johnson & Johnson)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiront 77</td>
<td>70</td>
<td>20</td>
<td>6</td>
<td>Si, Cr, B X</td>
<td>[Forsc86]</td>
</tr>
<tr>
<td>(Bego)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro-Bond NP²</td>
<td>66.15</td>
<td>13.5</td>
<td>7</td>
<td>Ga 7.5, Fe 5, Si 0.75</td>
<td>[Forsc86]</td>
</tr>
<tr>
<td>(Howmedica)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force</td>
<td>63</td>
<td>21.5</td>
<td>8</td>
<td>Ta 3.8, Fe 1, Si, Cr, Mo, Al X</td>
<td>[Forsc86]</td>
</tr>
<tr>
<td>(Unicel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recital P</td>
<td>64</td>
<td>21</td>
<td>9</td>
<td>Nb 4</td>
<td>[Schoe84]</td>
</tr>
<tr>
<td>(Degussa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiront 88</td>
<td>64</td>
<td>24</td>
<td>10</td>
<td>Si, Cr X</td>
<td>[Forsc86]</td>
</tr>
<tr>
<td>(Bego)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2.2. ANALYSIS LINES USED AND CORRESPONDING CONCENTRATION AND MASS LOSS DETECTION LIMITS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Co II</td>
<td>238.892</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Cr II</td>
<td>267.716</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Fe II</td>
<td>238.304</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Ga I</td>
<td>294.364</td>
<td>40</td>
<td>151</td>
</tr>
<tr>
<td>Mo II</td>
<td>281.615</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>Nb II</td>
<td>316.340</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>Ni I</td>
<td>341.480</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>Si I</td>
<td>251.611</td>
<td>10</td>
<td>38</td>
</tr>
</tbody>
</table>

*) I: atomic II ionic

For a medium volume of 5 ml, medium weight 5,000 g, corroding surface area 1,327 cm².

TABLE 2.3. EXPERIMENTAL CONDITIONS SELECTED FOR THE SIMULTANEOUS DETERMINATION OF THE ANALYSIS OF INTEREST.

<table>
<thead>
<tr>
<th>Inner gas (Ar) flow rate</th>
<th>Outer gas (Ar) flow rate</th>
<th>Solution uptake rate</th>
<th>Power input to the plasma</th>
<th>Thickness of the observed plasma layer</th>
<th>Observation height in the plasma</th>
<th>Integration time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>15</td>
<td>1.5</td>
<td>1.1</td>
<td>1.05</td>
<td>17</td>
<td>10 s</td>
</tr>
</tbody>
</table>

*) above top of induction coil

Materials and Methods

Materials

Cylindrical specimens (thickness 3 mm, diameter 15.5 mm) of the alloys W77, W88, FOR, and CER were cast by Amsterdams Tandtechnisch Laboratorium BV (Amsterdam). The RES specimen was kindly provided by Degussa (The Hague). All alloys were investigated in the as-cast condition. Prior to the mass loss and potentiostatic deaeration experiments the specimen was wet ground to a 600 grit finish, ultrasonically cleaned for 2 min in distilled water, and degreased by placing it for 2 min in acetone and in chloroform.

Mass loss determination

The test cell for the chemical analysis experiments (Fig. 2.18) differed slightly from the one in the previous study, in which the specimen was pressed onto a silicon ring by means of a screwcap. The early cell leaked frequently, which was attributed to shifting of the specimen with respect to the silicon ring while being screwed shut. To avoid shifting a metal spring was used instead to press the specimen against the silicon ring.

Immersion was terminated by removal of the specimen. Immersion times were 1, 3, 8 h and 1, 3 and 7 days. For each alloy and immersion time three cells were prepared. For some alloys a few additional cells were prepared.

The concentrations of Ni, Cr, Mo, and Fe were determined in all cells. CER, FOR, and RES, and some W77 and W88 cells were analyzed for the presence of Si. The NP2, FOR and RES cells with the longest immersion times were analyzed for the presence of Nb and, in the case of NP2, for the presence of Ga. The applied analytical method was Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES). The instrument used was a Jarrell-Ash AtomComp model 970 ICAP multichannel spectrometer. The main characteristics of the instrumental facilities have been specified elsewhere [Maess84]. Samples were brought into the plasma by means of a cross flow nebulizer [Maess82] fed by a ten roller peristaltic pump (Minipuls, Gilson Medical Electronics, France). A sample volume of 4 ml sufficed to execute two independent series of measurements of the elements of interest. The analysis lines corresponding to the optical channels simultaneously used are listed in Table 2.2 together with the detection limits; applied experimental conditions are summarized in Table 2.3. The relative standard deviation of a single analyte determination ranged from 2 % for Ni to 5 % for Si. The results show (see the Discussion) that only minor amounts of elements other than nickel were released. In the rest of this section it is therefore assumed that only nickel entered the medium.

From the measured concentrations (ppb) a mass loss m (in ng/cm²) was calculated according to

\[m = \frac{v \cdot S}{60} \]

where \(v \) is the weight of the medium (5,000 g) and \(S \) is the surface area of the corroding specimen (1,327 cm²).
On a log-log plot the cumulative mass loss vs immersion time gave curves resembling straight lines. In order to check this observation the data were fitted to the equation

$$\log m = a + b u + c u^2$$

(2-8),

where $u = \log h$ (hours), the immersion time; deviation from a straight line curve would result in a large value for c. The graph of CER strongly deviated from a straight line. Its data were fitted to a third degree polynomial in u:

$$\log m = a + b u + c u^2 + d u^3$$

(2-9).

The coefficients a, b, c, and d were calculated by the GraphPAD program (ISI Software, Philadelphia, PA, USA).

It follows from equation (2-9) that

$$\frac{dm}{db} = \frac{(b + 2 c u + 3 d u^2)}{b}$$

(2-10).

Also,

$$\frac{dm}{dt} = \frac{1}{3600 \frac{dm}{db}}$$

(2-11).

where t is the time in seconds.

The corrosion current equals

$$i_{cor} = \frac{A}{d} \frac{dm}{dt}$$

(2-12),

where c is the valence of nickel, A its atomic weight and F the Faraday constant.

The potentiostatic deaeration method

The method is depicted in Fig. 2.19. At the corrosion potential (E_{cor}) the anodic corrosion current (i_{anodic}) equals the cathodic oxygen reduction current [$Wagner38$]. The potential of the corroding specimen during aeration is first stabilized by connecting the specimen to a potentiostat set at this potential. Next, the cathodic current is made to disappear by purging the medium of oxygen by bubbling nitrogen. The anodic corrosion current remains, resulting in a rise in the potentiostat current equal to i_{anodic}. The solution is aerated again after 1 hour. A baseline for determining the corrosion current was obtained by interpolating the potentiostat currents measured before and after deaeration. The corrosion current is measured a few hours after immersion, and 1, 2, 4, and 6 or 7 days later. In the present study these runs of experiments were done in duplicate for each alloy.

The measuring system consisted of a test cell, a voltmeter, a potentiostat, an ADDA converter and a microcomputer. The test cell was a cylindrical glass vessel, containing 1 L of the medium, a 20 mM KCl/5 mM phosphate buffer, made by adding to distilled water appropriate amounts of KCl, NaH$_2$PO$_4$ and K$_2$HPO$_4$, all obtained from Merck. In contact with the medium were a K959 specimen holder (PAR, Princeton, NJ, USA), two counter electrodes (G0091 graphite rod PAR), a G0095 reference electrode bridge (PAR), containing a K77 saturated calomel reference electrode (PAR) and a glass stirrer. The flow rate of the gas (air or purified nitrogen) was kept at 500 L h$^{-1}$. The purified nitrogen was 5.0 quality: 99.999% pure (Hoekloos, Amsterdam). A Hewlett Packard 3470A voltmeter was used to measure the potential of the specimens between potentiostatic experiments. The potentiostat was a HPLC detector built at the Analytical Chemistry Department of the Free University of Amsterdam. It was connected to the input of an ADDA converter present in a Lab Master board (Scientific Solutions Inc., OH, USA); this board was placed in an Olivetti M 24 microcomputer. The READPOTS program, written by the authors, calculated and stored on floppy disk the average of 600 signal samples taken in one minute. After a potentiostatic experiment these one-minute averages were plotted vs time. In the present study these averages were subjected to subsequent digital averaging by three-point averaging three times. Three-point averaging consists in replacing an nth one-minute average X_n by Y_n calculated from

$$Y_n = \frac{1}{4} [X_{n-1} + 2 X_n + X_{n+1}]$$

(2-13).

The transfer function $H(o)$ describes the effect in the frequency domain of digital averaging [Hammi77] (o is the angular frequency). The three-point averaging described by equation (2-13) has a transfer function $H_1(o)$ [Hammi77, p.52]:

$$H_1(o) = \frac{1 + \cos (o/2)}{2}$$

(2-14).

The transfer function $H_2(o)$ of three times averaging is:

$$H_2(o) = H_1(o)^3 = \left(\frac{1 + \cos (o/2)}{2} \right)^3$$

(2-15).

Such averaging is equivalent to passing the data through a low-pass filter with a cut-off frequency (-3 dB point) of 1 / (9 min). The potentiostat vs time curves obtained from data smoothed in this way were used to determine the corrosion current and its error in the same manner as in the previous study [Mulle89a].

![FIG. 2.19. Principle of the potentiostatic deaeration method. At the corrosion potential the anodic current balances the cathodic current. During deaeration the cathodic current disappears but the anodic current remains, giving a current rise equal to the anodic corrosion current.](image)
Nickel was detected in all 118 cells. In Figs. 2.20-21 the calculated nickel loss is plotted vs the immersion time. Nickel concentrations found after one week immersion ranged from 108 ppb (FOR) to 1161 ppb (CER). Table 2.4 lists the values calculated by the GraphPAD program for the coefficients of \(a \) in Eqs. (2-9) from the mass loss data. The product of \(c \) and 2.2 (= log 170, the longest immersion time) is much smaller than \(b \), except in the case of CER. This shows that the deviation from a straight line is small. The fitting curves in Figs. 2.20 and 2.21 have been calculated from the coefficients in Table 2.4.

Chromium was detected in 25% of the cells. The concentration seemed to increase with the immersion time. The highest value found was 9 ppb (W77; one week immersion). Molybdenum was detected in only two cells (both NP2), at a concentration near its detection limit. Iron was detected in 56% of the cells. Its concentration seemed to increase with the immersion time. The largest concentration found was 32 ppb (NP2; 23 h immersion). Most values were about 10 ppb. In the case of NP2 the average value was 16 ppb, and the concentration did not clearly increase with immersion time. Silicon determinations were carried out in 68 cells. In all determinations silicon was detected. Concentrations ranged from 0.1 to 2.3 ppm (CER; 22 h immersion). After one week immersion no niobium was detected in cells of NP2, FOR and RES and no gallium in NP2 cells. Other cells of these alloys were not further analyzed for these elements.

Table 2.4. Calculated Values for the Coefficients \(a, b, c \) and \(d \) in Eqs. (2-4) and (2-5).

<table>
<thead>
<tr>
<th>Alloy</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramalloy II</td>
<td>2.2488</td>
<td>0.6170</td>
<td>-0.3016</td>
<td>0.1388</td>
</tr>
<tr>
<td>Wiron 77</td>
<td>2.2742</td>
<td>0.3944</td>
<td>0.04659</td>
<td></td>
</tr>
<tr>
<td>Micro-Bond N/P2</td>
<td>2.4979</td>
<td>0.1528</td>
<td>0.05397</td>
<td></td>
</tr>
<tr>
<td>Unitek-Forte</td>
<td>2.1317</td>
<td>0.3418</td>
<td>-0.04586</td>
<td></td>
</tr>
<tr>
<td>Resital P</td>
<td>2.2597</td>
<td>0.2319</td>
<td>-0.01386</td>
<td></td>
</tr>
<tr>
<td>Wiron 88</td>
<td>2.0166</td>
<td>0.2247</td>
<td>0.02319</td>
<td></td>
</tr>
</tbody>
</table>

The potentiostatic deaeration method. Figs. 2.22 and 2.23 give \(E_{cor} \) vs \(\log t \) for all runs.

The longest immersion time [s]

![Fig. 2.20. Mass loss vs immersion time for W77, NP2 and W88.](image)

![Fig. 2.21. Mass loss vs immersion time for CER, RES and FOR.](image)

![Fig. 2.22. Corrosion potential vs immersion time for Wiron 77, Micro-Bond N/P2, and Wiron 88. The labels W77 and W88 have inadvertently been switched.](image)

![Fig. 2.23. Corrosion potential vs immersion time for Ceramalloy II, Resital P, and Forte.](image)
Figs 2.24-26 give the results of the potentiostatic experiments of runs of W88, W77 and CER. The other runs gave similar graphs.

FIG. 2.24. Results of a run of potentiostatic experiments on Wiron 88. Currents have been divided or multiplied by the indicated factors and have been displaced vertically for clarity.

FIG. 2.25. Results of a run of potentiostatic experiments on Wiron 77.

FIG. 2.26. Results of a run of potentiostatic experiments on Ceramalloy II.

Table 2.5: RESULTS OF EARLIER DETERMINATIONS OF NICKEL LOSS BY DENTAL Ni-Cr-Mo ALLOYS.

<table>
<thead>
<tr>
<th>Alloy (including Ni, Cr, Mo and Nb content)</th>
<th>Medium</th>
<th>Mass loss after one week (µg cm⁻²)</th>
<th>Calculation method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiron S (72Ni16Cr47Mo)</td>
<td></td>
<td>Interpolation of data from a 2-months experiment</td>
<td>[Newm81]</td>
<td></td>
</tr>
<tr>
<td>Biobond (79Ni13CrMo)</td>
<td></td>
<td>Artificial saliva (pH 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unibond Forté (63Ni22Cr8Mo)</td>
<td></td>
<td>pH 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astro Superior (66Ni22Cr2Mo)</td>
<td></td>
<td>pH 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biobond C & B (77Ni12Cr3Mo)</td>
<td></td>
<td>pH 2 and 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramalloy (72Ni19Cr4Mo)</td>
<td></td>
<td>pH 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramalloy II (72Ni19Cr4Mo)</td>
<td></td>
<td>pH 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiron 88 (61Ni25Cr10Mo)</td>
<td></td>
<td>0.1 M NaCl</td>
<td></td>
<td>[Geis-87a]</td>
</tr>
<tr>
<td>Micro-Bond Ni (67Ni12Cr7Mo)</td>
<td></td>
<td>pH 2.3</td>
<td></td>
<td>[Espev78]</td>
</tr>
<tr>
<td>Alidont Elite (64Ni21Cr9Mo3Nb)</td>
<td></td>
<td>pH 3</td>
<td></td>
<td>[Covin85]</td>
</tr>
</tbody>
</table>

Discussion

Mass loss determinations

Mass loss of nickel increased with the immersion time, and was almost linear on a log m vs log t plot (Figs 2.20 and 2.21), with the exception of CER. The nickel loss after one week ranged from about 0.45 µg/cm² (W88, RES, FOR) to 4.3 µg/cm² (CER). This range comprises most of the previously published values of nickel loss by dental NiCrMo alloys (Table 2.5). There is not much difference between the nickel losses of RES and FOR, alloys with almost identical content of Ni, Cr and Mo (Table 2.1). All curves resemble straight lines except the CER curve, which clearly bends upwards. It follows from Table 2.4 that the time dependency of the nickel loss can be described as \(t^b \) where \(b \) equals the immersion time, and with \(b \) equal to 0.38, 0.15, 0.34, 0.23 and 0.22, for W77, NP2, FOR, RES and W88.

The data of Geis-Gerstorfer et al. (1987a) on the nickel loss of NP2, W88 and Elite (Ni31,5Cr8,7Mo3,4Nb8,6Si4,2Mn3,5Co0,3Fe) in 0.1 M lactic acid - 0.1 M NaCl (pH 2.3) were replotted on a log-log plot and yielded straight lines for the
first two alloys; in the case of Elite the fit was less good. The time dependency of the nickel loss in their study can be written as b^t, where b equals 0.26, 0.10 and about 0.10 for NP2, W88 and Elite. These values for b are similar to the values of b in Table 2.4.

