Measurement of underlying event characteristics using charged particles in pp collisions at $\sqrt{s} = 900$ GeV and 7 TeV with the ATLAS detector

DOI
10.1103/PhysRevD.83.112001

Publication date
2011

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Measurement of underlying event characteristics using charged particles in \(pp \) collisions at \(\sqrt{s} = 900 \text{ GeV} \) and 7 TeV with the ATLAS detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 3 December 2010; published 31 May 2011)

Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton-proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The “underlying event” is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the highest transverse momentum charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, transverse momentum density, and average \(p_T \) are measured. The data show generally higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.

DOI: 10.1103/PhysRevD.83.112001
PACS numbers: 12.38.-t, 13.75.-n

I. INTRODUCTION

To perform precise standard model measurements or search for new physics phenomena at hadron colliders, it is essential to have a good understanding not only of the short-distance “hard” scattering process, but also of the accompanying interactions of the rest of the proton—collectively termed the “underlying event” (UE). It is impossible to uniquely separate the UE from the hard scattering process on an event-by-event basis. However, observables can be measured which are sensitive to its properties.

The UE may involve contributions from both hard and soft physics, where “soft” refers to interactions with low \(p_T \) transfer between the scattering particles. Soft interactions cannot reliably be calculated with perturbative QCD methods and are generally described in the context of different phenomenological models, usually implemented in Monte Carlo (MC) event generators. These models contain many parameters whose values are not a priori known. Therefore, to obtain insight into the nature of soft QCD processes and to optimize the description of UE contributions for studies of hard-process physics such as hadronic jet observables, the model parameters must be fitted to experimental data.

Measurements of primary charged particle multiplicities have been performed in “minimum bias” (MB) events at the LHC [1–5]. Such inclusive studies provide important constraints on soft hadron-interaction models. However, observables constructed for the study of the UE measure the structure of hadronic events in a different way, focusing on the correlation of soft-process features to one another and to those of the hardest processes in the event. UE observables have been measured in \(pp \) collisions in dijet and Drell-Yan events at CDF in Run I [6] and Run II [7] at center-of-mass energies of \(\sqrt{s} = 1.8 \text{ TeV} \) and 1.96 TeV, respectively, and in \(pp \) collisions at \(\sqrt{s} = 900 \text{ GeV} \) in a detector-specific study by CMS [8].

This paper reports the measurement of UE observables, performed with the ATLAS detector [9] at the LHC using proton-proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The UE observables are constructed from primary charged particles in the pseudorapidity range \(|\eta| < 2.5 \), whose transverse momentum component [10] is separately required to be \(p_T > 100 \text{ MeV} \) or \(p_T > 500 \text{ MeV} \). Primary charged particles are defined as those with a mean proper lifetime \(\tau \geq 0.3 \times 10^{-10} \text{ s} \), directly produced either in \(pp \) interactions or in the decay of particles with a shorter lifetime. At the detector level, charged particles are observed as tracks in the inner tracking system. The direction of the track with the largest \(p_T \) in the event—referred to as the “leading” track—is used to define regions of the \(\eta-\phi \) plane which have different sensitivities to the UE. The axis given by the leading track is well-defined for all events and is highly correlated with the axis of the hard scattering in high-\(p_T \) events. A single track is used as opposed to a jet or the decay products of a massive gauge boson, as it allows significant results to be derived with limited luminosity and avoids the systematic measurement complexities of alignment with more complex objects.

As illustrated in Fig. 1, the azimuthal angular difference between charged tracks and the leading track, \(|\Delta \phi| = |\phi - \phi_{\text{leading track}}| \), is used to define the following three azimuthal regions [6]:

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
FIG. 1 (color online). Definition of regions in the azimuthal angle with respect to the leading track.

1. $|\Delta \phi| < 60^\circ$, the “toward region”;
2. $60^\circ < |\Delta \phi| < 120^\circ$, the “transverse region”; and
3. $|\Delta \phi| > 120^\circ$, the “away region”.

The transverse regions are most sensitive to the underlying event, since they are generally perpendicular to the axis of hardest scattering and hence have the lowest level of activity from this source. However, the hard scatter can of course also emit particles perpendicular to the event axis: the regional division is not, and cannot be, an exact filter. The observables examined in this analysis are described in Table I. The detector level corresponds to the tracks passing the selection criteria, and the particle level corresponds to true charged particles in the event. The particle level can be compared directly with the QCD Monte Carlo models at the generator level.

This paper is organized as follows: The ATLAS detector is described in Sec. II. In Sec. III, the QCD MC models used in this analysis are discussed. Sections IV, V, VI, and VII respectively describe the event selection, background contributions, correction of the data back to particle level, and estimation of the systematic uncertainties. The results are discussed in Sec. VIII and finally the conclusions are presented in Sec. IX.

II. THE ATLAS DETECTOR

The ATLAS detector [9] covers almost the whole solid angle around the collision point with layers of tracking detectors, calorimeters and muon chambers. It has been designed to study a wide range of physics topics at LHC energies. For the measurements presented in this paper, the trigger system and the tracking devices were of particular importance.

The ATLAS inner detector has full coverage in ϕ and covers the pseudorapidity range $|\eta| < 2.5$. It consists of a

Table I. Definition of the measured observables at particle and detector level. The particles and tracks are required to have $p_T > 0.1$ GeV or 0.5 GeV and $|\eta| < 2.5$. Tracks are selected if they pass the criteria described in Sec. IV. The mean charged particle momentum $\langle p_T \rangle$ is constructed on an event-by-event basis and then averaged over the events.

<table>
<thead>
<tr>
<th>Observable</th>
<th>Particle level</th>
<th>Detector level</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T^{lead}</td>
<td>Transverse momentum of the stable charged particle with maximum p_T in the event</td>
<td>Transverse momentum of the selected track with maximum p_T in the event</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>^{lead}$</td>
</tr>
<tr>
<td>$\langle d^2 N_{ch}/d\eta d\phi \rangle$</td>
<td>Mean number of stable charged particles per unit $\eta-\phi$</td>
<td>Mean number of selected tracks per unit $\eta-\phi$</td>
</tr>
<tr>
<td>$\langle d^2 \sum_{i} p_T /d\eta d\phi \rangle$</td>
<td>Mean scalar p_T sum of stable charged particles per unit $\eta-\phi$</td>
<td>Mean scalar p_T sum of selected tracks per unit $\eta-\phi$</td>
</tr>
<tr>
<td>Standard deviation of $d^2 N_{ch}/d\eta d\phi$</td>
<td>Standard deviation of number of stable charged particles per unit $\eta-\phi$</td>
<td>Standard deviation of number of selected tracks per unit $\eta-\phi$</td>
</tr>
<tr>
<td>Standard deviation of $d^2 \sum_{i} p_T /d\eta d\phi$</td>
<td>Standard deviation of scalar p_T sum of stable charged particles per unit $\eta-\phi$</td>
<td>Standard deviation of scalar p_T sum of selected tracks per unit $\eta-\phi$</td>
</tr>
<tr>
<td>$\langle p_T \rangle$</td>
<td>Average p_T of stable charged particles (at least 1 charged particle is required)</td>
<td>Average p_T of selected tracks (at least 1 selected track is required)</td>
</tr>
<tr>
<td>Angular distribution of number density</td>
<td>Number density of stable charged particles in intervals of $</td>
<td>\Delta \phi</td>
</tr>
<tr>
<td>Angular distribution of p_T density</td>
<td>p_T density of stable charged particles in the intervals of $</td>
<td>\Delta \phi</td>
</tr>
</tbody>
</table>
MEASUREMENT OF UNDERLYING EVENT... PHYSICAL REVIEW D 83, 112001 (2011)

