Inclusive search for same-sign dilepton signatures in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

DOI
10.1007/JHEP10(2011)107

Publication date
2011

Document Version
Final published version

Published in
The Journal of High Energy Physics

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Inclusive search for same-sign dilepton signatures in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS collaboration

ABSTRACT: An inclusive search is presented for new physics in events with two isolated leptons (e or μ) having the same electric charge. The data are selected from events collected from pp collisions at $\sqrt{s} = 7$ TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb$^{-1}$. The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, $e\mu$ and $\mu\mu$ channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator \mathcal{V} with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks.

KEYWORDS: Hadron-Hadron Scattering
1 Introduction

A diverse group of models predict interactions producing two isolated leptons of the same electric charge and with significant transverse momentum — a signature quite rare in the Standard Model (SM). An inclusive search for such processes recorded by ATLAS is presented for the first time at a centre-of-mass energy $\sqrt{s} = 7$ TeV. Events with a same-sign dilepton (ee, $e\mu$, $\mu\mu$) signature were selected from pp collisions produced by the LHC with an integrated luminosity of 34 pb$^{-1}$.

The ATLAS collaboration has performed a dedicated search for supersymmetric phenomena [1] in events with exactly two leptons and large missing transverse momentum selected from the same pp collision data described herein. By contrast, the inclusive analysis described in this article presents model-independent limits from events that may have more than two leptons and no missing transverse momentum. The CMS collaboration has searched for new phenomena in same-sign dilepton events with jets and missing transverse
momentum [2]. Inclusive analyses by the CDF collaboration present kinematic distributions and 95% confidence limits using up to 1 fb$^{-1}$ of $p\bar{p}$ collisions [3, 4] at a centre-of-mass energy of 1.96 TeV. The CMS and CDF collaborations searched for fourth-generation d-type quarks in 34 pb$^{-1}$ of pp collisions [5] and in 2.7 fb$^{-1}$ of $p\bar{p}$ collisions [6], respectively. They set lower mass limits of 361 GeV and 338 GeV respectively, at 95% confidence level. A search by the DØ collaboration excludes a right-handed W boson W_R with mass less than 739 GeV in left-right symmetric models (LRS) [7]. Various other specific searches have been performed in same-sign dilepton samples by these experiments [8–11].

In this article, spectra in dilepton invariant mass ($m_{\ell\ell}$), jet multiplicity (N_{jets}), and missing transverse momentum (E_T^{miss}) are studied for consistency with the SM or evidence for new physics. The SM prediction is estimated mainly by extrapolation from control samples selected in the data. Additional small contributions are determined using simulated events. In a kinematic fiducial region, an upper limit on the cross-section of high-mass ($m_{\ell\ell} > 110$ GeV, above the Z-mass region) same-sign dilepton events from non-SM sources is given for each channel, and benchmark selection efficiencies for some specific models are provided. In the subsample of events with at least one jet, a number of limits are set: first limits on the mass of Majorana neutrinos in an effective operator framework [12], and limits surpassing previous experimental results [13, 14] in an LRS scenario [15]. This sample is also interpreted to set cross-section limits on a cascade topology found in supersymmetry and models with universal extra dimensions (UED) [17] in terms of masses of the minimally required particles. Using the subsample with $E_T^{\text{miss}} > 30$ GeV, a lower limit on the mass of a fourth generation down-type quark (d_4) [18] is obtained.

2 Description of the ATLAS experiment

The ATLAS detector [19] is a multipurpose detector of charged and neutral particles with precision trackers, calorimeters and muon spectrometers. The momenta of charged particles with pseudorapidity $|\eta| < 2.5$ are measured by the inner detector (ID), which is a combination of a silicon pixel detector, a silicon microstrip detector and a straw-tube detector. The ID operates in a uniform 2 T magnetic field. The pixel detector measurements notably enable precise determination of production vertices.

Electromagnetic calorimetry for electron, photon, and jet reconstruction is provided by a high-granularity, three depth-sampling liquid-argon (LAr) detector with lead absorbers in the region $|\eta| < 3.2$. Jet reconstruction also uses hadron calorimetry provided by a scintillating tile detector with iron absorbers in the central region for $|\eta| < 1.7$, and a LAr

1 The missing transverse momentum in an event, denoted E_T^{miss}, is the vector difference between zero and the total transverse momentum, calculated from energy depositions in the calorimeter and momentum measurements from the muon spectrometer for identified muons.

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

detector for $1.5 < |\eta| < 4.9$. A presampler detector is used to correct for energy lost by electrons and photons in material in front of the calorimeter for $|\eta| < 1.8$.