Covington et al. (1985) have found a linear relation between the mass loss of nickel and the immersion time in their experiments, which lasted 30 or 120 days. Some of their mass loss vs time curves are slightly convex: reploting the pH 2 and 4 data in their Fig. 1 on log-log plots yielded straight lines and gave values for b of 0.78 and 0.81 respectively, values much larger than ours. Their findings are consequently in contrast to our results.

There is wide scattering around the fitting curves in Figs 2.20 and 2.21: for instance, the mass losses of NP2 at 72 hours are 635, 690, 763 and 894 ng Ni/cm², and the losses of FOR at 7 days immersion 407, 414 and 757 ng Ni/cm². This scattering cannot be attributed to imprecision of the ICP-AES measuring method, which is 2 % (see Materials and Methods), but is attributed to specimen peculiarities instead.

Silicon was found in all cells, including cells of RES, which does not contain silicon, and is therefore attributed to dissolved silicon grease (this grease covers the rubber ring in Fig. 2.18). Its presence in the medium might have influenced the corrosion process. However, no clear positive or negative correlation was found between the nickel and silicon content of cells with similar immersion times.

It is concluded that nickel was the main element released, and that the release rates of chromium and iron were small and could not be accurately determined. In the following it is assumed that only nickel was released during the corrosion of the alloys.

The potentiostatic deaeration method

After immersion E_{corr} decreased at first, reached a minimum between 10 and 1000 s, and then rose, linearly with log t (Figs 2.22 and 2.23) in the cases of FOR, W77, NP2 and RES, but decreased again after about 10 000 s in the cases of CER and W77. The resemblance between the curves of the FOR, RES, CER and W88 runs is good, the curves of the CER runs overlap. The curves of the W77 and NP2 runs resemble each other less well. The value of E_{corr} increased with the molybdenum content, FOR and W88 showing the highest, CER and W77 the lowest values.

E_{corr} vs t curves of NiCr alloys in artificial saliva (pH 3.65-4.37°C) during the first 12 hours [Meyer77,79], or 24 hours [Hodge77] have been published previously. In these studies E_{corr} increased with the immersion time in the case of high molybdenum content but decreased for alloys with low molybdenum content. The alloy Gemini II (2 % Mo) showed an initial increase of E_{corr} followed by a decrease, just as for CER and W77 in Figs 2.22-23.

It was expected at the start of the study that E_{corr} would stabilize after some time. Figs 2.22 and 2.23 show that a constant value was not reached after one week. A continuing increase of E_{corr} may cause it to reach the breakdown potential [Hodge77, Hoar66]. Assuming that the breakdown potentials of all NiCrMo alloys are equal, the chance of reaching the breakdown potential is largest for the least corroding alloys, as they have the highest E_{corr} values. Because of this possibility the behavior of E_{corr} at larger immersion time warrants more study.

The duplicates of the measured currents showed good mutual agreement for NP2, RES, FOR, and CER, but not for W77 and W88 (Figs 2.27-32): in the case of W77 the currents differ a factor 10. These differences are attributed to the specimen peculiarities mentioned in the previous section.
Comparison of the results of the two methods.
Figs 2.27-32 show corrosion currents calculated from the values given in Table 2.2, using equations (2-8), (2-9), (2-10), (2-11), and (2-12), and the corrosion currents determined by the potentiostatic deaeration method. The currents determined by the two methods agree well, especially in their time dependency.

The current obtained from the mass loss curve carries more weight, as curve fitting has averaged out the specimen peculiarity. Fig. 2.33 presents all mass loss currents in a single plot. The alloys with the highest molybdenum content show the lowest corrosion rate. This had already been deduced from polarization resistance measurements [Meyer79]. This corrosion inhibiting effect of molybdenum in the alloy can be related to the capacity of molybdate to act as an anodic corrosion inhibitor [Vukas86]. The corrosion currents in Fig. 2.33 are very low, namely smaller than 200 nA/cm² [Fonta83, p.345,379].

It follows from the small values of the coefficients of c and d in Table 2.2 that the time dependency of i_{cor} can be described as b^{b-1}. This results in a range for the exponent of b of -0.62 to -0.85. The corrosion current consequently decreased almost inversely proportional with time; this is also commonly found for the current in potentiostatic experiments on passivating alloys [Kirch87].
Comparison with results of potentiodynamic studies.
Several potentiodynamic studies of dental NiCrMo alloys have been published [Geis-85,87ab, Meyer77,79, Weber80, Mann84, Brück84, Lenz85, Luber86, Wieg87, Häusl87, Mezge89]. Table 2.6 lists corrosion current values calculated by the polarization resistance method in some of these studies [Lenz85, Wieg87, Mezge89]. Most of these values are larger than the values found in the present study, only [Wieg87] finds a similar value. Comparing values is difficult, as the experimental conditions such as medium composition and temperature are different for each study. In none of these studies is an accordance demonstrated between the corrosion current obtained from the polarization resistance method and a corrosion current calculated from mass loss.

TABLE 2.6 CORROSION CURRENTS OF DENTAL Ni-Cr-Mo ALLOYS OBTAINED BY MEANS OF THE POLARIZATION RESISTANCE METHOD.

<table>
<thead>
<tr>
<th>Alloy (including Ni, Cr and Mo content)</th>
<th>Medium</th>
<th>Corrosion Current [nA/cm²]</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Céral (77Ni15Cr3,5Mo)</td>
<td>modified Fusayama artificial saliva</td>
<td>200</td>
<td>[Lubes86]</td>
</tr>
<tr>
<td></td>
<td>lactic acid 0.05 M</td>
<td>2270</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acetic acid 0.05 M</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>propionic acid 0.05 M</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 M</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Micro-Bond N/P² (67Ni22Cr7Mo)</td>
<td>modified Fusayama artificial saliva</td>
<td>1.2</td>
<td>[Wieg87]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiron 77 (66Ni22Cr9Mo)</td>
<td>0.9% NaCl modified Fusayama artificial saliva</td>
<td>1130</td>
<td>[Merge89]</td>
</tr>
<tr>
<td>Micro-Bond N/P² (66Ni13Cr7Mo)</td>
<td>0.9% NaCl modified Fusayama artificial saliva</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Unibond Forte (64Ni22Cr9Mo)</td>
<td>0.9% NaCl modified Fusayama artificial saliva</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Talladium (72Ni14Cr9Mo)</td>
<td>0.9% NaCl modified Fusayama artificial saliva</td>
<td>2230</td>
<td></td>
</tr>
<tr>
<td>Wiron 88 (60Ni25Cr11Mo)</td>
<td>0.9% NaCl modified Fusayama artificial saliva</td>
<td>650</td>
<td></td>
</tr>
</tbody>
</table>

Linear relation between E_{cor} and log i_{cor}

In Fig. 2.34 E_{cor} and i_{cor} of all the potentiostatic experiments have been plotted on an E vs log i plot. A linear relation is apparent. Regression analysis by the GraphPAD program resulted in a correlation coefficient of -0.9336. The best linear fit satisfies the equation:

$$E_{cor} [\text{mV NHE}] = -124 \log(i_{cor} [\text{nA/cm²}]) + 102$$

(2-16).

Figs 2.35 and 2.36 show trajectories of the runs on an E_{cor} vs log(i_{cor}) plot. Trajectories of duplicate runs are only shown when the two runs resulted in different E_{cor} vs i or i_{cor} vs t behaviour, i.e. for FOR, W77 and W88; in these cases the two trajectories still lie near the regression line.
The trajectories of the alloys on a \(\log(i_{\text{cor}}) \) vs \(E_{\text{cor}} \) plot therefore resemble straight lines, which is a novel result. It resembles the linear relation found between the \(\log(i_{\text{cor}}) \) and \(E_{\text{cor}} \) values of distinct alloys in earlier studies [Schwe63], the difference being the disregard of time dependency in these studies. The linear relation can be explained by assuming that the cathodic current is a function of the potential only, equal for all NiCrMo alloys. The \(E_{\text{cor}} \) vs \(i_{\text{cor}} \) line then equals the polarization curve of the cathodic current, the factor of 124 mV/decade in equation (2-16) its Tafel constant. This value is expected for a reaction in which electron transfer is rate limiting [Hoare68]. The actual position on the line would follow from its intersection with the anodic curve, assumed to be distinct for each alloy. The leftward movement along the line is then explained by an anodic current curve that decreases, i.e. shifts to the left, as the passivation layer grows. The anodic current would be controlled by the passive layer, the cathodic current by activation by the electrode potential. Differences between the results of duplicate runs can be explained by differing anodic currents; this variability can be related to the origin of specimen variation.

The validity of the linear relation in other media would allow reinterpretation of determined \(E_{\text{cor}} \) values. For instance, \(E_{\text{cor}} \) increased with the molybdenum content of NiCrMo alloys [Hodge77], which can be reinterpreted as a decrease of \(i_{\text{cor}} \) with molybdenum content, just as was found in this study and in [Geis-88]. The relation could also be used to estimate in vivo corrosion rates from in vivo determined \(E_{\text{cor}} \) values, for which an improved measuring method has been proposed [Mulle89b].
Determination of the corrosion rates of six dental NiCrMo alloys in an artificial saliva by chemical analysis of the medium using ICP-AES

A.W.J. MULLER*, F.J.M.J. MAESSEN° and C.L. DAVIDSON+

* Department of Dental Materials Science, ACTA, University of Amsterdam, Louwesweg 1, 1066 EA Amsterdam, The Netherlands

° Department of Analytical Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Abstract

In order to establish the influence of salivary components upon the corrosion rate of six dental NiCrMo alloys, their mass loss was determined in a medium consisting of a modified Fusayama's artificial saliva to which 300 mg KSCN/L had been added (pH 5.0). Nickel was the main element released; its loss vs immersion time curves on a log-log plot resembled straight lines. The total nickel losses after one week ranged from 0.4 to 12.5 µg/cm². From the nickel loss corrosion currents were calculated. The corrosion currents at 24 hours immersion were up to 67% larger than the currents in a previous study of these alloys, where the medium consisted of a 20 mM KCl - 5 mM phosphate buffer solution (pH 7) at 37°C. Compared with saliva this medium might be relatively inert because of the lower chloride content, the higher pH, and the absence of thiocyanate. Thiocyanate might stimulate corrosion, since it increases the anodic current in potentiodynamic scanning experiments [Geis-85]. In order for information to be obtained on the corrosion rate of the considered alloys in a more aggressive artificial saliva, the chemical analysis experiments were repeated in a modified Fusayama's solution to which thiocyanate had been added.

The composition of the alloys is given in Table 2.7. The abbreviations CER, W77, NP2, FOR, RES, and W88, refer to Ceramalloy II, Wiron 77, Micro-Bond N/P2, Forte, Resistal P, and Wiron 88.

Nickel is a well known allergen [Counc85]. Biological effects of metallic nickel can be attributed to its corrosion products. For this reason the corrosion rates of nickel alloys used in dentistry are of interest. In a previous study [Mulle90a] we measured the corrosion rates of six dental NiCrMo alloys by the electrochemical potentiostatic deaeration method and by trace metal analysis with Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) of the medium of corrosion test cells. In these experiments the medium consisted of a 20 mM KCl - 5 mM phosphate buffer (pH 7) at 37°C. Compared with saliva this medium might be relatively inert because of the lower chloride content, the higher pH, and the absence of thiocyanate. Thiocyanate might stimulate corrosion, since it increases the anodic current in potentiodynamic scanning experiments [Geis-85]. In order for information to be obtained on the corrosion rate of the considered alloys in a more aggressive artificial saliva, the chemical analysis experiments were repeated in a modified Fusayama's solution to which thiocyanate had been added.

The composition of the alloys is given in Table 2.7. The abbreviations CER, W77, NP2, FOR, RES, and W88, refer to Ceramalloy II, Wiron 77, Micro-Bond N/P2, Forte, Resistal P, and Wiron 88.

Table 2.7: Trademark and composition (%) of the investigated NiCrMo alloys arranged according to increased Mo-content.

<table>
<thead>
<tr>
<th>Trade Mark</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Others</th>
<th>(manufacturer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramalloy II</td>
<td>73</td>
<td>18</td>
<td>4</td>
<td>Si, B</td>
<td>Johnson & Johnson</td>
</tr>
<tr>
<td>Wiron77</td>
<td>70</td>
<td>20</td>
<td>6</td>
<td>Si, Ce, B</td>
<td>Bego</td>
</tr>
<tr>
<td>Micro-Bond N/P2</td>
<td>66.15</td>
<td>13.5</td>
<td>7</td>
<td>Ga, Fe, Si, Zr</td>
<td>Howmedica</td>
</tr>
<tr>
<td>Forte</td>
<td>63</td>
<td>21.5</td>
<td>8</td>
<td>Ta, Fe, Zr</td>
<td>Unitek</td>
</tr>
<tr>
<td>Resistal P</td>
<td>64</td>
<td>21</td>
<td>9</td>
<td>Nb</td>
<td>Degussa</td>
</tr>
<tr>
<td>Wiron 88</td>
<td>64</td>
<td>24</td>
<td>10</td>
<td>Si, Ce</td>
<td>Bego</td>
</tr>
</tbody>
</table>

X indicates an uncertain percentage of accompanying elements, the content of which is generally smaller than 2 %.

Table 2.8: Composition of the medium.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount [mg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>400</td>
</tr>
<tr>
<td>KCl</td>
<td>400</td>
</tr>
<tr>
<td>NaH₂PO₄</td>
<td>600</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>795</td>
</tr>
<tr>
<td>urea</td>
<td>1000</td>
</tr>
<tr>
<td>KSCN</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 2.9: Concentrations of medium components in the previous and present study (mM).

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Previous study</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>2.0</td>
<td>11.8</td>
</tr>
<tr>
<td>K⁺</td>
<td>26.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>5.4</td>
<td>27.0</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>20.0</td>
<td>27.0</td>
</tr>
<tr>
<td>SCN⁻</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>urea</td>
<td>-</td>
<td>16.7</td>
</tr>
<tr>
<td>pH (measured)</td>
<td>7.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Materials and Methods

Fig. 2.37 depicts the test cell, which contains 5 ml of artificial saliva and 25 ml of air. All alloys were investigated in the as-cast condition. Specimens of the alloys were wet ground to a 600 grit finish, ultrasonically cleaned for 2 minutes in distilled water and degreased by placing them for 2 minutes in acetone and in chloroform.

The composition of the medium employed is given in Tables 2.8 and 2.9 and is based on the modified Fusayama's solution as used by Meyer and Nally (1975) and Meyer (1977). Sodium sulphide was not added because it is easily oxidized [Chana84]. The KSCN concentration, viz. 300 mg/L, equals the concentration in the potentiodynamic scanning experiments of Geis-Gerstorfer et al. (1985). Table 2.9 also gives the composition of the medium in the previous study.

Immersion times were 1, 3 and 8 hours and 1, 3 and 7 days. During immersion the test cells were kept at 37°C. For each alloyimmersion time combination three cells were prepared, resulting in a total of 108 cells. Ten cells showed signs of leakage after immersion; they were not further analyzed.

Table 2.10. ICP-AES Detection and Corresponding Specimen Mass Loss Detection Limits.

<table>
<thead>
<tr>
<th>Element</th>
<th>ICP-AES Concentration Detection Limit [ppb]</th>
<th>Specimen Mass Loss Detection Limit [ng/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Cr</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>Fe</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Ga</td>
<td>40</td>
<td>151</td>
</tr>
<tr>
<td>Mo</td>
<td>30</td>
<td>113</td>
</tr>
<tr>
<td>Nb</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td>Ni</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>Si</td>
<td>10</td>
<td>38</td>
</tr>
</tbody>
</table>

9) For a medium volume of 5 ml, medium weight 5.00 g, corroding surface area 1,327 cm².