silicon pixel detector (pixel), a silicon strip detector, namely, the semiconductor tracker (SCT), and a straw-tube transition radiation tracker (TRT). These detectors cover a radial distance from the interaction point of 50.5–150 mm, 299–560 mm and 563–1066 mm, respectively, and are immersed in a 2 Tesla axial magnetic field. The inner detector barrel (end-cap) parts consist of 3 (2 × 3) pixel layers, 4 (2 × 9) layers of double-sided silicon strip modules, and 73 (2 × 160) layers of TRT straw-tubes. These detectors have position resolutions of typically 10, 17 and 130 μm for the r-ϕ coordinate and (for the pixel and SCT) 115 and 580 μm for the r-z coordinate. A track traversing the barrel would typically have 11 silicon hits (3 pixel clusters, and 8 strip clusters), and more than 30 straw-tube hits.

The ATLAS detector has a three-level trigger system: level 1 (L1), level 2 (L2) and the event filter. For this measurement, the trigger relies on the beam pickup timing devices (BPTX) and the minimum bias trigger scintillators (MBTS). The BPTX are composed of electrostatic beam pick-ups attached to the beam pipe at a distance $z = \pm 175$ m from the center of the ATLAS detector. The MBTS are mounted at each end of the detector in front of the liquid-argon end-cap–calorimeter cryostats at $z = \pm 3.56$ m and are segmented into eight sectors in azimuth and two rings in pseudorapidity $(2.09 < |\eta| < 2.82$ and $2.82 < |\eta| < 3.84$). Data were taken for this analysis using the single-arm MBTS trigger, formed from BPTX and MBTS trigger signals. The MBTS trigger was configured to require one hit above threshold from either side of the detector. The MBTS trigger efficiency was studied with a separate prescaled L1 BPTX trigger, filtered to obtain inelastic interactions by inner detector requirements at L2 and the event filter.

III. QCD MONTE CARLO MODELS

In scattering processes modeled by lowest-order perturbative QCD two-to-two parton scatterings, at sufficiently low p_T, the partonic jet cross-section exceeds that of the total hadronic cross-section. This problem is resolved by allowing the possibility of multiple parton interactions (MPI) in a given hadron-hadron interaction. In this picture, the ratio of the partonic jet cross-section to the total cross-section is interpreted as the mean number of parton interactions in such events. This idea is implemented in several Monte Carlo event generators and is usually complemented by phenomenological models which continue to be developed. These include (nonexhaustively) further low p_T screening of the partonic differential cross-section, use of phenomenological transverse hadronic-matter distributions, reconfiguration of color string or cluster topologies, saturation of parton densities at low-x, and connection to elastic scattering and cut-Pomeron models via the optical theorem. Such models typically contain several parameters, which may be tuned to data at different center-of-mass energies and in various hadronic processes. MC tuning has been actively pursued in recent years, and standard tunes are being iterated in response to early LHC data, including those presented in Ref. [5].

Samples of $10–20 \times 10^6$ MC events were produced for single-diffractive, double-diffractive and nondiffractive processes using the PYTHIA 6.4.21 generator [11] for collision energies of 900 GeV and 7 TeV. The MC09 [12] set of Tevatron-optimized parameters was used: this employs the MRST LO* [13] parton density functions (PDFs) [14] and the PYTHIA p_T-ordered parton shower, and was tuned to describe underlying event and minimum bias data at 630 GeV and 1.8 TeV [15] at CDF in $p\bar{p}$ collisions. ATLAS MC09 is the reference PYTHIA tune throughout this paper, and samples generated with this tune were used to calculate detector acceptances and efficiencies to correct the data for detector effects. All events were processed through the ATLAS detector simulation framework [16], which is based on GEANT4 [17]. They were then reconstructed and analyzed identically to the data. Particular attention was devoted to the description in the simulation of the size and position of the collision beam-spot and of the detailed detector conditions during the data-taking runs.

For the purpose of comparing the present measurement to different phenomenological models, several additional MC samples were generated. For PYTHIA, these were the Perugia0 [18] tune, in which the soft-QCD part of the event is tuned using only minimum bias data from the Tevatron and SpS collider, and the DW [19] PYTHIA tune, which uses a virtuality-ordered parton shower and an eikonal multiple scattering model including impact-parameter correlations. This tune was constructed to describe CDF Run II underlying event, dijet and Drell-Yan data. PHOJET [20] and HERWIG [21] were used as alternative models. PHOJET describes low-p_T physics using the two-component dual-parton model [22,23], which includes soft hadronic processes described by Pomeron exchange and semihard processes described by perturbative parton scattering; it relies on PYTHIA for the fragmentation of partons. The PHOJET versions used for this study were shown to agree with previous measurements [15,24–26]. The PHOJET samples were also passed through full detector simulation for systematic studies of acceptance and smearing corrections (unfolding). HERWIG uses angular-ordered parton showers and a cluster hadronization model. The UE is simulated using the JIMMY package [27] which, like PYTHIA, implements an eikonal multiple scattering model including impact-parameter correlations. It does not contain any model of soft scatterers. HERWIG+JIMMY was run with the ATLAS MC09 parameters [12]: these set a minimum partonic interaction p_T of 3.0 GeV at 900 GeV and 5.2 GeV at 7 TeV, and hence agreement with data is not expected when the maximum track p_T is below this cutoff scale.
For PYTHIA and PHOJET, nondiffractive, single-diffractive and double-diffractive events were generated separately, and were mixed according to the generator cross-sections to fully describe the inelastic scattering. HERWIG does not contain any diffractive processes.

IV. EVENT AND TRACK SELECTION

All data used in this paper were taken during the LHC running periods with stable beams and defined beam-spot values, between 6th and 15th December 2009 for the analysis at $\sqrt{s} = 900$ GeV, and from 30th March to 27th April 2010 for the 7 TeV analysis. The only operational requirement was that the MBTS trigger and all inner detector subsystems were at nominal conditions. During the December data-taking period, more than 96% of the pixel detector, more than 99% of the SCT and more than 98% of the TRT was operational. These efficiencies were higher in 2010.

To reduce the contribution from backgrounds and secondaries, as well as to minimize the systematic uncertainties, the following criteria were imposed:

1. The presence of a reconstructed primary vertex using at least two tracks, each with:
 - (a) $p_T > 100$ MeV;
 - (b) Offline reconstruction within the inner detector, $|\eta| < 2.5$;
 - (c) A transverse distance of closest approach with respect to the beam-spot (BS) position, $|d_0^{\text{BS}}|$, of less than 4 mm;
 - (d) Uncertainties on the transverse and longitudinal distances of closest approach of $\sigma(d_0^{\text{BS}}) < 5$ mm and $\sigma(z_0^{\text{BS}}) < 10$ mm;
 - (e) At least one pixel hit, at least four SCT hits and at least six silicon hits in total.

Beam-spot information was used both in the track preselection and to constrain the fit during iterative vertex reconstruction, and vertices incompatible with the beam-spot were removed. The vertices were ordered by the $\sum p_T^2$ over the tracks assigned to the vertex, which is strongly correlated with the total number of associated tracks, with the highest $\sum p_T^2$ vertex defined as the primary interaction vertex of the event.