Dedicated muon reconstruction is performed by a multi-system muon spectrometer (MS). Precision measurements in the η coordinate are provided by measurements of monitored drift tubes for $|\eta| < 2.7$. These are supplemented by cathode-strip chambers measuring both the η and azimuth (ϕ) coordinates for $2.0 < |\eta| < 2.7$ in the innermost endcap muon station. Fast measurements required for initiating trigger logic are provided by resistive-plate chambers for $|\eta| < 1.05$, and beyond that by thin-gap chambers to $|\eta| < 2.4$. The muon detectors operate in a non-uniform magnetic field generated by three superconducting air-core toroid magnetic systems.

To trigger readout, full event reconstruction and event storage by the data acquisition system, at least one electron or muon candidate is required that satisfies the following criteria. Electron candidates must have transverse energy $E_T > 15$ GeV. They must satisfy shower-shape requirements and correspond to an ID track. Muon candidates must have transverse momentum $p_T > 13$ GeV, $|\eta| < 2.4$, and a consistent trajectory reconstructed in the ID and MS. The full trigger chain uses signals from all muon detectors.

3 Physics simulation data

The response of the ATLAS detector is simulated [21] using geant4 [22]. The parameter settings for the Monte Carlo programs are described in ref. [23]. The Z and W events were generated using alpgen v2.13 [24] with the CTEQ6L1 parton distribution function (PDF) set [25]; WW, WZ, and ZZ events using herwig 6.510 [26–28] with the MRST2007 LO* PDF set [29]; $Z\gamma$ and $W\gamma$ events using madgraph v4 [30] with the CTEQ6L1 PDF set, interfaced to pythia 6.421 [31]; and $t\bar{t}$ events using MC@NLO 3.41 [32, 33] with the CTEQ6.6 PDF set [25], interfaced to herwig. Cross-sections for $t\bar{t}$ events are calculated at approximate next-to-next-to-leading order [34], at next-to-next-to-leading order for events with a boson and jets, and at next-to-leading order for diboson events.

4 Sample selection and Standard Model sources

In this article same sign dilepton event refers to a pp interaction that produces two leptons (e or μ) with matching electric charge, where both leptons are produced promptly by the primary interaction. Such prompt leptons will usually be isolated from hadronic jets in the event. Leptons from hadron decays, for example from hadrons with b or c quarks, are classified as background in this analysis, along with instrumental background. Various selection criteria are applied for background suppression.

3 During early data-recording periods, trigger momentum thresholds for electrons and muons were sometimes lower, with minimum values of 10 GeV, combined with other minor algorithmic differences. However, the efficiencies for events entering the selected samples from these periods, representing 10% of the sample for electrons and 20% for muons, are not significantly different.

4 The medium selection defined in section 4.2 of ref. [20] is used.
4.1 Sample selection

The sample includes events having at least two lepton candidates within the experimental acceptance. Each must pass a tight type-identification and track quality selection and an isolation condition that rejects leptons within jets; these requirements are described below. Each lepton candidate is required to have $p_T > 20$ GeV. For muons, the transverse momentum measurement uses information from both the ID and MS. An isolation requirement on nearby calorimeter depositions is applied: the sum of transverse-energy depositions not associated with the candidate within a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ surrounding the candidate lepton must be less than 15% of the lepton E_T. To control relative efficiencies among samples, the data acquisition system must have been triggered by at least one of the two isolated leptons in the same-sign pair.

A number of requirements ensure the quality of particle tracks and type-identification. Candidates for the main electron sample are tightly selected: they are identified by calorimeter cluster properties and matched to a track in the η and ϕ coordinates, with the same criteria used for the trigger. They are reliably reconstructed in the region $|\eta| < 2.47$, except in the barrel-endcap transition region $1.37 < |\eta| < 1.52$ which is excluded. Electron candidates must have a calorimeter energy to track momentum ratio E/p consistent with expectations for an electron. The precise values vary with $|\eta|$ and p_T; for electrons with $\eta = 0$ and $p_T = 50$ GeV, we require $0.7 < E/p < 5.0$. If a track trajectory passes through an active region of the innermost pixel layer, a measurement in that layer is required for suppression of electrons from photon conversions. Electron candidates from tracks that are also reconstructed as viable muon candidates are rejected.

Candidates for the tightly selected muon sample are selected from tracks reconstructed in the MS and matched to tracks in the ID. The two measurements of the track parameters are then combined \cite{35}. Candidates are accepted in the range $|\eta| < 2.5$. Charge measurements made by the ID and MS must agree.