Detailed descriptions of the ICP-AES analytical method have been presented earlier [Mulle89a,90a]; Table 2.10 lists ICP-AES detection limits. Concentrations of Ni, Cr, Mo, B, Si and Fe were determined in all cells. The NP2, FOR and RES cells subject to the longest immersion time were analyzed for the presence of Nb and, in the case of NP2, for the presence of Ga.

The results show that the release of elements other than nickel can be disregarded. The nickel loss m (in ng/cm²) was calculated from

\[
m = \frac{v \cdot c}{S}
\]

(2-17),

where \(v\) is the mass of the medium (5.00 g), \(c\) the measured nickel concentration (ppb) and \(S\) the surface area of the specimen (1,327 cm²). The mass loss data were fitted by the GraphPAD program (ISI Software, Philadelphia, PA, USA) to the equation

\[
\log m = a + b \cdot u + c \cdot u^2
\]

(2-18)

where \(u = \log h\), and \(h\) (hours) is the immersion time. For each alloy the nickel loss vs the immersion time was plotted on a double logarithmic plot. The fitting curve and its equation are presented, the fitting curve found in the previous study is presented as well. The two curves, obtained in the presence and absence of KSCN, were compared.

It can be derived from the previous study that the corrosion current, \(i_{\text{corr}}\), is the following function of the fitting-curve parameters:

\[
i_{\text{corr}} = \frac{zF \cdot dm}{A \cdot dt} = \frac{zF \cdot m}{A \cdot 3600}
\]

(2-19),

where \(z\) is the valence of nickel (2), \(A\) its atomic weight (58.70), \(t\) the time in seconds, and \(F\) the Faraday constant (96500 C/Mol). Corrosion currents calculated with this formula were plotted as a function of time, and the calculated corrosion currents at 24 hours immersion were tabulated.
Results

(i) Nickel was detected in all 98 cells. Fig. 2.38 depicts the cumulative nickel loss as a function of immersion time for NP2. The mass loss seems to be a curvilinear function of time. A trend is easily discerned although wide scattering is apparent.

![Fig. 2.38. Nickel loss vs immersion time for Micro-Bond N/P2.](image)

Figs 2.39-44 show on double logarithmic plots for each alloy the calculated nickel loss vs the immersion time, and the fitting curves of the previous and the present study. Nickel concentrations measured after one week immersion ranged from 120 ppb (W88) to 3330 ppb (CER).

One of the 98 measured nickel values, viz. 30 ppb for FOR after 9 hours immersion, was excluded from the calculations because it was anomalously low.

The fitting curves of all the considered alloys are combined in Fig. 2.45. The nickel loss is highest for CER and W77, somewhat smaller for NP2 and lowest for W88, FOR and RES, of which the fitting curves almost overlap.

(ii) Varying amounts of silicon were detected in all cells. The largest value found was 13 ppm.

(iii) Boron was detected in 70 cells. The largest value found was 1.0 ppm.

(iv) Iron was detected in 26 cells. Thirteen of these cells were NP2 cells; the average concentration in these cells was 10 ppb.

For Si, B, and Fe no unambiguous relation between the concentration and the immersion time was found.

(v) Chromium was detected in 8 cells. The highest value found was 23 ppb (CER; one week immersion).

(vi) Molybdenum was not detected in any of the cells.

(vii) After one week immersion no niobium was detected in cells of NP2, FOR and RES and no gallium in NP2 cells. Other cells of these alloys were not further analyzed for these elements.

In Fig. 2.46 the corrosion currents of all alloys, calculated from the mass loss, are plotted vs time. Table 2.11 lists the corrosion currents at 24 hours after immersion.
FIG. 2.42. Nickel loss vs immersion time for Resistal.

FIG. 2.43. Nickel loss vs immersion time for Forte.

FIG. 2.44. Nickel loss vs immersion time for Wiron 88.

FIG. 2.45. Fitting curves of nickel loss of all alloys combined.

FIG. 2.46. Corrosion currents, calculated from nickel loss, of all alloys vs immersion time.

TABLE 2.11. Corrosion currents at 24 hours immersion, calculated from the mass losses measured in the previous study ("without thiocyanate") and the present study ("with thiocyanate").

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Current without Thiocyanate [nA/cm²]</th>
<th>Current with Thiocyanate [nA/cm²]</th>
<th>Current Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramalloy II</td>
<td>17.12</td>
<td>27.54</td>
<td>61 %</td>
</tr>
<tr>
<td>Wiron 77</td>
<td>15.32</td>
<td>19.75</td>
<td>29 %</td>
</tr>
<tr>
<td>Micro-Bond N/P²</td>
<td>5.75</td>
<td>9.99</td>
<td>77 %</td>
</tr>
<tr>
<td>Forte</td>
<td>2.72</td>
<td>3.13</td>
<td>15 %</td>
</tr>
<tr>
<td>Wiron 88</td>
<td>2.57</td>
<td>2.60</td>
<td>1 %</td>
</tr>
<tr>
<td>Resistal</td>
<td>2.56</td>
<td>2.85</td>
<td>11 %</td>
</tr>
</tbody>
</table>
Discussion

Just as in the previous study the silicon found is attributed to dissolved silicon grease. Its presence might have interfered with the corrosion process, but no clear positive or negative correlation was found between the nickel and silicon content of cells with equal immersion times. Because of the absence of a relation between the boron concentration and the immersion time, the presence of boron is attributed to contamination, not to corrosion.

It is assumed that the release of chromium and iron can be neglected, and it is concluded that nickel is the main element released by the corrosion process.

In Fig. 2.38 scattering of the mass losses is evident, e.g. one of the determined mass loss values after one week immersion is twice as large as the other two values. On log m vs log t plots (Figs. 2.30-35) the mass loss-immersion time relation is linear. The nickel loss averages after one week of immersion range from 0.50 µg/cm² (W88, RES, FOR) to 4.3 µg/cm² (CER); these values are similar to the previously found values of nickel loss by dental NiCrMo alloys [Mulle89b]. Several other results of the present study are similar to those previously found, viz. wide scattering of the obtained mass losses, almost linear log m vs log t plots, higher corrosion rates for the alloys that contain little molybdenum, corrosion rates that decrease with time, and the same sequence of the alloys when arranged according to corrosion rate: W88, FOR, RES < NP2 < W77 < CER (Figs. 2.35-36). A minor difference is that in the previous study the corrosion rate of CER, in contrast to the other alloys, increased after 24 hours, whereas in the present study the corrosion rate of CER decreased steadily. Figs. 2.39-44 show that the fitting curves lie above the curves of the previous study; consequently the nickel loss is larger.

It follows from the nickel loss that the oxygen depletion of air in the cell is negligible: a specimen area of 1.3 cm² after a loss of 10 µg Ni/cm² has consumed 0.1 µmol oxygen, while in the cell (air volume: 25 ml) 0.25 mmol oxygen is present.

Those results are in line with the previous findings of the research group of Gies-Gerstorfer [1985]. Table I gives a molybdenum content of 0.1% for W88, 0.3% for Forte, 0.4% for Resistal, and 0.6% for Ceramalloy II. The slight difference with the mass losses determined previously in a 3000 mg KSCN/L solution is small. For this observation two explanations can be given:

(1) The corrosion rate may be controlled by the anodic as well as the cathodic process. An increase of the anodic current generally results in a smaller increase of the corrosion current [Evans60,p.875]. If the cathodic current controls the corrosion rate, then an increase of the anodic current (i.e. a shift to the right in an Evans plot) will result in only a small increase in the corrosion current.

(2) The effect of thiocyanate on the anodic current depends on the potential, and may be low at the actual corrosion potential.

Conclusions

The elemental mass loss of corroding NiCrMo alloys during the first week after immersion in artificial saliva was determined. The corrosion currents calculated from the measured mass loss are very small and decrease with immersion time. The sequence of the alloys according to increasing corrosion rate is W88, Unitek Forte, Resistal < Micro Bond NP² < Wiron 77 < Ceramalloy II. The slight difference with the mass losses determined previously in a 20 mM KCl-5 mM phosphate buffer suggests that the corrosion rate is rather insensitive to the presence of thiocyanate, the chloride concentration and the pH at physiological concentrations.

Alloys with the highest molybdenum content show the best corrosion resistance and are also the least sensitive to thiocyanate.

Acknowledgements

We thank Hans Balke for performing the ICP-AES analysis, and Jeanne Kruchowski for proofreading.

Table 2.12 lists anodic currents values at 600 mV of some dental NiCrMo alloys in absence and presence of 300 mg KSCN/L. The ratio of the two currents can approach 30,000; at potentials below 600 mV this ratio decreases rapidly. Just as in the present study, the effect of thiocyanate was largest for those alloys with the least molybdenum content. Compared to the large ratio values in Table 2.12, the effect of thiocyanate found in this study is small. For this observation two explanations can be given:

(1) The corrosion rate may be controlled by the anodic as well as the cathodic process. An increase of the anodic current generally results in a smaller increase of the corrosion current [Evans60,p.875]. If the cathodic current controls the corrosion rate, then an increase of the anodic current (i.e. a shift to the right in an Evans plot) will result in only a small increase in the corrosion current.

(2) The effect of thiocyanate on the anodic current depends on the potential, and may be low at the actual corrosion potential.

Conclusions

The elemental mass loss of corroding NiCrMo alloys during the first week after immersion in artificial saliva was determined. The corrosion currents calculated from the measured mass loss are very small and decrease with immersion time. The sequence of the alloys according to increasing corrosion rate is W88, Unitek Forte, Resistal < Micro Bond NP² < Wiron 77 < Ceramalloy II. The slight difference with the mass losses determined previously in a 20 mM KCl-5 mM phosphate buffer suggests that the corrosion rate is rather insensitive to the presence of thiocyanate, the chloride concentration and the pH at physiological concentrations.

Alloys with the highest molybdenum content show the best corrosion resistance and are also the least sensitive to thiocyanate.

Acknowledgements

We thank Hans Balke for performing the ICP-AES analysis, and Jeanne Kruchowski for proofreading.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Molybdenum Content</th>
<th>Anodic Current without KSCN [nA/cm²]</th>
<th>Anodic Current with KSCN [nA/cm²]</th>
<th>Ratio of the currents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro-Ceram</td>
<td>0 %</td>
<td>335</td>
<td>9333 000</td>
<td>28000</td>
</tr>
<tr>
<td>Wiron 77</td>
<td>6 %</td>
<td>673</td>
<td>327 000</td>
<td>486</td>
</tr>
<tr>
<td>Micro-Bond NP²</td>
<td>7 %</td>
<td>739</td>
<td>498 000</td>
<td>662</td>
</tr>
<tr>
<td>Elite</td>
<td>9 %</td>
<td>52</td>
<td>443</td>
<td>8.5</td>
</tr>
<tr>
<td>Wiron 88</td>
<td>9 % *</td>
<td>8700</td>
<td>22 100</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* According to Gies-Gerstorfer et al. (1985). Table 1 gives a molybdenum content of 10 % for Wiron 88.
2-5 Determinations of mass loss of other alloys

This section describes the application of mass loss determination by ICP-AES to Xerxes (another NiCrMo alloy), Vitallium (a CoCr alloy), and some noble alloys; the mass loss of Micro-Bond N/P in a medium consisting of 0.1 M lactic acid plus 0.1 M NaCl was also determined.

Specimen preparation, the corrosion test cell, the method for chemical analysis of the medium and the data analysis method were identical to those described in the second article.

The mediums were identical to those described in the articles, except in the study where the medium contained lactic acid. The 20 mM KCl-5 mM phosphate medium of the first and second article is hereafter called 'the pH 7 buffer'; the medium of the third article, a modified Fusayama's solution to which 300 mg KSCN/L has been added but in which sulphide is absent, is similarly called 'the pH 5 artificial saliva'.

The following studies were mainly done for illustrative purposes, to show that the developed methods can be more widely applied, and are for this reason not extensively discussed.

2-5.1 Xerxes

Introduction

Mass loss by Xerxes 220 (abbreviated as 'Xerxes'), a dental NiCrMo alloy, in the pH 5 artificial saliva was determined.

Table 2.13 gives the composition of Xerxes. The alloy is manufactured by Elephant Edelmetall B.V. (Hoorn, The Netherlands).

<table>
<thead>
<tr>
<th>Element</th>
<th>wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel</td>
<td>66</td>
</tr>
<tr>
<td>Chromium</td>
<td>22</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>8.5</td>
</tr>
<tr>
<td>Niobium + Tantalum</td>
<td>3.6</td>
</tr>
<tr>
<td>Titan</td>
<td>0.25</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.2</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Results

Eight cells were prepared. After immersion nickel, boron and silicon were determined in the medium. Fig. 2.47 gives the nickel loss vs the immersion time. Fig. 2.48 gives the corrosion current calculated from this mass loss together with the currents calculated for other NiCrMo alloys shown in the third article. The corrosion current could not be calculated for an immersion time shorter than five hours, as the slope of the mass loss fitting curve for that time is negative (Fig.2.47).

Discussion

The negative slope of the mass loss fitting curve for short immersion times in Fig. 2.47 is attributed to a chance effect of scattering of mass losses. For larger immersion times, the corrosion current of Xerxes behaves the same as other NiCrMo alloys with similar molybdenum content (Fig.2.48).
2.5.2 Vitallium

Introduction

The composition of Vitallium is given in Table 2.14. The alloy is commonly used for implants and for removable partial dentures [Steinb82, Siebe89]. Mass loss was determined in the pH 5 artificial saliva.

Table 2.14. Composition of Vitallium [Forsc86].

<table>
<thead>
<tr>
<th>Element</th>
<th>wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt</td>
<td>60.6</td>
</tr>
<tr>
<td>Chromium</td>
<td>31.5</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>6.0</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.75</td>
</tr>
<tr>
<td>Manganese</td>
<td><2</td>
</tr>
</tbody>
</table>

Methods

Table 2.15 gives the detection limits of elements analyzed.

Table 2.15. ICP-AES Detection limits and corresponding mass loss detection limits.

<table>
<thead>
<tr>
<th>Element</th>
<th>ICP-AES concentration detection limit</th>
<th>Specimen mass loss detection limit*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ppb]</td>
<td>[ng/cm²]</td>
</tr>
<tr>
<td>Cobalt</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>Chromium</td>
<td>15</td>
<td>57</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.6</td>
<td>2.3</td>
</tr>
<tr>
<td>Iron</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

* For a medium weight of 5.00 g and a corroding surface area of 1.327 cm².

Results

Eighteen cells were prepared. After immersion, cobalt was detected in all cells. In three cells chromium was detected (3 d immersion: 13 ppb, 7 d: 13 and 16 ppb), in six cells manganese (3 and 7 d immersion: 2 - 7 ppb). No iron or molybdenum was detected. Fig. 2.49 gives the mass loss and the mass loss fitting curve vs time; Fig. 2.50 gives the corrosion current vs time as calculated from the mass loss fitting curve. For comparison, similar curves of three NiCrMo alloys, shown in the third article, are given as well.

Discussion

Fig. 2.50 shows that the corrosion current of Vitallium behaves similarly as Wiron 88.

In vivo the corrosion current of CoCr alloys may also decrease: in vivo there is no correlation between corrosion product concentration and implantation duration [Miche87], suggesting that most material is released directly after implantation. Moreover, serum levels of cobalt, nickel and chromium decrease during the first 30 days after implantation of a CoCr alloy (F-75 alloy: about 65% Co, 27-30% Cr) [Koege84].

FIG. 2.49. Mass loss of Vitallium vs immersion time.

FIG. 2.50. Corrosion currents of Vitallium and three NiCMo alloys vs immersion time.
2-5.3 Noble alloys

Introduction

In a pilot study the mass loss of six noble alloys in both mediums used was determined. The investigated alloys were pure gold, two gold alloys (Bermudan Y and Orion WX), two PdAg alloys (Orion Argos and Splendor) and a PdCu alloy (Orion-Vesta). The composition of the alloys is given in Table 2.17. All alloys were manufactured by Elephant Edelmetal B.V. (Hoorn, The Netherlands).