Events that had a second primary vertex with more than three tracks in the same bunch crossing were rejected. If the second vertex had three or fewer tracks, all tracks from the event that passed the selection were kept. After this cut, the fraction of events with more than one interaction in the same bunch crossing (referred to as pileup) was found to be about 0.1%; the residual effect was thus neglected. At $\sqrt{s} = 900$ GeV, since the data were taken at the low luminosity period, the rate of pileup was even lower and was also neglected.

2. At least one track with:
 - (a) $p_T > 1$ GeV,
 - (b) A minimum of one pixel and six SCT hits [28];
 - (c) A hit in the innermost pixel layer (the b-layer), if the corresponding pixel module was active;
 - (d) Transverse and weighted-longitudinal impact parameters with respect to the event-by-event primary vertex were required to be $|d_0| < 1.5$ mm and $|z_0| \cdot \sin \theta < 1.5$ mm [29];
 - (e) For tracks with $p_T > 10$ GeV, a χ^2 probability of track fit >0.01 was required in order to remove mismeasured tracks [30].

Only events with leading track $p_T > 1$ GeV were considered, in order to reject events where the leading track selection can potentially introduce large systematic effects. This also has the effect of further reducing the contribution from diffractive scattering processes.

Two separate analyses were performed, in which all the other tracks were required to have either $p_T > 100$ MeV or $p_T > 500$ MeV. For $p_T > 500$ MeV tracks, the silicon and impact-parameter requirements were the same as given earlier for tracks with $p_T > 1$ GeV. For tracks with the lower p_T threshold, all other selection criteria were the same except that only two, four or six SCT hits were required for tracks with $p_T \approx 100, 200, 300$ MeV, respectively. Tracks with $p_T > 500$ MeV are less prone than lower-p_T tracks to inefficiencies and systematic uncertainties resulting from interactions with the material inside the tracking volume. Whenever possible, the tracks were extrapolated to include hits in the TRT. Typically, 88% of tracks inside the TRT acceptance ($|\eta| < 2.0$) included a TRT extension, which significantly improves the momentum resolution.

After these selections, for the 500 MeV (100 MeV) analysis, 189 164 and 6 927 129 events remained at 900 GeV and 7 TeV, respectively, containing 1478 900 (4 527 710) and 89 868 306 (209 118 594) selected tracks and corresponding to integrated luminosities of 7 μb$^{-1}$ and 168 μb$^{-1}$, respectively. For the MC models considered here, the contribution of diffractive events to the underlying event observables was less than 1%.

V. BACKGROUND CONTRIBUTIONS

A. Backgrounds

The amount of beam and non-beam (cosmic rays and detector noise) background remaining after the full event selection was estimated using the number of pixel hits which were not associated to a reconstructed track. This multiplicity included unassigned hits from low-p_T looping tracks, but was dominated at higher multiplicities by hits from charged particles produced in beam background interactions. The vertex requirement removed most of the beam background events, and the residual contribution from beam background events after this requirement was below 0.1%. As the level of background was found to be very low, no explicit background subtraction was performed.
B. Fraction of secondary tracks

The primary charged-particle multiplicities were measured from selected tracks after correcting for the fractions of secondary and poorly reconstructed tracks in the sample. The potential background from fake tracks was found via MC studies to be less than 0.01%.

Nonprimary tracks predominantly arise from hadronic interactions, photon conversions to positron-electron pairs, and decays of long-lived particles. For \(p_T > 500 \) MeV the contribution from photon conversions is small, and sideband regions of the transverse and longitudinal impact parameters from data were used to find a scaling factor of 1.3 for the track yield in MC to get a better agreement with the data. This is not the case at lower \(p_T \). A separate fit to the tails of the \(d_0 \) distribution for primaries, nonprimaries from electrons and other nonprimaries was carried out in eight bins of 50 MeV in the range 100 < \(p_T < 500 \) MeV. The scaled MC was then used to estimate the fraction of secondaries as a function of both \(p_T \) and \(\eta \) in the selected track sample, which is found to be at most 2% for events in both 900 GeV and 7 TeV collisions [4,5]. The systematic uncertainty on the secondaries is included in the uncertainties due to tracking.

VI. CORRECTION TO PARTICLE LEVEL

The data were corrected back to charged primary particle spectra satisfying the event-level requirement of at least one primary charged particle within \(p_T > 1 \) GeV and \(|\eta| < 2.5\). A two-step correction process was used, where first the event and track efficiency corrections were applied, and then an additional bin-by-bin unfolding was performed to account for possible bin migrations and any remaining detector effects.

A. Event-level correction

Trigger and vertexing efficiencies were measured [5] as a function of the number of tracks, \(N_{\text{sel}}^{\text{BS}} \), passing all the track selection requirements except for the primary vertex constraint. In this case, the transverse impact parameter with respect to the beam-spot [31] was required to be less than 1.8 mm. The event level corrections consisted of the following:

1. The efficiency of the MBTS scintillator trigger, \(\epsilon_{\text{trig}}(N_{\text{sel}}^{\text{BS}}) \) was determined from data using an orthogonal trigger. It consisted of a random trigger, requiring only that the event coincided with colliding bunches and had at least 4 pixel clusters and at least 4 SCT space points at L2. The trigger was found to be \(\sim 97\% \) efficient for low-multiplicity events, and almost fully efficient otherwise. It showed no dependence on the \(p_T \) and pseudorapidity distributions of the selected tracks.

2. The vertex reconstruction efficiency, \(\epsilon_{\text{vtx}}(N_{\text{sel}}^{\text{BS}}, \langle \eta \rangle) \) was also measured in data, by taking the ratio of the number of triggered events with a reconstructed vertex to the total number of triggered events. For events containing fewer than three selected tracks, the efficiency was found to depend on the projected separation along the beam axis of the two extrapolated tracks, \(\Delta_0^{\text{BS}} \). This efficiency amounted to approximately 90\% for the lowest bin of \(N_{\text{sel}}^{\text{BS}} \), rapidly rising to 100\%.

B. Track-level correction

The track reconstruction efficiency in each bin of the \(p_T \)-\(\eta \) kinematic plane was determined from simulation and defined as

\[
\epsilon_{\text{bin}}(p_T, \eta) = \frac{N_{\text{rec}}^{\text{matched}}(p_T, \eta)}{N_{\text{gen}}^{\text{matched}}(p_T, \eta)},
\]

where \(N_{\text{rec}}^{\text{matched}}(p_T, \eta) \) is the number of reconstructed tracks in a given bin matched to a generated charged particle, and \(N_{\text{gen}}^{\text{matched}}(p_T, \eta) \) is the number of generated particles in that bin. The matching between a generated particle and a reconstructed track was done using a cone-matching...
algorithm in the η-ϕ plane and associating the particle to the track with the smallest $R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ within a cone of radius $\Delta R < 0.15$. To reduce fake matching, a common pixel hit between the reconstructed, simulated track and the generated particle track in the GEANT4 simulation was also required. The efficiencies were slightly different between the data sets at the two different center-of-mass energies because of small differences in the configuration of the pixel and SCT detectors between the 2009 and 2010 data-taking periods.