Electron and muon control samples are also used to study the properties of lepton candidates likely to be found in misreconstructed events in the same-sign dilepton sample. These samples are defined in the description of the background prediction method.

Jets are reconstructed and used in three ways: to define jet multiplicity, an important feature of some predicted signals; to reject isolated muons from b-flavoured jets; and to select a control sample of events with electrons originating from semileptonic hadron decays. All jets in this analysis are defined by the anti-k_t algorithm \cite{36,37}, with radius parameter equal to 0.4, applied to calorimeter clusters \cite{38}. To be counted in jet multiplicity, jets must have $p_T > 30$ GeV and $|\eta| < 2.5$. For rejection of muons from b-jets, a looser requirement of $p_T > 20$ GeV is made. Muons are rejected within a cone of $\Delta R = 0.4$ around such jets. For selecting events for the electron control sample, all jets reconstructed within the experimental acceptance are considered.

For inclusion in the dilepton event sample, the two lepton candidates must originate from the same primary vertex; this primary vertex must contain at least five tracks to suppress non-collision events.
4.2 Sources of same-sign dileptons in the Standard Model

In the SM, events with the same-sign dilepton signature may be produced in three ways: events containing two gauge bosons, events in which a lepton originates in a jet, and events in which the reconstructed charge of a lepton is not that produced in the primary interaction.

True same-sign dilepton events are produced from SM diboson processes, most notably WZ processes. These are a rare but irreducible background to new physics sources, since events with more than two leptons are not excluded by the selection. They are distinguishable from new sources only by differences in kinematic spectral shapes.

The main SM background categories are sources that enter the sample due to misreconstruction of the event, i.e., a selected lepton candidate is not a primary product of the main interaction. Jets often produce leptons that are wrongly reconstructed as primary. As well, the charge of a selected lepton candidate may not be the primary charge from the interaction.

When an event is selected for the sample using a lepton candidate from a jet, this lepton is called a flavour fake (denoted by the term “QCD” in plots and symbols). This is because the lepton originates from a hadronic jet, so the observed lepton flavour does not reflect the primary interaction process. Processes that are often reconstructed as same-sign dileptons in this way are dijet processes and final states with a W boson and jets. This is the main background considered in this analysis as it has the largest overall contribution to the sample. It is dominant in the $\mu\mu$ and $e\mu$ channels.

It is also possible to misreconstruct an event as same sign if final state particles produced with opposite electric charge lead to good same-sign lepton candidates in the detector. Processes susceptible to this effect are $Z/\gamma^* \rightarrow e^+e^-$ and $t\bar{t}$ semileptonic decays with at least one electron. This misreconstruction occurs if an electron undergoes bremsstrahlung, and upon conversion the photon passes the larger share of momentum to an electron of the opposite charge. For this reason, this effect is called electron charge flipping (denoted by “charge flip” in plots). The charge-flip category is large in the ee channel and present in the $e\mu$ channel. When the bremsstrahlung does not carry the majority of the electron energy, misidentification of electron charge may occur due to misreconstruction of the ID track. If found in this analysis, such events would be included in the charge-flip category. Due to the near absence of photons converting to muon pairs, this category does not appear in the $\mu\mu$ channel. Muon charge misidentification is negligible over the range of p_T found in the sample.

4.3 Characterisation of Standard Model sources

The data are used to characterise the background from misreconstruction, especially flavour fake events. The rates of heavy flavour dijet events are not well known a priori, and so would suffer from substantial uncertainties if derived purely from simulation. Instead a method, described in the following, is used which extrapolates from control samples to the signal region. The control samples are separate samples of background electrons and muons,
Figure 1. The selection efficiency for candidates mimicking primary electrons, $\epsilon_{e\text{TLbkg}}$, defined as the fraction of loosely selected electrons that also pass tight selection, measured in a enriched background sample of recorded data and parameterised in p_T and H_T to demonstrate the dependence. The events used to determine $\epsilon_{e\text{TLbkg}}$ were recorded using a photon trigger, which was prescaled for part of the 2010 pp data collection. Empty regions (white) are either kinematically impossible ($H_T < p_T$) or unpopulated.

from events that have fewer than two reconstructed leptons and therefore are independent of the main sample. The procedure is discussed in detail below.