Materials and methods

Specimens were cast by Elephant Edelmetal. The ICP-AES analysis was performed at the chemical laboratory of Elephant Edelmetal. Elements analyzed, concentration detection limits and corresponding specimen mass loss detection limits are given in Table 2.16.

Table 2.16. ICP-AES Detection limits and corresponding mass loss detection limits of the ICP-AES facility of Elephant Edelmetal.

<table>
<thead>
<tr>
<th>Element</th>
<th>ICP-AES concentration detection limit [ppb]</th>
<th>Specimen mass loss detection limit [ng/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag, Cu, Zn, Fe</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Re</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>Au, Pt, Pd, In</td>
<td>5 - 10</td>
<td>19 - 38</td>
</tr>
<tr>
<td>Sn, Ga, Rh</td>
<td>For a medium weight of 5.00 g and a corroding area of 1,327 cm².</td>
<td></td>
</tr>
</tbody>
</table>

The results are given in Table 2.17.
Discussion

The results show that the corrosion test method consisting of mass loss by chemical analysis of the medium can also be applied to noble alloys.

In Table 2.17 the mass loss of pure gold is very low. Only in the pH 5 artificial saliva could some mass loss be detected—it was less than 0.1 µg/cm² after one week. The reported rhenium loss by Orion WX is assumed to be erroneous, as the alloy does not contain rhenium in appreciable quantities (J.M. Van der Zel, personal communication). If this interpretation is correct, then the two gold alloys, Bermudent Y and Orion WX, have similar very low mass losses. The rhodium released by Bermudent Y is added in small amounts (<2%) to the alloy as a grain refiner and hardener (J.M. Van der Zel, personal communication).

The PdAg alloys show a somewhat larger elemental release. In the pH 7 buffer no mass loss by Orion Argos is detectable, in the pH 5 artificial saliva the alloy shows losses of about 0.24 µg Pd/cm² and 0.30 µg Ag/cm². Splendor shows losses of about 0.1 µg/cm² in both mediums.

The PdCu alloy, Orion Vesta, shows palladium loss in all, and copper loss in almost all, determinations. In the pH 7 buffer these losses were smaller than 0.1 µg/cm²; in the pH 5 artificial saliva they were about 1.0 µg Pd/cm² and 0.15 µg Cu/cm². This alloy shows the largest losses of all six alloys.

The corrosion current can roughly be estimated by comparison of the mass loss with the mass loss of dental NiCrMo alloys after one week, assuming that the time dependency of the corrosion current is similar to that of NiCrMo alloys. The third article mentions values of about 0.45 µg/cm² for mass loss of the least corroding NiCrMo alloys; the PdAg alloys show mass losses that are a bit lower, the PdCu alloy about twice this value. It would follow that the corrosion currents of palladium alloys match the corrosion currents of the best NiCrMo alloys.

The corrosion current of the best dental NiCrMo alloys after 1.5 h immersion, about 20 nA/cm², has the same magnitude as the values given by Merger for palladium alloys, values obtained by the polarization resistance method (Mezge89,p.150-152). For Orion WX the value was 20 to 40 nA/cm², with the immersion time ranging from 1 to 2 hours (P.M. Merger, personal communication).

2.5.4 Micro-Bond N/P² in 0.1 M lactic acid + 0.1 M NaCl

Introduction

Mass loss of Micro-Bond N/P² in a 0.1 M lactic acid + 0.1 M NaCl medium (pH 2.3) was determined. The composition of Micro-Bond N/P² is given in Table 2.1.

Methods

The medium was obtained by mixing appropriate amounts of lactic acid, sodium chloride and water. Correlation between elemental mass loss and immersion time was determined by the GraphPAD program, assuming a linear relation.

From the linearity between mass loss and immersion time, for each component \(a\), a corrosion current \(i_{cor}\) is calculated:

\[
i_{cor} \text{[µA/cm²]} = \frac{F}{z_j r_j} \sum \frac{1}{A_j}
\]

where \(z_j\) is the valence of the element released (assumed values [Bard85]: 2, 3, 3, 6, 2 and 4 for Ni, Ga, Cr, Mo, Fe and Si), \(r_j\) its release rate, \(A_j\) its atomic weight; \(F\) is Faraday’s constant.

Results

Fifteen cells were prepared. In the cells nickel, gallium, chromium, molybdenum, iron, boron and silicon were detected. Figs 2.50-56 give the mass loss vs immersion time. For the first five elements a linear relation of mass loss vs time was observed (Table 2.18) and the associated fitting curves are given in the figures.

Table 2.18. Elemental release rates calculated from the mass loss data, ratios of these elemental release rates and the nickel release rate, and the ratios of the elemental weight percentages in the alloy and the nickel weight percentage.

<table>
<thead>
<tr>
<th>Element</th>
<th>Release rate [µg/cm²/hr]</th>
<th>Element release rate / nickel release rate</th>
<th>Element wt% / nickel wt% in the alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel</td>
<td>1.244</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.123</td>
<td>0.097</td>
<td>0.204</td>
</tr>
<tr>
<td>Gallium</td>
<td>0.361</td>
<td>0.291</td>
<td>0.113</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.076</td>
<td>0.061</td>
<td>0.106</td>
</tr>
<tr>
<td>Iron</td>
<td>0.065</td>
<td>0.052</td>
<td>0.075</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.071</td>
<td>0.057</td>
<td>0.011</td>
</tr>
<tr>
<td>Boron</td>
<td>0.0053</td>
<td>0.0043</td>
<td></td>
</tr>
</tbody>
</table>

The corrosion current calculated from the release rates in Table 2.18, using Eq. (2-20), equals 2.3 µA/cm², with no contribution of boron taken into account. The contribution of silicon to the current is 0.27 µA/cm² and is suspect, as the silicon in the medium is partly attributed to the dissolving of the silicon grease used.
FIG. 2.51. Nickel loss of Micro-Bond NIP vs time in 0.1 M lactic acid + 0.1 M NaCl.

FIG. 2.52. Chromium loss of Micro-Bond NIP vs time in 0.1 M lactic acid + 0.1 M NaCl.

FIG. 2.53. Gallium loss of Micro-Bond NIP vs time in 0.1 M lactic acid + 0.1 M NaCl.

FIG. 2.54. Molybdenum loss of Micro-Bond NIP vs time in 0.1 M lactic acid + 0.1 M NaCl.

FIG. 2.55. Iron loss of Micro-Bond NIP vs time in 0.1 M lactic acid + 0.1 M NaCl.

FIG. 2.56. Silicon loss of Micro-Bond NIP vs time in 0.1 M lactic acid + 0.1 M NaCl.
Nickel and gallium are the main elements released (Fig. 2.58). Table 2.16 shows that the dissolving process during corrosion cannot be imagined as a simple scraping off of a surface layer, but that instead some elements (Ni, Ga) dissolve faster than one might expect from the composition of the alloy, while others (Cr, Mo, Fe) dissolve slower.

In the first and second article a medium with few salivary components was used because added oxidizable salivary components might, by reacting with oxygen, deplete the oxygen inside the cell during the long immersion time, which in turn might end anodic current inhibition. In this study the total amount of lactic acid in the medium is 0.5 mmol, the total amount of oxygen in the air of the cell 0.25 mmol (third article). One lactic acid molecule can react with three molecules of oxygen, hence reaction with lactic acid could remove all oxygen, a process that microorganisms can accelerate strongly. The corrosion rate in Table 2.16 is larger than the rates in the articles, which can be explained by the much lower pH, and by the occurrence of the above mentioned effect of oxygen depletion.

A previous study [Geis-87a], where the same medium was used but where aeration was constant, yielded lower values for the mass loss of Micro-Bond N/P2, which can be explained by the absence of an oxygen depletion effect. Four dental NiCr alloys were investigated. After one week the nickel loss was about 7.5 and 4 µg/cm² for Micro-Bond N/P2 and Wiron 88, and 3800 and 4100 µg/cm² for Euro-Ceram (a NiCr alloy without molybdenum) and Ultratek (a NiCr alloy containing beryllium) [Geis-87a,Figs 7-8]. Anodic protection [Fonta83,p.210] could however also be the cause of the lowered metal loss, as the specimens were squeezed in the specimen holder by means of platinum wires and were possibly in electrical contact with these wires.

Obviously more research is needed to determine the stability of dental NiCrMo alloys with respect to mediums of low pH and low oxygen concentration.
2-6 Commentary

Section 2-6 gives additional comment to the obtained results. Similar results of other researchers are given. Some aspects of the clinical significance are discussed, and subjects for further research indicated.

2-6.1 The methods

The articles present the first electrochemical determination of the corrosion rate of a passive alloy as a function of time. The articles are consequently of general interest. Because of their slow alteration during corrosion, the slowly corroding NiCrMo alloys are suitable model systems for corrosion research. The study of strongly corroding systems, on the contrary, is complicated because of their rapid evolution: dissolved corrosion products may act as additional oxidizers, corrosion products may precipitate upon the metal surface, and holes and crevices may arise.

The two measurement methods, the potentiostatic deaeration method and chemical analysis of the medium, are complementary. The first method yields the corrosion potential and current, allowing the determination of the E_{corr} vs i_{corr} relation. The method is involved, as one needs a special test cell, gas bottles, a potentiostat, an ADDA converter, a microcomputer and a heat bath. The method is also time-consuming, as it takes one week to measure one specimen. Performing many experiments is tedious, which makes it difficult to determine the average corrosion behavior. The method demands continuous attention, especially during deaeration. The other method, chemical analysis of the medium, yields the elements that go into solution. Only a 37°C oven is needed. Many test cells are easily handled simultaneously, permitting the quick determination of the average corrosion behavior and its dispersion. An ICP-AES facility must be available. During immersion the cells must be watched for leakage, but this is only a minor nuisance.

The potentiostatic deaeration method measures the cathodic current, which in turn is equal to the sum of the corrosion currents due to all types of corrosion that can occur: in addition to uniform corrosion, crevice corrosion, pit corrosion, intergranular corrosion, stress corrosion and wear corrosion. As a consequence one can, provided the corrosion due to all other corrosion types can be neglected, measure by this method the corrosion current due to each of these corrosion types.

The use of silicon grease minimizes the chance of crevice corrosion occurring in the crevice between the specimen and the specimen holder.

2-6.2 Mass loss determinations

A decreasing mass loss rate is commonly observed in mass loss experiments of dental alloys, such as for amalgam [Brune81,84] and noble alloys [Mober85d].

The articles show that NiCrMo alloys mainly release nickel; this is also found for NiCrFe alloys [Miche87].

The second and third articles confirm the previously reported large variation in corrosion resistance of individual NiCr alloys [Weber83].

Scattering of corrosion rates

Large scattering of the corrosion rate also occurs for CoCr alloys in vitro [Brune84b], for CoCr implants in vivo [Miche87] and for amalgam in vitro [Brune81,84a, Mober85abc,88] and in vivo [Enwon87].

While testing alloys one should be aware that the clinically important property may be not the average behavior but instead be behavior deviant from the average, in particular the incidence of large transgressions.

The wide scattering in mass loss of individual alloys under identical experimental conditions can be explained by a variable intensity of wear corrosion or of crevice corrosion. It follows from the second article that the anodic process is probably sensitive to wear corrosion, but the cathodic process is not, as the anodic process is influenced by the thickness of the passive layer, but the cathodic process is not.
2.6.3 The time dependency of the corrosion potential
In Figs 2.22-23 the corrosion potential decreased directly after immersion, reached a minimum after between 10 and 1000 s and then rose linearly with log t. This behavior can be explained by assuming that during submersion the specimen first assumes the 'Billiter-potential' [Verte81,p.87], which for many metals has the value of 479 mV, and that metal oxides in a high-oxidation state, formed at the air/metal interface before immersion, oxidize the metal next, causing its potential to drop. The latter process is assumed to level off after 10 to 1000 s.

The increasing corrosion potential after 10 to 1000 s might be attributed to a depletion of base components from the corroding metal surface [Kaesc79,p.151]. Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59).

Here the increase can only be explained by a thickening of the passive layer that diminishes the anodic current more strongly than it diminishes the cathodic current. A similarly increasing corrosion potential has been found for gold alloys during the first 24 hours after immersion [Brugi73] (Fig.2.60).

Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59). The latter process is assumed to level off after 10 to 1000 s.

The increasing corrosion potential after 10 to 1000 s might be attributed to a depletion of base components from the corroding metal surface [Kaesc79,p.151]. Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59).

Here the increase can only be explained by a thickening of the passive layer that diminishes the anodic current more strongly than it diminishes the cathodic current. A similarly increasing corrosion potential has been found for gold alloys during the first 24 hours after immersion [Brugi73] (Fig.2.60).

Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59). The latter process is assumed to level off after 10 to 1000 s.

The increasing corrosion potential after 10 to 1000 s might be attributed to a depletion of base components from the corroding metal surface [Kaesc79,p.151]. Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59).

Here the increase can only be explained by a thickening of the passive layer that diminishes the anodic current more strongly than it diminishes the cathodic current. A similarly increasing corrosion potential has been found for gold alloys during the first 24 hours after immersion [Brugi73] (Fig.2.60).

Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59). The latter process is assumed to level off after 10 to 1000 s.

The increasing corrosion potential after 10 to 1000 s might be attributed to a depletion of base components from the corroding metal surface [Kaesc79,p.151]. Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59).

Here the increase can only be explained by a thickening of the passive layer that diminishes the anodic current more strongly than it diminishes the cathodic current. A similarly increasing corrosion potential has been found for gold alloys during the first 24 hours after immersion [Brugi73] (Fig.2.60).

Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59). The latter process is assumed to level off after 10 to 1000 s.

The increasing corrosion potential after 10 to 1000 s might be attributed to a depletion of base components from the corroding metal surface [Kaesc79,p.151]. Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59).

Here the increase can only be explained by a thickening of the passive layer that diminishes the anodic current more strongly than it diminishes the cathodic current. A similarly increasing corrosion potential has been found for gold alloys during the first 24 hours after immersion [Brugi73] (Fig.2.60).

Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59). The latter process is assumed to level off after 10 to 1000 s.

The increasing corrosion potential after 10 to 1000 s might be attributed to a depletion of base components from the corroding metal surface [Kaesc79,p.151]. Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59).

Here the increase can only be explained by a thickening of the passive layer that diminishes the anodic current more strongly than it diminishes the cathodic current. A similarly increasing corrosion potential has been found for gold alloys during the first 24 hours after immersion [Brugi73] (Fig.2.60).

Increasing corrosion potentials are however also found for pure metals where such an embrittlement is impossible, e.g. for pure silver and palladium [Ishiz69] (Fig.2.59). The latter process is assumed to level off after 10 to 1000 s.
At lower pH the induction time may be shorter, especially for alloys with a lower molybdenum content. The $E_{\text{corr}}(t)$ curve of Micro-Bond N/P2 (7% Mo) during the first 12 h after immersion in a modified Fusayama solution, pH 5, has been given [Meyer77, Fig. 8] (Fig. 2.63). Assuming a linear increase with log t, it follows from the E_{corr} values at 6 and 12 h, that $E_{\text{corr}}(t)$ can be approximated as:

$$E_{\text{corr}}(t) = -284 + 110 \log t.$$

For a 7% Mo alloy at pH 5 an E_{pist} value of 700 mV is read from Fig. 2.62, resulting in a t_{ind} of 28 years, a value that could be of practical importance. Similarly, the E_{corr} at pH 5 of an alloy without molybdenum was 440 mV. If this alloy would behave similarly as Micro-Bond N/P2, its t_{ind} would be only 44 days. It is concluded that for dental NiCrMo alloys the possible attainment of the pitting potential at longer immersion times warrants further investigation.