A weight,
\[w_{\text{trk}} = \frac{1}{\epsilon_{\text{bin}}(p_T, \eta)} \cdot (1 - f_{\text{sec}}(p_T)) \cdot (1 - f_{\text{fake}}) \]
was applied on a track-by-track basis to all track-level histograms. Here, $\epsilon_{\text{bin}}(p_T, \eta)$ is the track reconstruction efficiency described earlier, f_{sec} is the fraction of secondaries, and f_{fake} is the fraction of fakes.

C. Final unfolding step

The efficiency corrections described so far do not account for bin-by-bin migrations, nor for the possibility of not reconstructing the leading particle in the event as the leading track (reorientation of an event). To account for these effects, an additional bin-by-bin unfolding was applied to all distributions after applying the event- and track-level efficiency corrections described above.

In this correction step, the unfolding factors were evaluated separately in each bin for each observable listed in Table I,
\[U_{\text{bin}} = \frac{V_{\text{Gen}}_{\text{bin}}}{V_{\text{Reco, eff corr}}_{\text{bin}}} \]
where $V_{\text{Gen}}_{\text{bin}}$ and $V_{\text{Reco, eff corr}}_{\text{bin}}$, respectively, represent the generator level MC value of the observable and the reconstructed MC value after applying the event- and track-level efficiency corrections at each bin. The corrected value for an observable is found by multiplying the measured value by the corresponding unfolding factor. This unfolding factor is within 5% (10%) of unity in the lowest-p_T bins for the $p_T > 100$ MeV (500 MeV) analyses, respectively, due to the migration and reorientation effects, and very close to unity for higher-p_T bins.

VII. SYSTEMATIC UNCERTAINTIES

A study of the systematic uncertainties was performed, and these were propagated to the final distributions and added in quadrature to obtain a total systematic uncertainty.

Systematic uncertainties from tracking efficiency were studied [4,5], and the largest were found to be due to the following:

1. The material in the inner detector: the effect of material budget uncertainties in the inner detector was determined to affect the efficiency by a relative difference of 2% in the barrel region, rising to over 7% for $2.3 < |\eta| < 2.5$, for tracks with $p_T > 500$ MeV.

2. Consequence of χ^2 probability cut: the maximum difference between the fraction of events in data and MC which passed this cut was found to be 10%. This value was taken as a conservative estimate of the systematic uncertainty, applied to tracks with $p_T > 10$ GeV only.

The systematic uncertainty from pileup removal was estimated to be negligible.

The most common UE observable is a “profile” plot of the mean value of a charged particle p_T or multiplicity observable as a function of the p_T of the leading object in the event. Because of the steeply falling p_T spectrum in minimum bias events, the number of events in the low-p_T bins of these profiles is much higher than in the higher-p_T bins, and so migration of the leading track from the lower-p_T bins to higher ones is possible: this was accounted for in the MC-based unfolding procedure. However, an additional systematic uncertainty was included because more p_T^{lead} migrations are expected in data than in the MC detector modeling. This extra systematic contributes only to the region of the profiles with $p_T^{\text{lead}} > 10$ GeV, since a small fraction of highly mismeasured leading tracks from the lowest p_T^{lead} bin can still have a significant effect upon the less-populated high-p_T^{lead} bins. Since the greatest difference from the p_T^{lead}-profile values in $p_T^{\text{lead}} > 10$ GeV is seen in the first p_T^{lead} bin, a conservative systematic estimate was obtained by assuming all migrations to come from the first bin.

The remaining contributions to the overall systematic uncertainty result from the specific unfolding method used in this analysis. The bin-by-bin unfolding corrections are in general influenced by the number of charged particles and their p_T distributions, so there is some dependence on the event generator model. This introduces a second extra source of systematic uncertainty. In order to estimate this uncertainty it is necessary to compare different plausible event generation models, which deviate significantly from each other. Between the various models and tunes already described, the maximal variation is seen between PYTHIA and PHOJET; and this difference is taken as a measure of the uncertainty due to model dependence. Where the PHOJET sample has sufficient statistics, it is seen that beyond the statistical fluctuations the relative difference between the required correction factors from PHOJET and PYTHIA is at most 4% in the lowest-p_T bins, and 2% everywhere else.

Since this uncertainty is independent of any efficiency systematics, it has been summed in quadrature with the efficiency systematic uncertainty and the statistical uncertainty. In addition to the model-dependent uncertainty in the bin-by-bin unfolding, there is also a statistical uncertainty due to the finite size of the Monte Carlo sample.
The statistical fluctuation of the PYTHIA unfolding factor is found to be negligible for low-\(p_T\) bins, but rises to be a significant contribution in higher \(p_T\) bins.

The \(|\Delta \phi|\) between the leading track and the track with the second-highest \(p_T\) (the subleading track) is shown in Fig. 2. It is seen to be most likely that the subleading charged particle lies in either the true toward or the true away region, in which case there is relatively little effect on the observables—the transverse region is particularly unaffected by a \(\sim 180^\circ\) reorientation. However, if the reconstructed leading track lies in what should have been the transverse region, the effect will be to reduce the densities in the toward and away regions, and to increase the densities in the transverse region. The bin-by-bin unfolding derived from the MC corrects for this effect, provided that it occurs with the frequency of reorientation predicted by the MC simulation. Figure 2 is used to estimate the relative frequency with which an event is reoriented such that the true toward and away regions lie in the transverse region identified by the reconstruction. Comparing the \(|\Delta \phi|\) distribution in uncorrected data to the same distributions (uncorrected and reconstructed) predicted by PYTHIA and PHOJET, it is seen that both generator models predict fewer event reorientations of this type. The final correction to the data uses bin-by-bin unfolding factors that are derived from the PYTHIA sample, so the relative magnitude of the

<table>
<thead>
<tr>
<th>Leading charged particle bin</th>
<th>Lowest-(p_T)</th>
<th>Intermediate-(p_T)</th>
<th>Highest-(p_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic uncertainty on unfolding PYTHIA/PHOJET difference</td>
<td>4%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>PYTHIA unfolding stat. uncertainty</td>
<td><0.1%</td>
<td>1% (2%)</td>
<td>4% (5%)</td>
</tr>
<tr>
<td>Systematic uncertainties from efficiency corrections Track reconstruction</td>
<td>3%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Leading track requirement</td>
<td>1%</td>
<td><0.1%</td>
<td><0.1%</td>
</tr>
<tr>
<td>Trigger and vertex efficiency</td>
<td><0.1% (everywhere)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total from efficiency corrections</td>
<td>2.5%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Systematic uncertainty for bin migration Bin migration due to mismeasured (p_T)</td>
<td>2.5% (0%)</td>
<td>5% (0%)</td>
<td></td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>4.5%</td>
<td>4.5% (5%)</td>
<td>8% (6.5%)</td>
</tr>
</tbody>
</table>
systematic uncertainty associated with this effect can again be estimated by the difference of the PYTHIA and PHOJET probabilities. This difference is comparable with the difference between the data and PYTHIA predictions. The uncertainty is applied in both directions, reasonably assuming a symmetric effect, so the difference in PYTHIA and PHOJET corrections provides the systematic uncertainty in the unfolding factor even though the PHOJET deviation from PYTHIA is in the opposite direction from the data.

Table II summarizes the various contributions to the systematic uncertainties.