To examine the properties of background events, a loosely selected sample of electron candidates is defined with relaxed selection criteria, by removing the isolation and E/p requirements, while loosening shower-shape and track quality requirements\(^5\) to allow sufficient statistics across the relevant phase space. The tightly selected electron sample is therefore a subset of the loosely selected sample. To predict the kinematic distributions of misreconstructed events, dielectron events are chosen that have two same-sign electrons in the loosely selected sample. These events are classified into components depending on whether the loosely selected electrons also pass tight selection: (1) both are tightly selected, (2) only one is tightly selected, or (3) neither is tightly selected.

By applying measured efficiencies as event weights, these yield components may be transformed into isolated dielectron and background yield components. The transformation is expressed by a system of linear equations \([39]\) that project the true primary dilepton and background category yields from the loose and tight categories. The projection to component yields relies on the assumption that the flavour fake rate found in enriched background samples described below is applicable to the flavour fakes in dilepton events.

The selection efficiency for candidates mimicking primary electrons, $\epsilon_{e\text{TLbkg}}$, is defined as the fraction of loosely selected electrons that also pass the tight selection. The enriched background sample used to measure $\epsilon_{e\text{TLbkg}}$ is characterized by events with at least one lepton from a jet, implemented by requiring a unique loosely selected electron in the event. The events in this sample were accepted by a photon trigger defined by a subset of the loose electron selection rules \([40]\). To further select events with leptons from semileptonic hadron decays, which are produced in jets, the E_T^{miss} and any adjacent jet axis must have

\(^5\)The loose selection defined in section 4.2 of ref. \([20]\) is used.
Figure 2. The selection efficiency for candidates mimicking primary muons, $\epsilon_{\mu\text{TLbkg}}$, defined as the fraction of loosely selected muons that also pass tight selection, parameterised as a function of p_T and H_T to demonstrate the dependence. Empty regions (white) are kinematically impossible ($H_T < p_T$).

a maximum azimuthal difference of $\Delta\phi(E_T^{\text{miss}},\text{jet}) < 0.1$. This sample is therefore mostly composed of dijets. Possible bias in the measured efficiency due to the event selection is included in the systematic uncertainty, described in section 5. The background efficiency $\epsilon_{\mu\text{TLbkg}}$ is measured separately for electrons which satisfy the electron trigger requirement and for those which do not, and is parameterised by p_T of the electron and H_T, defined as the sum of E_T over all reconstructed objects in the event (figure 1). For relatively rare dijet events in which H_T has a large contribution from the electron candidate itself, the electron candidate is likely to satisfy the isolation requirement due to the lack of non-associated energy depositions nearby; this correlation is described by the diagonal band in figure 1.

To study true primary electrons, dielectron events with one tightly selected and one loosely selected electron, of opposite charge, are selected to form a enriched electron sample of $Z \rightarrow e^+e^-$ events, requiring $86 < m_{e^+e^-} < 96$ GeV to achieve a high purity. The loosely selected electron is checked for inclusion in the tightly selected sample to measure the relative efficiency between the tight and loose selection rules.

A fraction of the charge-flip electron background is included in the described data-driven procedure. However, studies of Z events show that electron charge-flips are well modeled, so this category is instead described with simulated data and the overlap is subtracted from the data-driven background prediction to isolate the flavour fake prediction. The charge-flip overlap fraction is measured by normalizing the simulated prediction to the observed reflection peak from $Z \rightarrow e^+e^-$ processes and found to be $(19\pm16)\%$. Simulation data scaled to the recorded luminosity are added to the predicted flavour-fake distributions. The diboson background contribution is taken from simulation.

Muons are treated similarly, with $\epsilon_{\mu\text{TLbkg}}$ parameterised in the p_T of the candidate and H_T (figure 2). The $\epsilon_{\mu\text{TLbkg}}$ is fit using a Bayesian neural network [41–43] to extract
Table 1. The observed (n_{obs}) and predicted (n_{pred}) yields of same-sign dilepton events. The prediction is the sum of the individual estimates of the number of events with misreconstructed flavour (n_{fake}), the number of events with misreconstructed charge ($n_{\text{charge-flip}}^\text{sim}$), and the number of true SM same-sign dilepton events ($n_{\text{diboson}}^\text{sim}$). Uncertainties are statistical followed by systematic. The dominant statistical errors are due to the small number of events in the background control samples from which the misreconstructed flavor background predictions are calculated. The dominant systematic uncertainties are due to uncertainty on the method of misreconstructed flavor background calculation, see table 2 and text in section 5. The $Z \rightarrow ee$ peak is suppressed by excluding events with $80 < m_{ee} < 95$ GeV. The electron charge-flip category does not apply to the dimuon channel; this is indicated by a dash in the table.