From the foregoing the following model for the evolution of the potential of a passive metal in a corrosive medium is proposed:

1. During immersion the metal acquires the 'Billiter' potential, which is commonly attributed to the formation of double layers at the metal/solution interface [Vette60, p. 88].
2. Directly after immersion the potential drops because of oxidation of the metal by high-valence oxides formed at the metal/air interface before immersion. This process ends after all high-valence oxides have been reduced.
3. The metal is oxidized by oxygen dissolved in the medium. The potential rises linear vs log t.
4. Ultimately the pitting potential may be reached or crevice corrosion may start, which causes the potential to stabilize or to drop again.

2-6.4 The time dependency of the corrosion current

The methods described in the first two articles give a good picture of the corrosion during the first week after immersion, and yield a ranking of alloys according to corrosion resistance during this week. The alloys dissolved mainly directly after immersion, with the corrosion type probably being uniform corrosion. The shortest immersion time during the mass loss studies was one hour. Mass loss just after immersion may be similar to the mass loss process during wear corrosion: wear may remove the passive layer, uncovering the underlying metal and leaving its surface in a state resembling the state of the metal surface at the start of immersion in our experiments.

At the beginning of this study it was expected that the corrosion rates of the alloys would ultimately become constant. The second article shows that constancy is not reached within one week. Extrapolation of the corrosion current to longer immersion times yields extremely low values; Ceramalloy, which shows a late increase, being the exception. Whether other alloys behave similar to Ceramalloy at immersion times longer than one week is uncertain, just as whether the late increase is related to the onset of pit or crevice corrosion, for which an induction time may exist. The clinically important corrosion behavior may very well be the occurrence of such a late increase. The methods described in the articles can be modified to simulate long immersion times.

Although, until now, time dependency of the corrosion current had not been determined directly (a decreasing corrosion current for dental NiCr alloys [Meyer79] and dental alloys in general [Gettl80, Table 4] had been deduced from an increasing polarization resistance), the time dependency of potentiostatic currents (i_{pot}) has been investigated for many alloys. Some results:

- Potentiostatic currents of iron (at high pH), chromium, nickel, and NiCr alloys have a time dependency of

 $$i_{\text{pot}} = k / t + i_{\text{inf}}$$

 [Schwe61].

- The time dependency of the potentiostatic current of molybdenum in 1 M H$_2$SO$_4$ and in 1 M HCl is [Heuma71]:

 $$i_{\text{pot}} = i_{\text{inf}} - \frac{0.61}{t}\text{m A/cm}^2$$

 which resembles the time dependency of the corrosion current in our articles.

3 Such a late current increase has also been found during potentiostatic experiments on 316L stainless steel, where it was attributed to crevice corrosion that was visible under the Teflon sealing rings used in the experiments [Fig. 2.71].
A linear decreasing log i_{pot} vs log t has been found for nickel in 1 M H$_3$PO$_4$, 1 M Na$_2$HPO$_4$, 1 M Na$_3$HPO$_4$ and 1 M Na$_3$PO$_4$ [Maier84] (Fig. 2.64). The coefficient of log t is often, but not always, close to -1. At lower pH the current decay rate is generally less, in some cases the current remains constant. In one case a late current increase similar to the late increase of Ceramalloy is found (Fig. 2.64c).

For amalgam a monotonously decreasing potentiostatic current that approaches zero has been found [Marek80] (Fig. 2.66).

A linear decreasing log i_{pot} vs log t has also been found for nickel in a borate buffer (pH 8.3) [Flis85] (Fig. 2.65). NiP alloys, on the contrary, show linearly increasing curves on these plots.

FIG. 2.64. Linear log i_{pot} vs log (time) curves of nickel in phosphate solutions at several pH [Maier84]. The original figures have been modified by the author: curves recorded at higher temperatures have been removed.

FIG. 2.65 Linear log i_{pot} vs log (time) curves of nickel and NiP alloys in a borate buffer (a), in a borate buffer with chloride (b), and in a borate buffer with sulphate (c). [Flis85, Figs 4, 7, 9].
For scratches upon 304L stainless steel at pH 0, 4.7 and 14, and upon bismuth at pH 14, a linear decreasing log $ipot$ vs log t has been found, also with a coefficient of log t close to -1 [Burst83ab,84, Misra84] (Figs 2.67-70).

The t^n time dependency for the corrosion current found in the articles for NiCrMo alloys and in section 2-5.2 for Vitallium was also found for the $ipot$ of creviced samples of surgical CoCr alloys. At higher potentials deviations occurred similar to the late increase found for Ceramalloy in the second article (Figs 2.71).

FIG. 2.67. Current decay of scratched 304L stainless steel in 1 M KOH [Burst83a,Fig.3].

FIG. 2.68. Current decay of scratched bismuth in 0.1 M NaOH [Burst83b,Fig.3].

FIG. 2.69. Current decay of scratched 304L stainless steel at pH 0 (o) and pH 4.7 (x) [Burst84,Fig.1].

FIG. 2.70. Current decay of scratched nickel in 1 M H_2SO_4 [Misra84,Fig.7].

FIG. 2.71. Potentiostatic currents in 0.9 % NaCl of several alloys under creviced conditions [Devin75].
It is concluded from Figs 2.65-71 that the time dependency of the corrosion current of NiCrMo alloys and of Vitallium resembles the time dependency of the potentiostatic current of several other passive alloys.

Prepassivation or anodizing
The decreasing corrosion current suggests the use of precorrosion in order to lower the corrosion rates of metallic restorations. In this context it is of interest that no inflammation occurred after the second implantation of NiCrMo alloys that had caused inflammation after the first implantation [Henst80], and that precorrosion of a AgPdCu alloy lowered its cytoxicity [Niemi85]. These results suggest that biological effects of implanted metals can be avoided by corroding the metal before implantation, i.e. by 'anodizing' it, covering it with an artificially thick passive layer. Anodizing is a standard method for protecting aluminum against corrosion; it specifically prevents pit corrosion [White85]. Prepassivation has also been proposed as a means of avoiding the metallic taste that patients often experience directly after placement of restorations [Laute85]. Prepassivation would particularly make sense when the metal is resistant to wear corrosion, or, when not resistant, is not subject to it, because otherwise the applied layer would be worn away.

2-6.5 The $E_{corr} - \log (i_{corr})$ linearity
In vivo the potential range of three to nine month old NiCr restorations is 120 - 210 mV [Gubsk74] (cited by [Brück84]). From Eq. (2-16) a corresponding corrosion current range of 0.13 - 0.72 nA/cm² is calculated. In vivo potentials have also been measured of specimens of dental metals cemented to the facial surfaces of teeth of baboons [Geril80]. After one week the potential of Micro-Bond N/P² specimens was 30 mV, the potential of Howmedica III (Ni₃₃Cr₄₄Mo₂₄Si₅Sn) specimens 71 mV. Application of Eq. (2-16) then yields 3.8 and 1.8 nA/cm² for the associated corrosion currents. In both studies the potentials consequently suggest that in vivo corrosion currents are very low. Equation (2-16) may however be inappropriate for metals placed in the oral cavity, one reason being that the salivary oxygen concentration is lower than in the medium of the second article, which can lower as well as enhance the corrosion rate. The applicability of equations similar to Eq. (2-16) in the oral cavity warrants further investigation, as an established validity would allow the determination of the in vivo corrosion rate from the easily obtainable in vivo corrosion potential.

Extrapolation of the current in Eq. (2-16) to 810 mV (the equilibrium potential of the oxygen/water redox couple at pH 7), yields the exchange current density of the cathodic current. From the linearity follows a value of $10^{-5.71}$ nA/cm². When a NiCrMo alloy is electrically connected to a second metal with a larger exchange current density of the cathodic current, an enhanced anodic current of the alloy, i.e. galvanic corrosion, can be expected. If the explanation of the $E_{corr} - \log (i_{corr})$ linearity by Tafel behavior of the cathodic current is correct, then the corrosion current that can be calculated with this relation from a measured corrosion potential represents the sum of all types of corrosion currents that might be present in addition to uniform corrosion: crevice corrosion, pit corrosion, intergranular corrosion, stress corrosion and wear corrosion. Just as for the potentiostatic deaeration method (see section 2-6.1) one could determine the corrosion current due to each of these corrosion types when all other corrosion types can be neglected.
2.6.6 Anodic current inhibition by oxygen

As mentioned in section 1-2, the role of oxygen in passivation is still controversial [Bocker70,p.1324]. It has been claimed that passivation is caused by inhibition of the anodic current by oxygen [Uhlig79], but the opinion that an oxide layer causes passivation [Evans71] appears to be more popular. The first article confirms the existence of an influence of oxygen upon the anodic current during passivation. The decrease of the anodic current with immersion time is on the other hand more easily explained by hindrance of the anodic current by a thickening oxide layer. It is concluded that both anodic current inhibition by oxygen, and barracading by an oxide layer, contribute to the passivation of dental NiCrMo alloys. Such combined action during passivation has been proposed previously [Andre64].

The secondary rise, as described in the first article, makes it difficult to determine the magnitude of the primary rise accurately. The secondary rise could be suppressed by the addition of a small amount of oxygen to the nitrogen purging gas. Such an amount should suffice for inhibition of the anodic current but should result in an insignificant cathodic current.

The oxygen concentration threshold for inhibition of the anodic current should be determined, and should be compared with the very low oxygen concentration in saliva and plaque4. Fig. 2.10 shows that the threshold for Micro-Bond N/P2 lies below a partial oxygen pressure of 0,10 %. The lower the threshold of an alloy, the higher its in vivo corrosion resistance may be.

As long as these thresholds are unknown, patients should be advised to brush their restorations well. This removes anaerobic plaque that might enhance corrosion by oxygen depletion. The advice should be given particularly to patients who suffer from complaints attributed to metallic restorations. Such a corrosion inhibiting effect of brushing can also explain the observation that tarnish of restorations is less in patients with a better oral hygiene [Mezge89,p.125].

4 Inhaled air contains 21 % oxygen, exhaled air 16 % oxygen. The PO2 on the anterior tongue is 16,4 %, on the posterior surface of the tongue 12 % [Eskow71]. Oxygen exchange between air and saliva is slow, except possibly in mouth breathers [Globe79]. The PO2 of saliva leaving the salivary glands varies between 5,6 and 16,8 %, after secretion, bacterial respiration causes the PO2 of saliva to drop quickly. On the floor of the mouth the range is from nil to 0,4 % [Globe79], and in the maxillary and mandibular buccal folds 0,3 to 0,4 % [Eskow71]. The oral microflora is predominantly anaerobic. The increased presence of obligate anaerobic bacteria [Birz 67] as plaque ages indicates a very low PO2. Strict anaerobes, which in vitro only grow when PO2 ≤ 0,5 %, are found in periodontal pockets, on the surface of sub-gingival plaque near gingival tissue, deep in dental plaque, and in necrotic dental pulps. As fresh plaque matures, anaerobiosis increases [Morri79].

2-6.7 Wear corrosion

The measurements described in the articles and in potentiostatic experiments suggest that corrosion currents decay in vivo. In vivo this may occur as well, but it is also possible that other corrosion types become significant after a while: pit corrosion, crevice corrosion. Wear corrosion of metallic restorations will certainly occur at approximal contacts, which are visibly different. NiCr alloys, however, seldom make approximal contacts; instead the porcelain fused to the alloy does so. How intense is wear at other places? Potentials of specimens of dental metals cemented to the facial surfaces of teeth of baboons, were lower compared to in vitro potentials [Gett60]. After one week the potential of Micro-Bond N/P2 specimens was 30 mV in vitro, 186 mV in vitro, and the potential of Homedema III (Ni20Cr4,Mo,Si)Sn specimens 71 mV in vitro, 256 mV in vitro. The lower in vitro potentials were attributed to an effect of in vivo abrasion. That wear may remove covering oxide layers at places far from approximal contacts is suggested by the enhanced material loss found after in vivo brushing of NiCr and CoCr alloys [Geis-86]. Intense abrasion with abrasive paper increased the anodic current of Wiron S (85Ni20Cr4,Mo) and MT1000 (86.3Ni19.5Cr7.0Mo3.0Si) [Braun88,89]: directly after abrasion the current was 104 and 45 µA/cm², it subsequently decayed exponentially with time constants of 5,7 and 4,3 s.

Assuming that during mastication dental NiCrMo restorations without approximal contacts are subject to wear corrosion, and that in the absence of mastication no wear corrosion is initiated, it would follow that after the end of mastication only a decaying wear corrosion current will be present. It is expected that such a decaying corrosion current will be similar to the monotonously decreasing current during uniform corrosion. These assumptions and conclusion obviously warrant experimental verification.

Hence wear corrosion may be most intense during and directly after mastication. Can this process be influenced? During a meal metal ions released by wear corrosion will be bound by ligands in food. Metal ions released after the meal may cause local adverse effects, however. These might be caused by free radicals formed from metal ions and hydrogen peroxide [Weis89]. If directly after a meal the teeth and the restorations are brushed, metal ions released at that time might be scavenged by using a toothpaste with proper complexants. Phytate may be a suitable complexant [Vohra65] to add to toothpaste, and has the advantage of being a caries inhibitor [Jenki70].

The healing of aphthes by Zendium, a lactoperoxidase containing toothpaste, can be explained by an effect upon radical formation, assuming that radical formation causes aphthes. The lactoperoxidase may inhibit free radical formation by scavenging hydrogen peroxide [Tenov84] at the time when metal ion release is maximal. If this mechanism for the activity of Zendium is correct, and if free radicals formed in this manner play a role in galvanism, then Zendium might also help against galvanism and other adverse effects of ions released by wear corrosion.
The relation between polarization resistance and corrosion current during passivation

2-7.1 The Stern-Geary equation

The Stern-Geary equation [Sten57], for our purposes written as

\[I_{\text{cor}} = \frac{R_{\text{pol}}}{2.303 / \beta_a + 2.303 / \beta_c} \] \hspace{1cm} (2-21)

calculates the corrosion current \(I_{\text{cor}} \) from the polarization resistance \(R_{\text{pol}} = (dV/dE)_{\text{cor}} \) and the Tafel constants \(\beta_a \) and \(\beta_c \) of the anodic and cathodic currents.

As the conditions under which the equation is valid are of interest in the rest of section 2-7, its derivation is given here. The equation is derived under the assumption that both the anodic and cathodic currents can be described by the Tafel equation:

\[V = a \pm \beta \log i \] \hspace{1cm} (2-22)

It follows that one can write for the anodic current \(i_{\text{an}} \) and the cathodic current \(i_{\text{cath}} \):

\[i_{\text{a}} = i_{\text{an}}^{10} \] \hspace{1cm} (2-23)

\[i_{\text{c}} = i_{\text{cath}}^{10} \] \hspace{1cm} (2-24)

At the corrosion potential the two currents are equal:

\[i_{\text{a}}(E_{\text{cor}}) = i_{\text{c}}(E_{\text{cor}}) = I_{\text{cor}} \] \hspace{1cm} (2-25)

During a potentiodynamic scan the potential \(V \) is varied, using an external power source, and the net externally applied 'potentiodynamic current', \(i_{\text{pod}} \), measured. The current equals:

\[i_{\text{pod}} = i_{\text{an}}^{10} - i_{\text{cath}}^{10} \] \hspace{1cm} (2-26)

At the corrosion potential \(i_{\text{pod}} = 0 \). During a potentiodynamic scan:

\[i_{\text{pod}} = i_{\text{an}}^{10} - i_{\text{cath}}^{10} \] \hspace{1cm} (2-27)

The polarization resistance \(R_{\text{pol}} \) is defined by:

\[R_{\text{pol}} = \frac{dV}{E_{\text{cor}} - V} \] \hspace{1cm} (2-27)

After differentiating and substituting \(V = E_{\text{cor}} \) one obtains:

\[\frac{dV}{E_{\text{cor}} - V} = 2.303 \left(\frac{i_{\text{an}}^{10}}{\beta_a} + \frac{i_{\text{cath}}^{10}}{\beta_c} \right) \] \hspace{1cm} (2-27)

\[\frac{dV}{E_{\text{cor}} - V} = 2.303 \left(\frac{i_{\text{an}}^{10}}{\beta_a} + \frac{i_{\text{cath}}^{10}}{\beta_c} \right) \]

Hence:

\[i_{\text{cor}} = \frac{1}{2.303 R_{\text{pol}} (1/\beta_a + 1/\beta_c)} \]

the Stern-Geary equation.
2.7.2 An equation for passive alloys similar to the Stern-Geary equation

The second article yielded idealizations for the anodic and cathodic current of NiCrMo alloys. From these idealizations, an equation similar to the Stern-Geary equation can be derived. General validity of this derived equation would explain the apparent validity of the Stern-Geary equation during passivation. For the derivation of such an equation, the anodic and cathodic current during passivation have to be expressed as a function of electrode potential and/or time.