VIII. RESULTS AND DISCUSSION

A. Overview

In this section, corrected distributions of underlying event observables are compared to model predictions tuned to a wide range of measurements. As described, the data have received minimally model-dependent corrections to facilitate model comparisons. The transverse, toward and away regions each have an area of $\Delta \phi \Delta \eta = 10\pi/3$ in $\eta-\phi$ space, so the density of particles $\langle d^2N_{ch}/d\eta d\phi \rangle$ and transverse momentum sum $\langle d^2\sum p_T/d\eta d\phi \rangle$ are constructed by dividing the mean values by the corresponding area. The leading charged particle is included in the toward region distributions, unless otherwise stated.

The data, corrected back to particle level in the transverse, toward and away regions are compared with predictions by PYTHIA with the ATLAS MC09, DW, and Perugia0 tunes, by HERWIG+JIMMY with the ATLAS MC09 tune, and by PHOJET. The ratios of the MC predictions to the data are shown at the bottom of these plots. The error bars show the statistical uncertainty while the shaded area shows the combined statistical and systematic uncertainties. For the higher values of leading charged particle p_T, the data statistics are limited, so the distributions are shown only in the p_T range where sufficient statistics are available.

B. Charged particle multiplicity

The charged particle multiplicity density, in the kinematic range $p_T > 0.5$ GeV and $|\eta| < 2.5$, is shown in Fig. 3 as a function of p_T^{lead} at $\sqrt{s} = 900$ GeV and 7 TeV.

For the 7 TeV (900 GeV) data, the error bars of charged particles in the transverse region doubles in going from $p_T^{\text{lead}} = 2$ GeV (1.5 GeV) to 5 GeV (3 GeV), and then forms an approximately constant “plateau” for $p_T^{\text{lead}} > 5$ GeV (3 GeV). If we assume the UE to be uniform in azimuthal angle ϕ and pseudorapidity η, then for $p_T^{\text{lead}} > 5$ GeV (3 GeV), the charged particle density of 0.8 (0.4) translates to about 5 (2.5) particles per unit η (extrapolating to the full ϕ space) on average per event, compared to the corresponding number of $2.423 \pm 0.001(\text{stat}) \pm 0.042(\text{syst})(1.343 \pm 0.004(\text{stat}) \pm 0.042(\text{syst}))$ obtained in the ATLAS minimum bias measurement [5] with $p_T > 500$ MeV.

It can be concluded that the charged particle density in the underlying event, for events with a leading charged particle in the plateau region (above approximately 3 or 5 GeV for the 900 GeV or 7 TeV data, respectively), is about a factor of 2 larger than the number of charged particles per unit rapidity seen in the inclusive minimum bias spectrum. This is presumably due to the selection effect for more momentum exchange in these events, and the expected absence of diffractive contributions to the events which populate the plateau region. Given that there is one hard scattering, it is more probable to have MPI, and hence the underlying event has more activity than minimum bias.

All the pre-LHC MC tunes considered show at least 10–15% lower activity than the data in the transverse region plateau. The PYTHIA DW tune is the closest model to data for the transverse region, and in fact agrees well with the data in the toward and away regions. The most significant difference between data and MC is seen for the PHOJET generator, particularly at 7 TeV. The strong deviation of HERWIG+JIMMY from the data at low-p_T^{lead} is expected, as the JIMMY model requires at least one hard scattering and therefore is not expected to be applicable in this region.

The underlying event activity is seen to increase by a factor of approximately two between the 900 GeV and 7 TeV data. This is roughly consistent with the rate of increase predicted by MC models tuned to Tevatron data. The toward and away regions are dominated by jetlike activity, yielding gradually rising number densities. In contrast, the number density in the transverse region appears to be independent of the energy scale defined by p_T^{lead} once it reaches the plateau. The 900 GeV and 7 TeV data show the same trend.

C. Charged particle scalar p_T sum

In Fig. 4 the charged particle scalar $\sum p_T$ density, in the kinematic range $p_T > 0.5$ GeV and $|\eta| < 2.5$, is shown as a function of p_T^{lead} at $\sqrt{s} = 900$ GeV and 7 TeV.

The summed charged particle p_T in the plateau characterizes the mean contribution of the underlying event to jet energies. The higher number density implies a higher p_T density as well. All the MC tunes considered show 10–15% lower $\sum p_T$ than the data in the plateau part of the transverse region. The PYTHIA DW tune is again seen to be the closest to data in the transverse region, but it slightly overshoots the data in the toward and away regions. PHOJET is again the model furthest from the data, particularly at 7 TeV, and the strong deviation of HERWIG+JIMMY from the data at low-p_T^{lead} is again expected due to the range of validity of the model. The value of $\sum p_T$ is seen to increase by slightly more than a factor of 2 between 900 GeV and 7 TeV data, which is roughly consistent with the increase predicted by the MC models.

In the toward and away regions, jetlike rising profiles are observed, in contrast to the plateau-like feature in the
FIG. 3 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the density of the charged particles \(d^2N_{ch}/deta dphil \) with \(p_T > 0.5 \) GeV and \(|\eta| < 2.5 \), as a function of \(p_T^{lead} \). The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
FIG. 4 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the scalar \(\sum p_T \) density of the charged particles \(\langle d^2 \sum p_T / d\eta d\phi \rangle \) with \(p_T > 0.5 \) GeV and \(|\eta| < 2.5 \), as a function of \(p_{T,\text{lead}} \). The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
transverse region. The toward region includes the leading charged particle and has a higher $\sum p_T$ than the away region as there is higher probability of high-p_T particles being produced in association with the leading-p_T charged particle. In the toward region the highest fraction of energy has been allocated to a single charged particle. This implicitly reduces the number of additional charged particles in that region, since there is less remaining energy to be partitioned. As a result, the multiplicity of charged particles is slightly lower in the toward region by comparison to the away region for high-p_T^lead. The increase of the p_T densities in the toward and away regions indicates the extent of the variation in the charged fraction of the total energy in each region.

Multiplying the $\sum p_T$ density by the area associated with the toward region, the $\sum p_T$ is nearly twice what it would be if the leading charged particle were the only charged particle in the region. For the away region, the initial linear rise corresponds to the region whose total p_T nearly balances that of the leading charged particle alone. The 900 GeV and 7 TeV data show the same trend.

D. Standard deviation of charged particle multiplicity and scalar $\sum p_T$

In Fig. 5, the standard deviations of the charged particle multiplicity and charged particle scalar $\sum p_T$ densities, in the kinematic range $p_T > 0.5$ GeV and $|\eta| < 2.5$, are shown against the leading charged particle p_T at $\sqrt{s} = 900$ GeV and 7 TeV (for the transverse region only). The mean and standard deviations of the p_T density in the transverse region characterize a range of additional energy that jets might acquire if the underlying event were uniformly distributed. As the error formula is neither trivial nor particularly standard, we reproduce it here: for each bin, the sample variance of the variance of the observable $x \in \{ N_{ch}, \sum p_T \}$ is $\text{var}(\text{var}(x)) = m_4(x) - 4m_3(x)m_1(x) - 2m_2(x)^2 + 8m_2(x)m_1(x)^2 - 4m_1(x)^3$, where $m_N(x) = \langle x^N \rangle$ is the order N moment of the distribution. This is then translated into the standard error on the standard deviation of x via error propagation with a single derivative, giving symmetric errors of size $\sqrt{\text{var}(\text{var}(x))/(n-2)/2\sqrt{\text{var}(x)}}$, where n is the number of entries in the bin. The 900 GeV and 7 TeV data show the same trend.