<table>
<thead>
<tr>
<th></th>
<th>n_{obs}</th>
<th>n_{pred}</th>
<th>n_{fake}</th>
<th>$n_{\text{charge-flip}}^\text{sim}$</th>
<th>$n_{\text{diboson}}^\text{sim}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee</td>
<td>10</td>
<td>21.8±9.4±3.8</td>
<td>11.1±9.4±2.8</td>
<td>10.1±0.9±2.5</td>
<td>0.6±0.0±0.1</td>
</tr>
<tr>
<td>$\mu\mu$</td>
<td>9</td>
<td>6.1±2.8±1.2</td>
<td>4.8±2.8±1.2</td>
<td>—</td>
<td>1.3±0.0±0.1</td>
</tr>
<tr>
<td>$e\mu$</td>
<td>25</td>
<td>17.5±9.3±3.7</td>
<td>15.0±9.3±3.7</td>
<td>0.5±0.2±0.1</td>
<td>2.1±0.0±0.2</td>
</tr>
</tbody>
</table>

5 Systematic uncertainties

The largest source of systematic uncertainty is the weighting of events to extract yield predictions for signal and background. Two studies quantify the overall magnitude of this uncertainty. In the first, $\epsilon_{\text{TLbkg}}^{e,\mu}$ is measured in simulated data with known generated properties. In the second, $\epsilon_{\text{TLbkg}}^{e,\mu}$ is used to predict the number of events with a flavour fake in the region $10 < p_T < 20$ GeV for the less energetic lepton of the pair, where flavour fakes
Table 2. Sources and estimated sizes of systematic uncertainties, for data-driven predictions and for Monte Carlo predictions of background and hypothetical signals, shown as a fraction of the event yield or of the electron and muon efficiencies (ϵ_e and $\epsilon_\text{\mu}$, respectively).

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data-driven predictions</td>
<td></td>
</tr>
<tr>
<td>Category transformation, yield and shape</td>
<td>25% of yield</td>
</tr>
<tr>
<td>Monte Carlo predictions</td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.4% of yield</td>
</tr>
<tr>
<td>Jet-energy calibration</td>
<td>\leq 2% of yield</td>
</tr>
<tr>
<td>E/p requirement ($E_\text{T}^e < 150$ GeV)</td>
<td>3% of ϵ_e</td>
</tr>
<tr>
<td>E/p requirement ($E_\text{T}^e \geq 150$ GeV)</td>
<td>12% of ϵ_e</td>
</tr>
<tr>
<td>Electron charge misidentification</td>
<td>1.5% of ϵ_e</td>
</tr>
<tr>
<td>Muon momentum resolution</td>
<td>\leq 1% of $\epsilon_\text{\mu}$</td>
</tr>
<tr>
<td>Electron energy resolution</td>
<td>\leq 1% of ϵ_e</td>
</tr>
</tbody>
</table>

are expected to be dominant. This study tests the reliability of both the parameterisation and use of $\epsilon_\text{e,\mu}^{\text{TLbkg}}$ for predictions of events where both leptons come from jets. Both studies indicate a 25% uncertainty. Other systematic uncertainties are much smaller and affect predictions of signal and background from simulations. The integrated luminosity of the sample is known with an uncertainty of 3.4% [44, 45], and the uncertainty on the jet-energy calibration [38] yields an uncertainty of less than 2% on the yields in this sample. The uncertainty on the measured electron efficiency is dominated by the uncertainty of the E/p distribution. This uncertainty is estimated as the difference between electron efficiencies measured in simulated and recorded e^+e^- events; this yields a 3% uncertainty on the efficiency for $E_\text{T}^e < 150$ GeV, for which there are many recorded electrons, and a 12% uncertainty for $E_\text{T}^e > 150$ GeV, for which there are few recorded events. The uncertainty on the electron efficiency from electron-charge misidentification is determined by comparing simulated and recorded same-sign $Z \rightarrow e\mu$ events, and is found to average 1.5%. Efficiency uncertainties due to momentum or energy resolution are less than 1%. A comparison of systematic effects is given in table 2. We conclude that the sensitivity of this analysis is predominantly affected by the accuracy of the data-driven background predictions, and is largely unaffected by uncertainties arising from the use of simulated samples.