It is assumed that the anodic current of passivating alloys equals the potentiostatic current of these alloys; the anodic current is assumed to depend only upon the time, being described by the equation:

\[
\dot{i}_{\text{an}}(t) = \dot{i}_{\text{an}}(0) t^{-\alpha}
\]

(2-28)

where \(t \) is the immersion time, and \(\alpha \) is approximately 1 [Kirch87]. The corrosion current \(i_{\text{cor}} \) is then obviously also described by Eq. (2-28):

\[
\dot{i}_{\text{cor}}(0) = \dot{i}_{\text{cor}}(0) t^{-\alpha}
\]

(2-29)

The second article shows that the cathodic current can be idealized by Tafel's law, Eq. (2-23):

\[
\dot{i}_{\text{cat}}(V) = \dot{i}_{\text{cat}}(0) \frac{t}{V}
\]

(2-30)

with the Tafel constant having the value of 120 mV. How common such Tafel behavior is remains to be demonstrated; it can be tested by checking whether during a potentiodynamic scan the cathodic branch is independent of the scanning rate and immersion time.

It follows from Eqs (2-23) and (2-28), that at the corrosion potential \(E_{\text{cor}} \):

\[
V = E_{\text{cor}}(t) = \dot{i}_{\text{cor}}(0) \frac{t}{V} + \alpha \beta \log t
\]

(2-31)

Thus a linear rise of corrosion potential with log \(t \) is derived, in accordance with Figs. 2-11, 2-22, and 2-23, and with a study of the corrosion potential of titanium [Abdel81]. From a typical \(\beta \) value of 120 mV and an \(\alpha \) value of 1, a tenfold increase in immersion time would result in an \(E_{\text{cor}} \) increase of 120 mV.

During a potentiodynamic scan the applied potential \(V \) is a function of time:

\[
V = V_0 + s(t - \tau)
\]

(2-32)

where \(\tau \) is the starting time of the scan, \(V_0 \) is the potential at \(\tau \), and \(s \) the scan rate. It follows that:

\[
V = V_0 \alpha \frac{t}{V_0}
\]

(2-33)

and it follows from Eqs (2-23), (2-26), (2-28), and (2-32) that:

\[
\dot{i}_{\text{pot}}(V) = \dot{i}_{\text{cor}}(0) \frac{t}{V} + \alpha \beta \log t
\]

(2-34)

Obviously, \(\dot{i}_{\text{pot}}(E_{\text{cor}}) = 0 \), and

\[
\dot{i}_{\text{an}}(t) \equiv \dot{i}_{\text{an}}(E_{\text{cor}}) = \dot{i}_{\text{cor}}(0) t^{-\alpha}
\]

(2-35)

Substituting Eq. (2-33) in Eq. (2-27), using Eq. (2-34), and substituting \(V = E_{\text{cor}} \), yields:

\[
\frac{1}{\alpha \dot{i}_{\text{an}}(0) + \frac{2,303}{\beta_0} \frac{1}{V \beta_0}} = \frac{s}{s + \frac{1}{V \beta_0}} (\alpha \dot{i}_{\text{an}}(0) + \frac{2,303}{\beta_0} \frac{1}{V \beta_0}) + \frac{1}{\beta_0} \frac{2,303}{V \beta_0}
\]

Hence:

\[
i_{\text{cor}} = \frac{R_{\text{pol}}}{\beta_0} \left[\frac{2,303}{\beta_0} \frac{1}{V \beta_0} \frac{1}{\beta_0} \frac{2,303}{V \beta_0} \right]
\]

(2-36)

the sought expression. Equation (2-35) is similar to the Stern-Geary equation, the difference being the replacement of the term 2,303 / \(\beta_0 \) by the term - \(\alpha \beta_0 \). If the product \(s t \) becomes large, Eq. (2-35) reduces to an equation proposed [Praza68] for a modified Stern-Geary equation in which the 2,303 / \(\beta_0 \) term has been neglected:

\[
i_{\text{cor}} = \frac{K}{R_{\text{pol}}}
\]

with \(K \) equal to \(\beta_0 / 2,303 = 52 \) mV, assuming a value of 120 mV for the Tafel constant. This calculated value of \(K \) agrees well with the reported range of 51 - 105 mV [Callo76]. Note that \(i_{\text{cor}} \) in Eq. (2-36) still depends on time, as \(R_{\text{pol}} \) is time-dependent.

From a value of 120 for \(\beta_0 \), a value of 0.019 is calculated for the first term between brackets in the denominator of Eq. (2-35). For the second term between brackets, assuming values of 1 for \(\alpha \), 0.01 mV/s for \(s \), and 3600 s for \(t \), a value of 0.028 is obtained. The expression between brackets in Eq. (2-35) then becomes negative, and \(R_{\text{pol}} \) must then be negative as well. In that case Equation (2-36) obviously is inadequate, and results are suspect that were obtained by applying Eq. (2-36) to data from experiments in which the scanning rate was low and the immersion time short. Correction is simple, if one can be certain that application of Eq. (2-35) is allowed.

For the polarization resistance method the advantage has often been claimed that it tests the corrosion resistance of an alloy in a short time [Geis-87b]. The foregoing shows that at short immersion times in particular, the corrosion current calculated with the Stern-Geary equation may differ greatly from the actual corrosion current.

It was asserted at the beginning of this chapter that for passivating metals the polarization resistance method is invalid. Next, another method was developed for measuring corrosion rates, and it was just stated that the polarization resistance method may sometimes be applied to passivating alloys after all. Have I come full circle? The answer is: 'No', as one can only state in hindsight that the application of the polarization resistance method is valid. One must first have at one's disposal reliable data on the anodic and cathodic current, data that can only be obtained by means of the potentiostatic desorption method.

Good results of the application of the Stern-Geary equation may originate from the validity of an equation resembling the Stern-Geary equation. Such an equation may be valid providing battery behavior of the passivating oxide layer is insignificant. This battery behavior is discussed in the following section.
2.7.3 Battery behavior

The first article mentions that the cation current between the metal and the oxide layer ('anodic current') can differ from the cation current by metallic ions between the oxide layer and the medium ('anodic dissolution current'). The difference has been called the 'film formation current' (Fig. 2.74), and these currents have been discussed in models for the time dependency of the potentiostatic current during the potentiostatic dissolving of iron [Kirch87]. At pH 1 both anodic currents decrease almost linearly on a log i vs log t plot until 1000 s (Fig. 2.75). Thereafter the thickness of the passive layer becomes constant and the film formation current becomes zero, the anodic current equaling the anodic dissolution current. At pH 8.4, however, the anodic dissolution current is zero during the entire immersion. All anodic current goes into film formation; the anodic dissolution current continues to decrease linearly on a log i vs log t plot after 1000 s (Fig. 2.76). Similarly in austenit 304 L stainless steel, most of the anodic current after scratching at high pH goes into the build-up of the oxide layer, and does not go into anodic dissolution [Burst83a].

An oxide layer that can 'absorb' an anodic cation current in the absence of an anodic dissolving cation current, can function as a battery when the charge 'stored' in the oxide layer can be released again later. More generally, battery behavior of the oxide layer can also be associated with the occurrence of reversible reactions such as:

$$\text{MO}_2 + 2 \text{H}^+ + 2 \text{e}^- \longrightarrow \text{MO} + \text{H}_2 \text{O}$$

The oxidation state of metal oxides in oxide layers can indeed be a non-integral variable [Vertes82, Allun86]. At high potential the reaction goes to the left, at low potential to the right: after connection of the metal to an external high potential power source the metal oxide layer stores electrical energy which it releases when the external potential falls. During storage the current is anodic, during release cathodic, giving hysteresis of the current during a cyclic potential scan.

Presumably the oxide layer upon every passive metal can, to a certain extent, store and release charge in this manner during a cyclic potentiodynamic scan. The associated anodic and cathodic currents are unrelated to metal dissolving and oxygen reduction reactions.

Assume firstly that the currents caused by such battery behavior are small compared to the anodic dissolution current and the cathodic oxygen reduction current (Fig. 2.76). Battery behavior then leads to the addition of an extra term to Eq. (2-26) called the 'battery current', i_{bat}. Then:

$$i_{\text{bat}} = i_{\text{an}} - i_{\text{cat}} = i_{\text{an}} - i_{\text{bat}}$$

Let the battery current be proportional to the scanning rate and not depend on the voltage and the time. Let the proportionality factor be b. Then:

$$i_{\text{bat}} = b i_{\text{an}}$$

and

$$\frac{d h_{\text{bat}}}{d V} = 0$$

which causes Eq. (2-33) to remain valid. However, i_{pod} is not zero at E_{cor} any more, but is i_{an} larger during forward scanning. E_{cor} lies approximately $h_{\text{bat}} R_{\text{cat}}$ above the potential at which i_{pod} is zero: one must then take care to determine the polarization resistance at the corrosion potential and not at the potential of zero applied current. As the battery current increases, this potential difference also increases.

Secondly, let the battery current be large in comparison to the anodic dissolving current and the cathodic oxygen reduction current (Figs 2.77-78). This
then causes strong hysteresis of the applied current during a cyclic potentiodynamic scan, as the battery current is positive during the rise of the applied potential and negative during its fall. Such strong hysteresis of the potentiodynamic current is indeed commonly found during cyclic potentiodynamic scans of dental amalgams, dental gold and AgPd alloys, and orthodontic wire alloys [Nomot77, Wrigg81, Sarka79c,d, Johns83, Nadal85, Mezge89] (Figs 2.79-85: in some of these figures the current is plotted vs the potential)\(^5\). The cathodic current during the hysteresis is often implicitly attributed to the reduction of an oxidator in the medium, but reduction of the oxide layer is more plausible\(^6\). Battery behavior is suggested by the applied current often having the same magnitude but opposite sign during the forward and reverse scan. Moreover, a tenfold increase or decrease in scanning rate during potentiodynamic scans causes a similar increase and decrease of the applied current [Sarka79c,d discussion, Geis-87b] (Fig.2-86), hence a fixed amount of charge appears to be necessary to effect a certain voltage change, which also suggests an oxide layer charging / discharging mechanism.

\(^5\) Some of the curves given by Mezger show an anodic current during the reverse scan that lies to the right of the anodic current during the forward scan. This can be attributed to pit corrosion during the reverse scan initiated at high potential.

\(^6\) Sarkar (1983) remarked that hysteresis indicates changes in the alloy surface due to passive film growth.
FIG. 2.83. Cyclic polarization curves of $81.5\text{Pd}_{1.5}\text{Sn}_{5.5}\text{Ga}$ in two artificial salivas [Nadal85,Figs13-14].

a. Permachrome

b. Elgiloy

c. Experimental titanium alloy

d. Nitinol

Fig. 2.84. Cyclic polarization curves of Permachrome (a stainless steel), Elgiloy (a CoCr alloy), an experimental titanium alloy, and Nitinol (a NiTi alloy) [Barl82].

For Micro-Bond N72 and Talladum the anodic current was initially larger at the start of the reverse scan compared to the forward scan. This is attributed to pit corrosion.

FIG. 2.85. Cyclic polarization curves of several dental alloys in 0.9 % NaCl [Mezge89].
CHAPTER 3

In vivo electrical potential measurements

3-1 Introduction

In research, agreement of in vivo and in vitro values of a parameter measurable under both conditions helps in alleviating the ever present doubt concerning the applicability of in vitro results. The electrical potential of a restoration, which can be measured in vivo as well as in vitro, is therefore of interest. In addition, it is of interest because of its possible correlation with adverse effects of metallic restorations.

However, the published measurement methods of the in vivo potential were found to have flaws. For this reason an improved measurement method was developed. Two articles have been written on in vivo potential measurement: the first one describes the new method, and the second one discusses its application to the restorations of a group of 28 healthy students.

Thus battery behavior can be detected by performing cyclic polarization scans. In the absence of battery behavior the currents during the forward and backward scan will have identical sign and magnitude. A decreasing anodic current may also cause hysteresis during a cyclic voltage scan, mimicking battery behavior. One can check for a decreasing anodic current by performing three-way scans: forward, backward, and forward again. Battery behavior will cause the currents during the two forward scans to be equal, but time dependency shall cause the current during the second forward scan to be lower. Scanning-rate dependence of the polarization curve can also be used to detect battery behavior.

Obviously the Stern-Geary equation and Eq. (2-35) are not applicable for describing the corrosion current of passive metals that show strong battery behavior, such as the alloys of which the polarization curves are given in Figs 2.79-85.

Battery behavior cannot interfere in the potentiostatic deaeration method, as this method does not involve potential scanning, nor can non-Tafel behavior of the anodic and cathodic current interfere in this method, as the corrosion current is not calculated from Tafel constants but is instead determined directly.

FIG. 2.86 Scanning rate dependence of the polarization curve of NiCr alloys [Getts-87].
Alloy A: without molybdenum (72 Ni, 3 Cr, 2.4 Si, 1 Fe, 1 Mn)
Alloy B: with 10 % molybdenum (61 Ni, 25 Cr, 2 Mo, 1 Ni, 1 Fe).

Abb. 3 and 4. Einfluß der Polarisationsgeschwindigkeit auf den Verlauf von Stromdichte-Spannungs-Kurven:
- - - 0.01 mV/s; - - - 0.1 mV/s; - - - 0.5 mV/s; - - - 1.0 mV/s; - - - 5.0 mV/s; - - - 10.0 mV/s
3-2 First article

This article has appeared in the Journal of Oral Rehabilitation, Volume 16, 1989, pp. 271-277 [Mulle89a].

The determination of the electrical potential of a metallic restoration in the oral cavity

A.W.J. MULLER, D.A.J. DE GROOT and C.L. DAVIDSON

Department of Dental Materials Science, Faculty of Dentistry, ACTA, University of Amsterdam, Louwesweg 1, 1066 EA Amsterdam, The Netherlands

Summary

An improved method for measuring the electrical potential of a metallic restoration is proposed and tested. Care was taken to avoid disturbing the restoration, hence it was not cleaned or dried. The probe tip was a gold-plated pin, insulated from the saliva by soft wax. The probe was pressed through the wax on to the restoration just before measurement. An Ag/AgCl reference electrode was in contact with the saliva. The probe and the tip of the reference electrode were disposable.

Introduction

The question of the biocompatibility of metallic restorations in the oral cavity continues to attract much attention. In this context galvanism (pain, battery taste) [AxII83], leukoplakia [Inova61], oral lichen planus [Bian679], and toxic and allergic reactions to corrosion products [VanLo84] are of interest. To explain these phenomena in electrochemical and physiological terms, knowledge of the electrical potential of metallic restorations (EPR) is expected to be relevant.

The literature is not very clear on EPR measurement methods. The difference between two EPRs has often been measured; however, the use of a reference electrode is necessary to determine the EPR of a single restoration accurately [Stich72]. Schriever & Diamond (1952) stated they were not aware of in vivo EPR measurements of dental fillings. Since then, several researchers have published methods for the measurement of the in vivo EPRs: Lukas (1973), Bergman, Ginstrup and Nilner (1978), Nomoro, Ano and Onose (1979), and Yontchev et al. (1986).

A condition for accurate EPR measurement is the use of a high impedance voltmeter [Lukas73, Meine84]. During measurement one voltmeter input leads to a probe that is in contact with the restoration, while the other input leads to a reference electrode that is in contact with the saliva or the skin. Thin oxide and grease layers on the restoration may cause a poor electrical contact between the probe and the restoration. To avoid oxidation of the probe tip, gold is proposed because of its good electrical contact properties [Comiz86].