The confirmation that the magnitudes of the standard deviations of the distributions are comparable to the magnitudes of the mean values indicates that a subtraction of the underlying event from jets should be done on an event-by-event basis, rather than by the subtraction of an invariant average value. These distributions also provide an additional constraint on generator models and tunes: the discrepancy between models is much stronger at 7 TeV than at 900 GeV, with HERWIG+JIMMY giving the best description and PHOJET, in particular, severely undershooting the data at 7 TeV.

E. Charged particle mean p_T

In Fig. 6 the average charged particle $\sum p_T$, in the kinematic range $p_T > 0.5$ GeV and $|\eta| < 2.5$, is shown as a function of p_T^lead at $\sqrt{s} = 900$ GeV and 7 TeV. These plots were constructed on an event-by-event basis by dividing the total charged particle p_T in each region by the number of charged particles in that region, requiring at least one charged particle in the considered region.

All the MC tunes, except PYTHIA tune DW, show somewhat lower mean p_T than the data in the plateau part of the transverse region and overestimate the data in the toward and away regions. The underlying event p_T (p_T) is seen to increase by about 20% going from $\sqrt{s} = 900$ GeV to 7 TeV, again described by the MC models. There is relatively little discrimination between MC models for this observable; all predictions are within ~10% of the data values. The toward and away regions are dominated by the jetlike rising profiles, in contrast to the plateau in the transverse region. The toward region has a higher mean p_T than the away region since there is higher probability of higher p_T particles being produced in association with the leading charged particle. The 900 GeV and 7 TeV data show the same trend.

F. Charged particle mean p_T and multiplicity correlations

The correlation between the mean p_T of charged particles and the charged particle multiplicity in each region is sensitive to the amount of hard (perturbative QCD) versus soft (nonperturbative QCD) processes contributing to the UE. This has previously been measured for inclusive minimum bias events by CDF [24] and ATLAS [5]. We present this quantity in Fig. 7 for each of the azimuthal regions in the kinematic range $p_T > 0.5$ GeV and $|\eta| < 2.5$.

The profiles in the transverse and away regions are very similar, showing a monotonic increase of $\langle p_T \rangle$ with N_{ch}. The profile of the toward region is different, as it is essentially determined by the requirement of a track with $p_T > 1$ GeV. For $N_{ch} = 1$, it contains only the leading charged particle and, as N_{ch} is increased by inclusion of soft charged particles, the average is reduced. However, for $N_{ch} > 5$, jetlike structure begins to form, and a weak rise of the mean p_T is observed. The 900 GeV and 7 TeV data show the same trend. Comparing the 900 GeV and 7 TeV data, it is seen that the mean charged particle p_T rises with N_{ch} profiles are largely independent of the energy scale of the collisions.

The MC models again show most differentiation for the 7 TeV data, and it is interesting to see that the HERWIG+JIMMY model describes the data well at this center-of-mass energy—better than either the DW or ATLAS MC09 PYTHIA tunes (which both substantially overshoot at 7 TeV) and comparably to the Perugia0 PYTHIA tune. PHOJET gives the best description at 7 TeV. However, both HERWIG+JIMMY and PHOJET undershoot...
the transverse region data at 900 GeV, so no robust conclusion can be drawn about the relative qualities of the models.

G. Angular distributions

The angular distributions with respect to the leading charged particle of the charged particle number and $\sum p_T$ densities at $\sqrt{s} = 900$ GeV and 7 TeV, with charged particle $p_T > 0.5$ GeV, are plotted in Figs. 8 and 9. The leading charged particle taken to be at $\Delta \phi = 0$ has been excluded from the distributions. The data are shown for four different lower cut values in leading charged particle p_T. These distributions are constructed by reflecting $|\Delta \phi|$ about zero; i.e. the region $-\pi \leq \Delta \phi < 0$ is an exact mirror image of the measured $|\Delta \phi|$ region shown in $0 \leq \Delta \phi \leq \pi$.

These distributions show a significant difference in shape between data and MC predictions. With the increase of the leading charged particle p_T, the development of jetlike structure can be observed, as well as the corresponding sharper rise in transverse regions compared to the MC. The saturation at higher p_T indicates the plateau region seen in Figs. 3 and 4. PYTHIA tunes essentially predict a stronger correlation than is seen in the data, and this discrepancy in the toward region associated particle density was also observed at CDF [32].
FIG. 6 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the mean p_T of the charged particles with $p_T > 0.5$ GeV and $|\eta| < 2.5$, as a function of p_T^{lead}. The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
FIG. 7 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the mean p_T of the charged particles against the charged multiplicity, for charged particles with $p_T > 0.5$ GeV and $|\eta| < 2.5$. The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
FIG. 8 (color online). ATLAS data at 900 GeV (top plots) and at 7 TeV (bottom plots) corrected back to the particle level, showing the \(\phi \) distribution of charged particle densities \(\frac{d^2 N_{ch}}{d \Delta \phi d \phi} \) with respect to the leading charged particle (at \(\Delta \phi = 0 \)), for \(p_T > 0.5 \) GeV and \(|\eta| < 2.5 \). The leading charged particle is excluded. The data are compared to MC predictions by the PYTHIA ATLAS MC09, DW and Perugia0 tunes, the HERWIG+JIMMY ATLAS MC09 tune, and PHOJET. The distributions obtained by restricting the minimum leading charged particle \(p_T \) to different values are shown separately. The plots have been symmetrized by reflecting them about \(\Delta \phi = 0 \). The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty corresponding to each \(p_T \) lower cut value.
The ϕ distribution of charged particle p_T densities $d^2p_T/d\eta d\phi$ with respect to the leading charged particle (at $\Delta \phi = 0$), for $p_T > 0.5$ GeV and $|\eta| < 2.5$. The leading charged particle is excluded. The data are compared to MC predictions by the PYTHIA ATLAS MC09, DW and Perugia0 tunes, the HERWIG+JIMMY ATLAS MC09 tune, and PHOJET. The distributions obtained by restricting the minimum leading charged particle p_T to different values are shown separately. The plots have been symmetrized by reflecting them about $\Delta \phi = 0$. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty corresponding to each p_T lower cut value.
FIG. 10 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the density of the charged particles $d^2N_{ch}/d\eta d\phi$ with $p_T > 0.1$ GeV and $|\eta| < 2.5$, as a function of p_T^{lead}. The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
FIG. 11 (color online). ATLAS data at 900 GeV (left) and at 7 TeV (right) corrected back to particle level, showing the scalar $\sum p_T$ density of the charged particles $\langle d^2 \sum p_T / d\eta d\phi \rangle$ with $p_T > 0.1$ GeV and $|\eta| < 2.5$, as a function of p_T^{lead}. The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.

G. AAD et al.

PHYSICAL REVIEW D 83, 112001 (2011)
H. Charged particle multiplicity and scalar $\sum p_T$ for lower p_T cut

In Figs. 10 and 11, the charged particle multiplicity density and charged particle scalar $\sum p_T$ density are shown against the leading charged particle p_T at $\sqrt{s} = 900$ GeV and 7 TeV. This time a lower p_T cutoff of 0.1 GeV is applied for the charged particles in $|\eta| < 2.5$.