6 Consistency of observation with the Standard Model

A validation of the SM prediction is made in samples of opposite-sign dilepton events. The $e\mu$ channel is the most suitable for validation because it contains both lepton flavours, and comparable contributions from data-driven methods and simulation. The contribution from $Z \rightarrow \tau\tau$ decays is relatively small. The results of this validation are shown in figure 3, with component categories indicated. As shown, there is good agreement (within the combined statistical and systematic uncertainty) between the observed data and the prediction in most bins of the kinematic distributions.
Figure 3. Validation of the SM prediction method in the opposite-sign $e\mu$ channel. Kinematic variables are shown: p_T of the leading lepton (top left), $m_{\ell\ell}$ (top right) and E_{miss} (bottom). Statistical and systematic uncertainties on the prediction are shown as a dashed blue line. Overflow events are included in the highest bin. The contribution labeled Z is dominated by $Z \rightarrow \tau\tau$ decays but includes a small contribution from $Z \rightarrow \mu\mu$ decays where a hard photon is radiated from a muon, converts and is reconstructed as an electron.

The SM predictions in the same-sign samples are reported in table 1. The observed and predicted kinematic distributions are shown in figures 4 and 5. The consistency between the shape of the observed and predicted distributions is evaluated with a Kolmogorov-Smirnov (KS) distance test [49]. Agreement is found between the observed data and the SM prediction, as shown in table 3. Dielectron events in the region $80 < m_{\ell\ell} < 95$ GeV are excluded in the analysis of the E_{miss} and N_{jets} distributions to suppress contamination from misreconstructed $Z \rightarrow ee$ events.

7 Limit on generic same-sign high-mass dilepton production

Beyond the charge-flip reflection of $Z \rightarrow ee$ (see figure 4, left), the $m_{\ell\ell}$ spectrum is sensitive to the presence of new sources of same-sign dilepton events. In the domain $m_{\ell\ell} > 110$ GeV, $8.5 \pm 3.8_{\text{(stat)}} \pm 0.7_{\text{(syst)}}$ events are predicted by the SM, primarily in the flavour-fake category. Four events are observed.
Figure 4. Distributions of same-sign dilepton invariant mass in the ee (top left), $\mu\mu$ (top right) and $e\mu$ (bottom) channels. Shown are data (points) and backgrounds (solid stacked histograms). The combined statistical and systematic uncertainty is shown as a dashed blue line. Overflow events are included in the final bin.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>$\ell\ell$</th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\ell\ell}$</td>
<td>0.15 (84%)</td>
<td>0.33 (36%)</td>
<td>0.60 (28%)</td>
<td>0.40 (43%)</td>
</tr>
<tr>
<td>$m_{\ell\ell} > 110$ GeV</td>
<td>0.54 (23%)</td>
<td>1.00 (7%)</td>
<td>0.76 (34%)</td>
<td>0.19 (91%)</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>0.19 (72%)</td>
<td>0.60 (11%)</td>
<td>0.39 (59%)</td>
<td>0.36 (50%)</td>
</tr>
<tr>
<td>N_{jets}</td>
<td>0.18 (73%)</td>
<td>0.59 (12%)</td>
<td>0.37 (57%)</td>
<td>0.28 (59%)</td>
</tr>
</tbody>
</table>

Table 3. Results of KS-distance test between data and Standard Model predictions. The maximum KS distance and corresponding p-value (in parentheses) is given for three kinematic distributions presented in this analysis (figures 4 and 5), and one high-mass subset. Statistical and systematic fluctuations are included in the p-value calculation. We find agreement between the observed data and the SM prediction.
Figure 5. Distributions of missing transverse momentum (left) and jet multiplicity (right) in same-sign ee (top), $\mu\mu$ (center) and $e\mu$ (bottom) channels. Shown are data (points) and backgrounds (solid stacked histograms). The combined statistical and systematic uncertainty is shown as a dashed blue line. Overflow events are included in the final bin. In the ee channel, the Z reflection is suppressed by excluding $80 < m_{\ell\ell} < 95$ GeV.
Table 4. The observed \((n_{\text{obs}})\) and predicted \((n_{\text{pred}})\) yields of same-sign dilepton events with large dilepton invariant mass \(m_{\ell\ell} > 110\) GeV. Uncertainties are statistical followed by systematic. Upper limits at 95% CL are placed on the fiducial cross-section \((\sigma_{\text{obs}}^{95})\) of a new high-mass source in each channel. Also given is the median expected limit \((\sigma_{\text{exp}}^{95})\) in simulated experiments drawn from the background hypothesis.