The surface state of a metal can strongly influence corrosion, and consequently the EPR. For instance, a scratch can cause a passivated metal to become active [Fonta83], resulting in a large potential change, and Marxkors (1965) and Marek (1984) have shown that in vitro abrasion can cause potential changes (up to -500 mV) of dental metals. Hence the restoration surface may be disturbed as little as possible; it was neither cleaned nor polished in this study.

To minimize electrochemical interaction of the probe tip with the saliva, the gold-plated tip was insulated with wax. Electrical contact was made by pressing the probe through the wax onto the restoration just before measurement.

The purpose of this study was to test this probe design in vitro and in vivo on its usefulness in EPR measurements on several dental alloys.
Materials and Methods

The probe (Fig. 3.1) consisted of a gold-plated header-and-socket-pin (Vero Electronics, Hampshire, UK; order code 66-3505A) glued by means of P-30 (~M, St. Paul, MN, USA) to a disposable pipette tip (Kartell, Milan, Italy; blue tip). The socket pin is used in electronics for wire wrapping purposes. Electrical contact test data of this pin have been given [Mulde86]. The installation of the tip consisted of soft wax. The empty space inside the pipette tip was filled with Blue Inlay Casting Wax (Regular Type II, Kerr, Detroit, MI, USA). The solution of the tip consisted of soft wax. The empty space inside the pipette tip was filled with Blue Inlay Casting Wax (Regular Type II, Kerr, Detroit, MI, USA):
The solution was checked by placing the probe in the saliva: a large electrical resistance caused erratically fluctuating voltages to be measured, which were absent in the case of an electrical leakage. The fluctuations disappeared after the probe made contact with the restoration. Care was taken that the wax covered only a small part of the surface of the restoration.

The reference electrode (Fig. 3.2) was placed in the oral cavity [Ewers85]. It was a modified MI-402 Ag/AgCl micro-reference electrode (Microelectrodes, Londonderry, NH, USA); its PVC tube was replaced by a pipette tip (Kartell, Milan, Italy; yellow tip) that contained solidified agar (1 M KCl, 1 % agar). The tip hole had been enlarged by removing the upper three mm of the upper part of the tip. For hygienic reasons a piece of parafilm (Parafilm "M", American Can Co., Greenwich, CT, USA) was placed between the tip and the teflon electrode cap. The film, the pipette tip and the teflon head were slightly greased with silicon grease. The electrolyte consisted of a 1 M KCl solution. Upon completing the measurements of the EPRs of a test person, the agar tip of the Ag/AgCl reference electrode and the parafilm were replaced and the rest of the electrode was wiped with a 0.5 % chlorhexidine in 70 % ethanol solution. After replacement of the tip, the Ag/AgCl reference electrode was left to rest overnight in order to let its potential stabilize. The stabilized potential was determined with respect to a saturated calomel reference (SCE) electrode.

The potential was measured with a Hewlett-Packard 34703A Voltmeter/34750A Display combination (input impedance > 10 MΩ). The EPRs were obtained by adding the values of the measured Ag/AgCl - SCE potential difference and the value of the SCE potential (+ 241 mV NHE) to the measured potentials.

The electrical contact between the probe and several dental alloys was tested in vitro by the method shown in Fig. 3.3. The probe was pressed onto an alloy and V1, the voltage difference between the probe and the reference electrode, was compared with V2, the voltage difference between the alloy and the reference; in the case of a good contact V1 should equal V2. Alloys studied in this manner were a gold alloy (75Au25Ag), amalgam (Cavex68, Keur & Sneltjes, Haarlem), pure copper, and a nickel-chromium alloy (Micro-Bond N/P2, Austenal, Chicago, USA) that had been immersed in an artificial saliva for two months.

FIG. 3.3. Testing the probe upon several alloys. A good electrical contact will result in the same measured potential differences by the two voltmeters.
(a) Probe, (b) Tested alloy, (c) Reference electrode.
The two voltages measured with the test method (Fig. 3.3) were equal within 0.1 mV for all metals except Micro-Bond NP2, for which no stable potential could be measured between the probe and the immersed metal.

During in vivo measurement the measured potentials were stable. Table 3.1 gives the results of some EPR measurements in two healthy test persons. The measurements were done at 0.5-h intervals. The standard deviation in the measured values is a measure of the variability of the EPR; its RMS value over all elements is 14 mV.

Table 3.1. Measured potentials of restorations at half-hour intervals.

<table>
<thead>
<tr>
<th>Element</th>
<th>Measured potentials [mV NHE]</th>
<th>Averaged potential</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold crowns:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>73</td>
<td>75</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>118</td>
<td>113</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>126</td>
<td>154</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>131</td>
<td>146</td>
<td>23</td>
</tr>
<tr>
<td>Crown with a low gold content:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>133</td>
<td>146</td>
<td>23</td>
</tr>
<tr>
<td>Amalgam:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>124</td>
<td>137</td>
<td>11</td>
</tr>
<tr>
<td>38</td>
<td>-86</td>
<td>-78</td>
<td>14</td>
</tr>
<tr>
<td>37</td>
<td>78</td>
<td>84</td>
<td>6</td>
</tr>
<tr>
<td>36</td>
<td>97</td>
<td>89</td>
<td>7</td>
</tr>
<tr>
<td>44</td>
<td>86</td>
<td>77</td>
<td>8</td>
</tr>
<tr>
<td>47</td>
<td>109</td>
<td>102</td>
<td>11</td>
</tr>
<tr>
<td>Aluminium temporary crown:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>112</td>
<td>110</td>
<td>15</td>
</tr>
<tr>
<td>Person B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All amalgam fillings</td>
<td>17: 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>36</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>99</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>-269</td>
<td>-243</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-58</td>
<td>-66</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-350</td>
<td>-352</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>-2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>22</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>-19</td>
<td>-25</td>
<td></td>
</tr>
</tbody>
</table>

As it gives minimal disturbance of the restoration surface and minimal leakage current between the probe and the saliva, it is concluded that the probe may be useful for in vivo electrochemical experiments on metallic restorations in the oral cavity. More generally, the probe may also be useful in field studies of the corrosion of metals in environments other than the oral cavity.

Acknowledgements

We thank Jeanne Kruchowski for proofreading this article.
Electrical potentials of restorations in subjects without oral complaints

A.W.J. MULLER, L.A.J. VAN LOON and C.L.DAVIDSON

Department of Dental Materials Science, Faculty of Dentistry, Academic Centre of Dentistry Amsterdam, University of Amsterdam

Summary
The electrical potentials of 183 amalgam and 11 precious metal restorations, and one set of brackets, were measured. None of the 28 subjects had galvanism, leukoplakia, oral lichen planus, or toxic or allergic reactions to restorations. The potentials of the amalgam restorations increased with age, from about -350 mV NHE at 30 days, to about +100 mV NHE after more than 1000 days. In most subjects potential differences of more than 50 mV were present between restorations; this phenomenon is therefore assumed to be common in healthy populations.

Correspondence: Professor C.L. Davidson, Department of Dental Materials Science, ACTA, Louwesweg 1, 1066 EA Amsterdam, The Netherlands
Materials and Methods

The study sample consisted of 28 dental students at the Academic Centre of Dentistry in Amsterdam. They were questioned about complaints resembling galvanism, i.e. pain, battery taste, ‘burning mouth’, or toxic or allergic reactions that could be attributed to oral metallic restorations. The presence of leukoplakia and oral lichen planus was checked visually. All questions and examinations gave negative results. In the 28 subjects 183 amalgam restorations and 11 restorations cast from noble alloys were found. In one subject orthodontic brackets were present; the potentials of these brackets were also measured.

Details of the manufacture and use of the probe and reference electrode were given in the previous study [Mulle89]. The probe and the tip of the reference electrode were disposable. The tip of the probe consisted of a gold-plated header-and-socket-pin (Vero Electronics, Hampshire, UK). The previous use of a composite resin in the probe was found to be unnecessary and was therefore discontinued in the present study. The probe was pressed through the wax on to the restoration prior to measurement. The contact with the restoration was preferentially made at the occlusal surface. The reference electrode consisted of a modified MI-402 Ag/AgCl micro-reference electrode (Microelectrodes, Londonderry, NH, USA), the potential of which was determined relative to a saturated calomel reference electrode (SCE) before measurement. A Hewlett-Packard 34703A Voltmeter/34750A Display combination (input impedance > 10¹⁰ Ω) measured the potential difference between the probe and the reference electrode. The reference electrode was placed in the oral cavity, under the tongue. The EPR value relative to the Normal Hydrogen Electrode (NHE) was obtained by adding the potential difference between the Ag/AgCl and SCE reference electrodes, and the SCE potential (+241 mV NHE), to the measured potential.

Results

Table 3.2 shows the EPR values of 10 subjects. In 20 of the 28 subjects, potential differences of more than 50 mV were present between restorations, e.g. between the 37 (-147 mV) and 45 (-299 mV) in subject 2: 152 mV; between the 14 and 26 in subject 3: 310 mV; between the 17 and 46 in subject 4, etc. In 11 subjects such differences were present between restorations in antagonistic teeth, e.g. between the 27 and 37 in subject 7 and between the 15 and 45 in subject 10.

The average potential (± S.D.) of the 183 amalgam restorations was 17 ± 111 mV. Fig. 3.4 shows a histogram of these EPR values, most of which lie in the range -50 to +150 mV, but a few are as low as -400 mV, the lowest being -417 mV.

Table 3.2: Potentials of restorations placed in the oral cavity of 10 subjects, according to standard tooth notation.

<table>
<thead>
<tr>
<th>Subject</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential (mV NHE)</td>
<td>-53</td>
<td>-184</td>
<td>-299</td>
<td>-31</td>
<td>-184</td>
<td>-168</td>
<td>-299</td>
<td>-210</td>
<td>-210</td>
<td>-184</td>
<td>-184</td>
<td>-184</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-31</td>
<td>-196</td>
<td>-171</td>
<td>-147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-168</td>
<td>18</td>
<td>22</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-92</td>
<td>126</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>84</td>
<td>82</td>
<td>86</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>71</td>
<td>87</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>54</td>
<td>53</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>41</td>
<td>35</td>
<td>9</td>
<td>8</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>68</td>
<td>72</td>
<td>37</td>
<td>38</td>
<td>50</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>87</td>
<td>52</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* crown made of a precious alloy
= electrical contact between two restorations
In the case of 48 amalgam restorations the date of placement and the brand name of the alloy used were available. All brandnames concerned non-γ2 alloys. Fig. 3.5 shows the EPR values of these restorations plotted against age on a logarithmic scale. The increasing trend is clear, the maximum being about 125 mV; wide scattering with a bandwidth of 150 mV is apparent. Fig. 3.5 shows that only one of the EPR values of amalgam restorations of age>1000 days was lower than -100 mV. However, one subject categorically stated that an amalgam restoration that had an EPR of >388 mV was more than 8 years old, the precise date of placement being unknown.

Nine crowns and two bridges consisting of noble alloys were present; their average potential (±S.D.) was 154 ± 55 mV. In one subject brackets were present. The six brackets in the upper jaw had an average potential (±S.D.) of 71 ± 9 mV, while those in the lower jaw had an average potential (±S.D.) of 74 ± 3.3 mV.

![Fig. 3.4: Histogram of the measured potentials of amalgam restorations.](image)

![Fig. 3.5: Potentials of amalgam restorations plotted against restoration age.](image)

It is concluded that differences between EPR values of more than 50 mV are common in healthy individuals. Thus it is unlikely that such a large difference is pathological. Whether or not it is a predisposing factor warrants further research.

Restorations consisting of noble alloys

The average EPR value (±S.D.) observed, 154 ± 55 mV, is of the same magnitude as the average EPR found by Yontchev et al. (1986), namely 192 ± 91 mV. Because there were only 11 noble restorations in the present study it is not possible to draw further conclusions apart from the assessment of a rather high EPR for noble restorations in the oral cavity.

Amalgam restorations

The average EPR of 17 ± 111 mV is in good agreement with the previously reported value of 8 ± 153 mV of 1293 restorations [Yont86] (value obtained by adding the SCE potential of 241 mV NHE to the given average).

Nüller and Holland (1985) found that younger restorations have lower potentials. Another study [Cohen86] stated that the EPR is approximately -760 mV directly after placement, but gradually increases to 40 mV (-200 mV SCE) or to a 'more positive' value. This increase is confirmed by the present study, and is in contrast with the stationary and decreasing potentials reported in an in vitro study of 245 days duration [Moee87].

The increase can be explained by selective corrosion of less noble components, resulting in a more noble behaviour of the alloy, which in turn causes an increase in the corrosion potential [karas79, cohen86].

In the previous study, the r.m.s deviation of EPR values determined at 30-min intervals was 14 mV. This measure of the accuracy of the measurement method is much smaller than the scattering bandwidth of 150 mV shown in Fig. 3.5. Such wide scattering can be attributed to the effect of (marginal) fracture or of abrasion, which can occur during chewing. These processes can intermittently bring previously unexposed amalgam into contact with saliva, resulting in a temporary drop in potential: the less noble amalgam components at the freshly exposed surface will show accelerated corrosion, which would result in a rapid return to the earlier corrosion potential. The scattering may also be related to the distinct behaviour of different alloys, the effects of polishing or abrasion [Shimi71, deMel85, MarxK65, MarxK84], or to the idiosyncrasy of patients encountered in in vivo tarnish studies [Mege89,p.18].

Fig. 3.4 shows that the distribution of the EPR values is skewed towards lower potentials. This can be explained by the time behaviour of the EPR illustrated in Fig. 3.5, which shows that restorations of age >1000 days have an EPR of approximately +50 mV, but that younger restorations have much lower EPR values. The probability of encountering a recently placed restoration is much lower than that of encountering an older one, accounting for the small number of low EPR values.

Brackets

We are not aware of any previous determination of the in vivo potential of brackets. The high potential of the brackets in the jaws, 71 and 74 mV, respectively, shows that they are in the passive, and not in the active state; in the passive state, the release of possibly discoloring corrosion products is minimal. As the brackets in one jaw are electrically connected, their potentials must be equal. Hence the standard deviations of the EPR values of the brackets in the jaws, 9 and 3.3 mV, respectively, provide a measure of the accuracy of the method. These values are...
comparable to the r.m.s deviation of EPR values determined at 30-min intervals, i.e. 14 mV, that was found in the previous study [Mulle89b].

Conclusion

In most of the subjects potential differences of more than 50 mV were present between restorations. From this frequent occurrence, and the rarity of adverse reactions attributed to metallic restorations, it is concluded that the presence of the latter does not necessarily indicate a health hazard that should be terminated by removal of restorations. Most of the scattering in potential values of amalgam restorations can be explained by the effect of differences in age of restorations.

Acknowledgements

We thank the subjects for their participation, their dentists for providing information on their restorations, and Jeanne Kruchowski for proofreading.

3-4 Commentary

3-4.1 The method

One additional advantage of not disturbing the restoration is that the oxygen concentration in the immediate environment of the restoration remains low. Mechanical mixing increases the contact with air, and the associated oxygen concentration rise would, by its oxidizing power, increase the EPR.

Drying the tooth [Yontc86] disturbs the electrical connection of the restoration with the 'soft tissues', this could change the EPR and should therefore be avoided.

Platinum (as well as palladium and rhodium) is an unsuitable probe tip material as it is very sensitive to hydrogen, which can cause its potential to decrease as much as 800 mV [Cates56]. Hydrogen may be present in the oral cavity as hydrogen-dependent microorganisms have been found in the gingival crevice [VanPa76].

An advantage of not polishing the restoration before potential measurement is that the oxidation layer on the metal, which may stabilize its potential, is not disturbed; a disadvantage is that a good electrical contact between the probe and the bare metal becomes less certain because of possible insulation by this layer.