Compared to the previous plots with $p_T > 500$ MeV in Figs. 3 and 4, almost a twofold increase in multiplicity is observed, but the scalar $\sum p_T$ stays very similar. Again, the pre-LHC MC tunes show lower activity than the data in the plateau part of the transverse region, except for HERWIG+JIMMY, which predicts the charged particle multiplicity density better than other models but does not do better for the $\sum p_T$ density. As this distinction of MC models is not seen for the $p_T > 500$ MeV N_{ch} profile in Sec. VIII B, it can be seen that HERWIG+JIMMY produces more particles between 100 MeV and 500 MeV than the other MC models. A similar effect may be observed in the $\langle p_T \rangle$ vs N_{ch} observable of Sec. VIII F.

I. Charged particle multiplicity and scalar $\sum p_T$ vs $|\eta|$ of the leading charged particle

Figure 12 shows the charged particle multiplicity density and $\sum p_T$ density in the kinematic range $p_T > 0.1$ GeV and $|\eta| < 2.5$, for $p_T^{lead} > 5$ GeV, against the leading charged particle pseudorapidity for $\sqrt{s} = 7$ TeV. As this observable is composed only from events on the low-statistics transverse region plateau, the available statistics were not sufficient at $\sqrt{s} = 900$ GeV for a robust analysis. However, the same behavior is seen as for 7 TeV.

It has been proposed that the dependence of the event characteristics on the (pseudo)rapidity can be a useful test of the centrality of the events [33]. In Fig. 12, the multiplicity and $\sum p_T$ are seen to be independent of $|\eta|$ for the transverse region plateau, suggesting that the average impact parameters in pp collisions do not depend strongly on η of the leading particle for a given p_T.

IX. CONCLUSIONS

Measurements of underlying event structure with the ATLAS detector have been presented, using the data delivered by the LHC during 2009 and 2010 at center-of-mass energies of 900 GeV and 7 TeV. This is the first underlying event analysis at 7 TeV, and the first such analysis at 900 GeV to be corrected for detector-specific effects.

The data have been corrected with minimal model-dependence and are provided as inclusive distributions at the particle level. The selected phase-space and the precision of this analysis highlight significant differences between Monte Carlo models and the measured distributions. The same trend was observed for the ATLAS inclusive charged particle multiplicity measurement [4,5]. PHOJET, HERWIG+JIMMY and all pre-LHC MC tunes of PYTHIA predict less activity in the transverse region (i.e. in the underlying event) than is actually observed, for both center-of-mass energies and for charged particle minimum p_T requirements of both 100 MeV and 500 MeV.
The charged particle multiplicity in the plateau of the transverse region distribution was found to be about 2 times higher than that of minimum bias particle density in the overall event.

One of the goals of this analysis is to provide data that can be used to test and improve Monte Carlo models in preparation for other physics studies at the LHC. The underlying event observables presented here are particularly important for constraining the energy evolution of multiple partonic interaction models, since the plateau heights of the UE profiles are highly correlated to multiple parton interaction activity. As MC models of soft physics are least predictive when modeling diffractive processes, it is particularly useful that the UE profiles are largely insensitive to contributions from soft diffraction models: the PYTHIA soft diffraction model indicates that these are constrained to the lowest bins in \(p_T^{\text{lead}} \). However, the sensitivity to more complete diffraction models with a hard component, such as implemented in PYTHIA 8 [34] or PHOJET, has not yet been fully ascertained.

The data at 7 TeV are particularly important for MC tuning, since measurements are needed with at least two energies to constrain the energy evolution of MPI activity. While measurements from CDF exist at 630 GeV, 1800 GeV and 1960 GeV, in addition to these ATLAS measurements at 900 GeV and 7 TeV, there is a tension between the CDF and ATLAS measurements: the ATLAS analyses indicate higher levels of activity, as evidenced by the failure of MC tunes to CDF data to match the ATLAS data [35]. Hence, ATLAS UE measurement at two energies provides the best tuning data for MC predictions of ATLAS UE at higher energies. While the PYTHIA DW tune fits the ATLAS UE profile data closer than any other current tune, it fails to describe other data—as highlighted in the shape of the distribution of \(\langle p_T \rangle \) vs \(N_{\text{ch}} \) in Fig. 7. The increase of initial state radiation activity (and different shower models) in tune DW may be responsible for this behavior. There is therefore no current standard MC tune which adequately describes all the early ATLAS data. However, using diffraction-limited minimum bias distributions and the plateau regions of the underlying event distributions presented here, ATLAS has developed a new PYTHIA tune AMBT1 (ATLAS Minimum Bias Tune 1) and a new HERWIG+JIMMY tune AUET1 (ATLAS Underlying Event Tune 1) which model the \(p_T \) and charged multiplicity spectra significantly better than the pre-LHC tunes of those generators [5,36].

ACKNOWLEDGMENTS

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MEYS (MSMT), MPO and CCRC, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRCIES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision point to the center of the LHC ring and the positive y-axis points upwards. The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is the angle measured with respect to the z-axis. The pseudorapidity is given by $\eta = -\ln \tan(\theta/2)$. Transverse momentum is defined relative to the beam axis.

The gluon density distribution is enhanced at low-x.

The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision point to the center of the LHC ring and the positive y-axis points upwards. The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is the angle measured with respect to the z-axis. The pseudorapidity is given by $\eta = -\ln \tan(\theta/2)$. Transverse momentum is defined relative to the beam axis.

The gluon density distribution is enhanced at low-x.

The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision point to the center of the LHC ring and the positive y-axis points upwards. The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is the angle measured with respect to the z-axis. The pseudorapidity is given by $\eta = -\ln \tan(\theta/2)$. Transverse momentum is defined relative to the beam axis.

The gluon density distribution is enhanced at low-x.

The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision point to the center of the LHC ring and the positive y-axis points upwards. The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is the angle measured with respect to the z-axis. The pseudorapidity is given by $\eta = -\ln \tan(\theta/2)$. Transverse momentum is defined relative to the beam axis.

The gluon density distribution is enhanced at low-x.

The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision point to the center of the LHC ring and the positive y-axis points upwards. The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is the angle measured with respect to the z-axis. The pseudorapidity is given by $\eta = -\ln \tan(\theta/2)$. Transverse momentum is defined relative to the beam axis.

G. Aad et al.

Physical Review D 83, 112001 (2011)