<table>
<thead>
<tr>
<th>Channel</th>
<th>(n_{\text{obs}})</th>
<th>(n_{\text{pred}})</th>
<th>(\sigma_{\text{obs}}^{95} \text{ [pb]})</th>
<th>(\sigma_{\text{exp}}^{95} \text{ [pb]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee</td>
<td>0</td>
<td>3.1±2.1±0.5</td>
<td>0.15</td>
<td>0.46</td>
</tr>
<tr>
<td>(\mu\mu)</td>
<td>1</td>
<td>2.2±1.4±0.4</td>
<td>0.17</td>
<td>0.25</td>
</tr>
<tr>
<td>(e\mu)</td>
<td>3</td>
<td>3.2±2.9±0.5</td>
<td>0.28</td>
<td>0.28</td>
</tr>
</tbody>
</table>

In the high-mass domain specified above \((m_{\ell\ell} > 110\) GeV\), limits are set by the prescription of Feldman and Cousins [50]. In this method, confidence intervals are built from a likelihood-ratio test statistic. Ensembles of simulated experiments are generated that capture fluctuations expected from the statistical and systematic uncertainties. The observed upper limit on the cross-section of a new high-mass source is given for each channel in table 4. In the ee and \(\mu\mu\) channels, the observed limits are somewhat lower than the expected limits because the number of events observed in these channels is lower than the number predicted by the Standard Model.

Efficiencies to pass the baseline selection in a fiducial region defined by dilepton invariant mass \(m_{\ell\ell} > 110\) GeV, lepton transverse momentum \(p_T > 20\) GeV, lepton pseudorapidity \(|\eta| < 2.5\), and \(\Delta R\) (lepton, quark or gluon) > 0.4 (considering only quarks or gluons with \(p_T > 15\) GeV from the hard scattering process after initial- and final-state radiation but before hadronization) are given in table 5 for several models, described in the next section. These sample efficiencies demonstrate the degree of model independence of the fiducial cross-section limits shown in table 4.

In setting fiducial cross-section limits, the smallest efficiency for events within the fiducial acceptance found for each channel is used. These limits are rather general, and should be applicable to any model producing a significant fraction of isolated high-mass lepton pairs.

8 Limits on specific models

The data are interpreted to set limits on four models with same-sign dilepton signals from new physics sources. For each model, upper limits at 95% CL on the cross-sections of the hypothetical processes are derived using the Feldman-Cousins (FC) method for choosing the 95% region of the frequentist Neyman construction. In setting limits, the predicted signal plus background histograms in the chosen variable are used as templates and fit to the data to extract the most likely signal cross-section, which is used in turn to calculate upper limits with the FC procedure. Systematic uncertainties are included as variations in the signal and background templates, which are fluctuated in the ensembles used to generate the Neyman construction. The cross-section limits are presented as functions of the masses of the hypothetical new particles that the particular models introduce.
Majorana neutrinos

Production of heavy Majorana neutrinos described by effective operators [12] and LRS theories [15] have dilepton signatures that also include jets. To set limits on these models, the subsample of events with at least one jet is considered. The \(m_{\ell\ell} \) distributions for the \(ee \), \(e\mu \) and \(\mu\mu \) channels are shown in the top row of figure 6 after also requiring \(N_{\text{jets}} > 0 \). Hypothetical signal predictions are overlaid.

For models of Majorana neutrinos, a single resonance drives the lepton kinematics. This leaves the \(m_{\ell\ell} \) spectrum most sensitive to these models, and so it is used to form the templates with which we derive upper limits. The KS-distance of this distribution is 0.19, with a SM \(p \)-value of 88% for the three channels combined.

In the first model considered, Majorana neutrinos are produced by a four-fermion vector operator \(V \) [12]. The effective Lagrangian formalism of this model requires a choice for the energy scale \(\Lambda \) of new phenomena. It is taken to have magnitude 1 TeV. The coupling of \(V \) is chosen to be one, the natural scale of the model. All other effective operator couplings are assumed to vanish. The effective vector operator was simulated by the Calchep 2.4.5 simulation program [51].

The observed cross-section limit for this description is interpreted in terms of neutrino mass, shown in figure 7 (left). Majorana neutrino mass values are excluded below 460 GeV. The observed limits are consistent with limits expected when no Majorana neutrino is present.