![FIG. 3.6. Effects of abrasion on the in vitro corrosion potential of several amalgams](Marek84,Figs 3-4).

![FIG. 3.7. Effects of abrasion by a toothbrush and by enamel on the in vitro corrosion potential of Wironium (a CoCr alloy) (Deme/85,Fig.3)](Marek84,Figs 3-4).
Fig. 3.6 gives figures published by Marek [1984,Figs 3-4] of the effect of abrasion upon the corrosion potential of several amalgams. Fig. 3.7 similarly gives the effect of abrasion upon the corrosion potential of Wironium [Demel85,Fig.3]. Abrasion is seen to decrease the corrosion potential strongly. Similar curves have been given for amalgam [Marek65b,Figs 11-12,15-16] and for a gold alloy (Degulor M) and a CoCr alloy (Remanit) [Marek65c,Figs 29-30,35].

3.4.2 Significance
In this study the potential of a restoration is called the 'electrical potential of a restoration', and not the 'corrosion potential of a restoration', as the potential is not necessarily a corrosion potential. The potential may instead be built up during simultaneous reduction (for instance of oxygen) and oxidation (for instance of lactic acid) of some salivary components at the metal surface in the absence of an anodic current caused by metal ion release [Yontc86].

Presently, little is known about the significance of the potential of a restoration. The potential can indicate whether a metal is in a passive or active state. Noble metals tend to have higher potentials, but some passive metals also show high potentials.

Some EPRs of amalgams are lower than the H\textsuperscript+-reduction potential: - 420 mV at pH 7. Such low potentials are a necessary condition for hydrogen damage [Bockr70,p.1342], consequently hydrogen damage is possible in amalgam restorations, and could indeed be the mechanism behind delayed expansion of amalgam [Schoo50, Phill82,p.344]. This should be verified by EPR measurement.

Most EPRs of amalgams, and all EPRs of the other alloys, are however higher than the H\textsuperscript+-reduction potential. Contribution by H\textsuperscript+-reduction [Phill82,p.292] to the cathodic current during the in vivo corrosion of dental restorations will consequently be rare.

Rheinwald initially claimed a potential difference between pairs of restorations larger than 100 mV to be pathological [Rhein55], but later retracted this assertion [Marek65a].

3.4.3 Possible applications
Correlation should be established between EPRs and the effects attributed to the corrosion of dental restorations mentioned at the beginning of Chapter 1.

The distinct influence of salivary or food components upon the in vivo corrosion of dental restorations can be studied by determining the effect upon the EPR of rinsing the mouth with solutions containing those components. The effect of polishing and abrasion can similarly be determined, which is of importance for wear corrosion.

The good electrical contact between the probe and the metallic restoration can be used for other purposes, such as recording the current that flows after connecting two restorations.

CHAPTER 4
Conclusions

On corrosion of dental NiCrMo alloys

- The uniform corrosion rate of dental NiCrMo alloys can be measured by the potentiostatic deaeration technique and by chemical analysis by means of ICP-AES of the medium of a corrosion test cell.

The uniform corrosion rates of dental NiCrMo alloys are low and decrease monotonously with time, approaching zero. Hence uniform corrosion by itself is probably unimportant; in the long run, wear, pit and crevice corrosion may be more important. The wear corrosion current is probably similar to the decaying corrosion current during uniform corrosion; hence the importance of an understanding of uniform corrosion.

- The uniform corrosion rate of dental NiCrMo alloys decreases with the molybdenum content.

- The present study has not considered the influence on corrosion of metallurgical properties such as pore presence and heat treatment. To obtain a comprehensive picture the effects of these factors should be studied.

- The uniform corrosion rate of passive alloys cannot be measured with the polarization resistance method, as the Stern-Geary equation is not valid in the case of passivation.

- The cathodic current of dental NiCrMo alloys, and possibly of other dental alloys as well, shows Tafel behavior. This allows the determination of the corrosion current from the corrosion potential.

- An equation similar to the Stern-Geary equation can be derived for passive alloys for which the anodic current decreases with time as e-t, the cathodic current shows Tafel behavior, and battery behavior (section 2.7.3) is absent.
On in vivo potentials of dental restorations

- The potential can be measured accurately.
- The accuracy of measurement is improved by:
 - not disturbing the restoration surface; for instance, a scratch can cause the metal to become active, causing in turn the potential to fall,
 - not disturbing the plaque covering the restoration. Plaque is anaerobic, and its disturbance would allow oxygen from air to reach the restoration, which in turn would cause its potential to rise,
 - avoiding the use of a probe tip consisting of platinum or palladium. These metals can interact with hydrogen and hydrogen sulfide, both present in the oral cavity, causing the potential to fall,
 - insulating the probe tip with wax, minimizing its interaction with salivary redox couples, which would change the potential of the probe tip.
- In 28 healthy subjects:
 - the potentials of amalgam restorations tended to increase with the age of the restoration,
 - there was large scattering of the potentials,
 - potential differences larger than 50 mV between pairs of restorations were present in half the subjects. This large incidence shows that it is improbable that such potential differences are pathological.

General remarks

In order to obtain a good model of corrosion in the oral cavity and its effects, the following should be established:

a. The chemical composition of the oral cavity, including its variation with time and variation among individuals.

b. The types of corrosion that can occur (uniform corrosion, pit corrosion, galvanic corrosion, wear corrosion, etc.).

c. The effects of potentials and currents due to corrosion, including interaction of metallic restorations with physiological voltages and currents in the oral cavity.

d. Dose - effect relationships for corrosion products and electrical currents caused by corrosion, including the dispersion in intensity of the effects.

Presently, dental alloys are, to a large extent, tested clinically. For this reason the corrosion behavior of individual dental alloys should be monitored intensively in the clinic.

As long as a comprehensive model of the corrosion of dental restorations is absent, the formulation of norms for permissible corrosion rates of dental alloys is premature. The polarization resistance method is unsuited for the formulation of such norms, which contrasts with the statement 'Anodic polarization techniques are now almost universally accepted as the way in which corrosion resistance of dental alloys should be quantified' [VanNo89].

The author agrees with the following statement:
'Since restorations in the mouth are continuously subjected to abrasion and wear, protocols for corrosion assays of dental alloys should take this aspect into consideration' [DeMel85].

The methods developed in this study for the determination of in vitro corrosion rates and in vivo corrosion potentials are also of interest for alloys corroding in environments different from the oral cavity.

7 In cells electrical potential differences are present across many biomembranes and these potentials fulfill many physiological functions.
Summary

Chapter 1 starts with a list of the adverse effects attributed to corrosion of metallic restorations in the oral cavity. Corrosion mechanisms are discussed next. During corrosion a metal is oxidized. An oxidator attracts electrons from the metal, making it positive, which in turn causes the metal to dissolve in the form of positive metal ions. This type of corrosion is called 'uniform corrosion'. A fallacy is the idea that an anode-cathode combination would be necessary for corrosion. The origin of this idea is the idea that a metal corrodes faster when it is connected to a second metal that donates electrons to the oxidator easier than the first metal does, a process called 'galvanic corrosion'. Connection to a second metal is however not a necessary condition for corrosion, as the metal itself is able to donate electrons to the oxidator. Oxygen, besides oxidizing metals, sometimes also inhibits the dissolving of metal ions. This inhibition can cause a metal to dissolve mainly at places where oxygen is absent, such as in pits and crevices, with oxidation occurring at places of aeration. A metal corroding in this manner is called a 'differential aeration cell'.

Chapter 2 discusses the measurement of the in vitro uniform corrosion rate of dental NiCrMo alloys by two methods: the potentiostatic deaeration method and chemical analysis of the medium of a corrosion test cell. The potentiostatic deaeration method consists of the measurement of the external current that is necessary to let the potential of the corroding metal remain the same while oxygen is being removed from the medium. This external current is equal to the current associated with the dissolving of the metal, i.e. the corrosion current. The results of the two methods agree. The uniform corrosion rate is very low, and decreases inversely with time, consequently approaching zero. Nickel is the main element released. In the six alloys investigated, the uniform corrosion rate decreases with the molybdenum content. Adding thiocyanate and other salivary components has only a minor effect upon the corrosion rate. Absence of oxygen increases the metal dissolving current. In the oral cavity the corrosion rate of dental NiCrMo alloys will probably not approach zero, because of interference by wear corrosion. It is expected that corrosion currents caused by scratches due to wear, decay similarly to corrosion currents due to uniform corrosion. The chemical analysis method was also applied to some other dental alloys. The corrosion behavior of Vitallium is similar to that of NiCrMo alloys with a high molybdenum content.

In contrast to the metal dissolving reaction, which seems, at the potential range of interest, to depend only upon the time, the reaction rate with oxygen of the metals studied depends only upon the potential of the metal. This phenomenon is of practical interest, as it would allow the determination of the in vivo metal dissolving rate from the in vivo potential of the metal. For this determination an improved measurement method has been developed.

This method, described in Chapter 3, is characterized by minimal disturbance of the restoration, insulation of the probe tip by wax, and use of a gold-plated probe tip. Measurements of the potentials of all restorations in 26 dentistry students showed that in half the students pairs of restorations could be pointed out with a mutual potential difference larger than 50 mV. Such potential difference consequently cannot be considered pathological, as has been suggested by previous authors.
Samenvatting
Hoofdstuk 1 begint met een lijst van de nadelige effecten die worden toegeschreven aan de corrosie van metalen restauraties die in de mondholte gebruikt worden. Corrosiemechanismen worden vervolgens besproken. Tijdens corrosie wordt een metaal geoxideerd. Een oxidator onttrekt elektronen aan het metaal, waardoor dit positief wordt, hetgeen op zijn beurt tot gevolg heeft dat het metaal in de vorm van positieve ionen in oplossing gaat. Dit type corrosie heet 'uniforme-corrosie'. Een populairere misvatting is dat een combinatie van een anode en kathode voor corrosie noodzakelijk zou zijn. De oorsprong van dit idee is dat een metaal sneller corrodeert wanneer het verbonden is met een tweede metaal dat gemakkelijker dan het eerste metaal zijn elektronen aan een oxidator afgeeft, een proce dat 'galvanische corrosie' heet. Verbinding met een tweede metaal is echter geen noodzakelijke voorwaarde voor corrosie, omdat het metaal zelf in staat is elektronen aan de oxidator af te staan. Zuurstof kan naast dat het metaal kan oxideren, ook het in oplossing gaan van het metaal in de vorm van ionen remmen. Deze remming kan een metaal in oplossing laten gaan op plaatsen waar zuurstof afwezig is, zoals in putten en spleten, terwijl oxidatie optreedt op plaatsen van beluchting. Een metaal dat op zo'n manier corrodeert heet een 'differentiële beluchtingscel'.

Hoofdstuk 2 bespreekt de meting van de in vitro uniforme-corrosie snelheid van tandheelkundige NiCrMo legeringen volgens twee methoden: de potentiostatische ontluchting methode en chemische analyse van het medium van een corrosie testcel. De potentiostatische ontluchtingsmethode bestaat uit de meting van de externe stroom die nodig is om de potentiaal van het corroderende metaal zelfde te laten blijven terwijl zuurstof uit het medium wordt verwijderd. Deze externe stroom is gelijk aan de stroom die gerelateerd wordt met het oplossen van het metaal, de corrosiestroom. De resultaten van de twee methoden komen overeen. De uniforme-corrosie snelheid is erg laag, en neemt omgekeerd evenredig met de tijd af, en nadert daarom tot nul. Nikkel is het voornaamste element dat vrijkomt. In de zes onderzochte legeringen neemt de uniforme-corrosie snelheid af met het molybdeen gehalte. Het toevoegen van thiocyaanat en andere speekselcomponenten heeft slechts een klein effect op de corrosiesnelheid. Afwezigheid van zuurstof vergroot de stroom die met het oplossen van het metaal geassocieerd wordt. In de mondholte zal de corrosie snelheid van tandheelkundige NiCrMo legeringen waarschijnlijk door het optreden van slijtage-corrosie niet tot nul naderen. Het is te verwachten dat corrosiestromen veroorzaakt door krassen ten gevolge van slijtage overeenkomstig uniforme-corrosie stromen zullen afnemen. De chemische analyse methode werd ook toegepast op enige andere tandheelkundige legeringen. Het corrosiestromen van Vitallium lijkt op dat van NiCrMo legeringen met hoog molybdeen gehalte.

Deze methode die in hoofdstuk 3 wordt beschreven, wordt gekekenmerk door minimale verstoring van de restauratie, isolering van de probeupunt met was, en het gebruik van een met bladgoud bedekte probeupunt. Metingen van de potentiaal van alle restauraties in 26 tandheelkundige studenten lieten zien dat bij de helft van de studenten restauraties konden worden aangewezen met een onderling potentiaalverschil dat groter was dan 50 mV. Een dergelijk potentiaalverschil kan daarom niet, zoals eerdere auteurs wel gesuggereerd hebben, als pathologisch beschouwd worden.
REFERENCES

Yesterday, today, and tomorrow.

R. C. Grant (1902). Galvanism, gold, amalgam and the Hahnemannian theory. Dental Dig. 8, 1110.

M.A.MORRISON (1902). Some things dentists know little about. Dominant Dental J. 14, 84.

S.B.PALMIRA (1888). Electricity in the mouth. Dental Items Int. 10, 399.

Polarisationswiderstand und Korrosionsgeschwindigkeit der Metalle.

IX. Galvanische

Acknowledgements

Foremost: Jeanne, for support, patience, cheerfulness, common sense and editing.

Prof. C.L. Davidson, for giving me the opportunity to work in his department, for his helpful commentary on the articles and for his willingness to act as my promotor.

The members of the thesis committee, Prof. G. den Boef, Prof. J.M. ten Cate and Prof. K. de Groot, and the paranimfen Paul Duysters and Gert Boere, for their willingness to assist in my promotion and for their comments upon the manuscript of this thesis.

Joost Buijs, of the Faculty of Chemistry of the Free University of Amsterdam, for referrals to the SGPLOT plotting program, a reliable potentiostat, and the gold covered 'head-and-socket pin' mentioned in Chapter 3.

Leopold van Loon, of the Department of Materials Science, ACTA of the University of Amsterdam, for his assistance in measuring in vivo restoration potentials.

Frans Maessen, of the Analytical Chemistry department of the University of Amsterdam, for cordial cooperation, interest and general advice, and Hans Balke, of the same department, for performing the ICP-AES determinations.

Lonneke de Roovere for drawing the figures in Chapter 1 and in section 2-7.

Jan Couwenberg, of the Audiovisual Department of ACTA, for drawing some of the figures in Chapter 2 and 3; one of these figures was used for the illustration on the cover.

For friendly and elucidating discussions and for their comments upon the manuscript: Paul Duysters, Heine Gerritsen, Prof. J.A.A. Ketelaar, Peter Meeger, Rene Muller, Prem Pallav, Ko van der Weijden, Lenore Wiegman-Ho, and Jef van der Zel.

Lori Matta, for assiduous proofreading.

Elephant Edelmetaal B.V., for their contribution to help offset the expense of printing this thesis.

Adobe Systems Europe B.V., for allowing me the use of their technical facilities, in particular their PostScript printers and their type library.
Curriculum Vitae

Anthonie Wilhelms Joseph MULLER,

1951
Born in Amsterdam, The Netherlands

1963 - 68
Secondary School
St. Nicolaaslyceum in Amsterdam

1968 - 72
Undergraduate chemistry study at
the Free University of Amsterdam
Minors: Physics and Mathematics

1972 - 73
Supplemental courses in physics and
mathematics for permission to start
graduate study in physics

1973 - 79
Graduate study in experimental physics
at the Biophysics Department of
the Free University of Amsterdam
Minors: Mathematics and Philosophy
of Science

1979
Research Assistant at the Physiology
Laboratory of the Medical Faculty of the
Free University of Amsterdam

1979 - 83
Programmer/Systems analyst at Sperry
in Amsterdam

1984 - 89
Ph.D student at the Materials Science
Department of the Faculty of Dentistry
of the University of Amsterdam
Publications