74. Jožef Stefan Institute and University of Ljubljana, Department of Physics, SI-1000 Ljubljana, Slovenia
75. Queen Mary University of London, Department of Physics, Mile End Road, London E1 4NS, United Kingdom
76. Royal Holloway, University of London, Department of Physics, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom
77. University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, United Kingdom
78. Laboratoire de Physique Nucléaire et de Hautes Energies, Université Pierre et Marie Curie (Paris 6), Université Denis Diderot (Paris-7), CNRS/IN2P3, Tour 33, 4 place Jussieu, FR - 75252 Paris Cedex 05, France
79. Fysiska institutionen, Lunds universitet, Box 118, SE - 221 00 Lund, Sweden
80. Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Fisica Teorica, ES - 28049 Madrid, Spain
81. Universität Mainz, Institut für Physik, Staudinger Weg 7, DE - 55099 Mainz, Germany
82. University of Manchester, School of Physics and Astronomy, Manchester M13 9PL, United Kingdom
83. CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
84. University of Massachusetts, Department of Physics, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
85. McGill University, High Energy Physics Group, 3600 University Street, Montreal, Quebec H3A 2T8, Canada
86. University of Melbourne, School of Physics, AU - Parkville, Victoria 3010, Australia
87. The University of Michigan, Department of Physics, 2477 Randall Laboratory, 500 East University, Ann Arbor, Michigan 48109-1120, USA
88. Michigan State University, Department of Physics and Astronomy, High Energy Physics Group, East Lansing, Michigan 48824-2320, USA
89. INFN Sezione di Milano, Italy
90. Università di Milano, Dipartimento di Fisica, via Celoria 16, IT - 20133 Milano, Italy
91. B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue 68, Minsk 220072, Republic of Belarus
92. National Scientific and Educational Centre for Particle and High Energy Physics, NC PHEP BSU, M. Bogdanovich Street 153, Minsk 220040, Republic of Belarus
93. Massachusetts Institute of Technology, Department of Physics, Room 24-516, Cambridge, Massachusetts 02139, USA
94. University of Montreal, Group of Particle Physics, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3A 2T8, Canada
95. P.N. Lebedev Institute of Physics, Academy of Sciences, Leninsky pr. 53, RU - 117 924 Moscow, Russia
96. Institute for Theoretical and Experimental Physics (ITEP), B. Cheremushkinskaya ul. 25, RU 117 218 Moscow, Russia
97. Moscow Engineering and Physics Institute (MEPhI), Kashirskoe Shosse 31, RU - 115409 Moscow, Russia
98. Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (MSU SINP), 1(2), Leninskie gory, GSP-1, Moscow 119991 Russian Federation, Russia
99. Ludwig-Maximilians-Universität München, Fakultät für Physik, Am Coulombwall 1, DE - 85748 Garching, Germany
100. Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
101. Nagasaki University, Graduate School of Science, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan
102. INFN Sezione di Napoli, Italy
103. University of New Mexico, Department of Physics and Astronomy, MSC07 4220, Albuquerque, New Mexico 87131 USA
104. Radboud University Nijmegen/NIKHEF, Department of Experimental High Energy Physics, Heyendaalseweg 35, NL-6525 AJ, Nijmegen, Netherlands
105. Nikhef National Institute for Subatomic Physics, and University of Amsterdam, Science Park 105, 1098 XG Amsterdam, Netherlands
106. Department of Physics, Northern Illinois University, LaTourette Hall, Normal Road, DeKalb, Illinois 60115, USA
107. Budker Institute of Nuclear Physics (BINP), RU - Novosibirsk 630 090, Russia
108. New York University, Department of Physics, 4 Washington Place, New York, New York 10003, USA
109. Ohio State University, 191 West Woodruff Ave, Columbus, Ohio 43210-1117, USA
110. Okayama University, Faculty of Science, Tsushimaoka 3-1-1, Okayama 700-8530, Japan
111. University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks, Room 100, Norman, Oklahoma 73019-0225, USA
112. Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater, Oklahoma 74078-3072, USA
113. Palacký University, 17.listopadu 50a, 772 07 Olomouc, Czech Republic
114. University of Oregon, Center for High Energy Physics, Eugene, Oregon 97403-1274, USA
115. LAL, Université du Paris-Sud, IN2P3/CNRS, Orsay, France
116. Osaka University, Graduate School of Science, Machikaneyama-machi 1-1, Toyonaka, Osaka 560-0043, Japan
117. University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO - 0316 Oslo 3, Norway
118. Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
119. INFN Sezione di Pavia, Italy
120. University of Pittsburgh, Department of Physics, High Energy Physics Group, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
121. Petersburg Nuclear Physics Institute, RU - 188 300 Gatchina, Russia

112001-32
G. Aad et al.
PHYSICAL REVIEW D 83, 112001 (2011)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of California, Irvine, Physics and Astronomy, CA 92697-4575, USA</td>
<td>INFN Gruppo Collegato di Udine, Italy</td>
</tr>
<tr>
<td>ICTP, Strada Costiera 11, IT-34014, Trieste, Italy</td>
<td>University of Illinois, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, USA</td>
</tr>
<tr>
<td>University of Uppsala, Department of Physics and Astronomy, P.O. Box 516, SE -751 20 Uppsala, Sweden</td>
<td>Instituto de Fisica Corpuscular (IFIC) Centro Mixto UVEG-CSIC, Apdo. 22085 ES-46071 Valencia, Dept. Fisica At. Mol. y Nuclear;</td>
</tr>
<tr>
<td>University of Victoria, Department of Physics, 6224 Agricultural Road, CA - Vancouver, British Columbia V6T 1Z1, Canada</td>
<td>Waseda University, WISE, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan</td>
</tr>
<tr>
<td>The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL - 76100 Rehovot, Israel</td>
<td>University of Wisconsin, Department of Physics, 1150 University Avenue, WI 53706 Madison, Wisconsin, USA</td>
</tr>
<tr>
<td>University of California, Irvine, Department of Physics and Astronomy, CA 92697-4575, USA</td>
<td>Julius-Maximilians-University of Wurzburg, Physikalisches Institute, Am Hubland, 97074 Wurzburg, Germany</td>
</tr>
<tr>
<td>Yale University, Department of Physics, P.O. Box 208121, New Haven Connecticut 06520-8121, USA</td>
<td>Bergische Universität, Fachbereich C, Physik, Postfach 100127, Gauss-Strasse 20, D- 42097 Wuppertal, Germany</td>
</tr>
<tr>
<td>University of British Columbia, Department of Physics, 6224 Agricultural Road, CA - Vancouver, British Columbia V6T 1Z1, Canada</td>
<td>Centre de Calcul CNRS/IN2P3, Domaine scientifique de la Doua, 27 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France</td>
</tr>
</tbody>
</table>

- Deceased.
- Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Avenida Elias Garcia 14-1, PT - 1000-149 Lisboa, Portugal.
- Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- Also at CPPM, Aix-Marseille Université, CNRS-IN2P3, Marseille, France.
- Also at TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.
- Also at Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology (FPACS, AGH-UST), al. Mickiewicza 30, PL-30059 Cracow, Poland.
- Also at University of Coimbra, Coimbra, Portugal.
- Also at Università di Napoli Parthenope, Napoli, Italy.
- Also at Institute of Particle Physics (IPP), Canada.
- Also at Louisiana Tech University, 305 Wisteria Street, P.O. Box 3178, Ruston, LA 71272, United States of America.
- Also at Department of Physics, California State University Fresno, Fresno, California United States of America.
- Also at California Institute of Technology, Pasadena, California, United States of America.
- Also at University of Montpellier, Group of Particle Physics, C.P. 6128, Succursale Centre-Ville, Montpellier, Quebec H3C 3J7, Canada.
- Also at Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan.
- Also at Institut für Experimentalphysik, Universität at Hamburg, Hamburg, Germany.
- Also at Manhattan College, New York, United States of America.
- Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan.
- Also at Shandong University, High Energy Physics Group, Jinan, CN - Shandong 250100, China.
- Also at Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom.
- Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- Also at Department of Physics and Astronomy, 700 South Main Street, Columbia, SC 29208, United States of America.
- Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
- Also at Institute of Physics, Jagiellonian University, Cracow, Poland.
- Also at Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom.
- Also at CEA, DSM/IRFU, Centre d’Etudes de Saclay, FR - 91191 Gif-sur-Yvette, France.
- Also at Laboratoire de Physique Nucléaire et de Hautes Energies, Université Pierre et Marie Curie (Paris 6), Université Denis Diderot (Paris-7), CNRS/IN2P3, Tour 33, 4 place Jussieu, FR - 75252 Paris Cedex 05, France.
- Also at Nanjing University, Department of Physics, Nanjing, CN - Jiangsu 210093, China.