Majorana neutrino production by the LRS model [15] is also considered. In this model, the right-handed \(W_R \) boson decays to a lepton and a Majorana neutrino that in turn decays to a same-sign lepton and one or more jets. The simulated signal for this model was

<table>
<thead>
<tr>
<th>Signal model</th>
<th>Reconstruction efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majorana neutrino with (m_N = 200 \text{ GeV})</td>
<td>(46±1)% (58±1)% (71±2)%</td>
</tr>
<tr>
<td>Fourth-generation (d_4) with (m_{d4} = 350 \text{ GeV})</td>
<td>(46±2)% (53±2)% (67±2)%</td>
</tr>
<tr>
<td>Lepton cascade topology with (m_q = 500 \text{ GeV}), (m_{\tilde{\chi}^1_{-2}} = 450 \text{ GeV}), (m_{\text{LSP}} = 100 \text{ GeV})</td>
<td>(46±1)% (53±1)% (67±2)%</td>
</tr>
<tr>
<td>Left-right symmetry with (m_{W_R} = 600 \text{ GeV}), (m_N = 50 \text{ GeV})</td>
<td>(40±2)% — (62±2)%</td>
</tr>
</tbody>
</table>

Table 5. Reconstruction efficiency of same-sign dilepton events generated in various models in a fiducial region defined by dilepton invariant mass \(m_{\ell\ell} > 110 \text{ GeV} \), lepton transverse momentum \(p_T > 20 \text{ GeV} \), lepton pseudorapidity \(|\eta| < 2.5 \) and \(\Delta R(\text{lepton, quark or gluon}) > 0.4 \). Statistical uncertainties are given. A dash indicates that the channel is not a final state of a particular model.
Figure 6. Distributions of dilepton invariant mass (left) and missing transverse momentum (right) with at least one jet in ee (top), $\mu\mu$ (center) and $e\mu$ (bottom) channels. Shown are data (points) and backgrounds (solid stacked histograms). The combined statistical and systematic uncertainty is shown as a dashed blue line. Overflow events are included in the final bin. In the ee channel, the Z reflection has been suppressed by excluding $80 < m_{\ell\ell} < 95$ GeV. For the dilepton invariant mass distribution, expected contribution from Majorana neutrinos with $m_N = 200$ GeV is shown; for missing transverse momentum, expected contribution is shown from lepton cascades with $m_{\tilde{q}} = 300$ GeV, $m_{\tilde{\chi}_1^+} = 150$ GeV, $m_{\tilde{\chi}_1^0} = 50$ GeV.
Figure 7. Limits at 95% CL on two different production models of Majorana neutrinos. Left: for a model of Majorana neutrinos which uses an effective vector operator, observed and expected cross-section limits [pb] as a function of Majorana neutrino mass produced, assuming a natural coupling and an energy scale of new phenomena $\Lambda = 1$ TeV. Right: for the LRS model, contours of observed cross-section upper limits [pb] as a function of Majorana neutrino and W_R masses in LRS theories are shown. The space is sampled in a rough grid (sample points indicated by a ⋆) and the limits are interpolated. The exclusion region is shaded.

generated using PYTHIA with MRST2008LO* modified leading-order PDFs. The leading-order theoretical cross-section was used.

The observed limits are shown in figure 7 (right) as a function of the masses of the Majorana neutrino (m_N) and the right-handed W_R boson (m_{W_R}). The shaded exclusion region represents mass points for which the observed cross-section limit is lower than the theoretical cross-section. Contours of constant cross-section limit are overlaid. Observed limits are consistent with expected limits everywhere.

The theoretical cross-section and decay kinematics are determined by the mass difference between the neutrino and a right-handed boson, W_R. A large mass difference yields highly relativistic heavy neutrinos, with one lepton typically overlapped by a jet in the event and thus failing the isolation criteria. Nevertheless, we exclude W_R with masses less than 0.7 TeV over most of the parameter space, as well as masses less than 1.0 TeV for a large range of neutrino masses.

8.2 Lepton cascades

A specific cascade topology (shown in figure 8) is considered that produces a same-sign dilepton signature and invisible particles [17]. Since the final states would include jets, the subsample of events with at least one jet is again considered. In lepton cascades leading to invisible particles common to supersymmetric and UED models, a heavy neutral particle escapes detection, and so E_T^{miss} is used to form the templates with which we derive upper limits. The E_T^{miss} distributions for the ee, $e\mu$ and $\mu\mu$ channels are shown in the bottom row
Figure 8. Feynman diagram of cascade topology denoted in supersymmetric nomenclature. The analysis is done with WW, ZZ and WZ combinations of weak vector bosons; WZ is shown in the diagram. This topology may also be found in other models such as UED.

Figure 9. Observed 95% CL upper cross-section limits [pb] as a function of $m_{\tilde{\chi}_0^\pm, \tilde{\chi}_0^0}$ and $m_{\tilde{q}}$ for $m_{\tilde{\chi}_0^0} = 50$ GeV. As an example, we exclude a portion of parameter space (shaded) assuming a gluino mass of 510 GeV in order to calculate the cross-section. (This mass value is chosen to be greater than 500 GeV, the largest squark mass considered, but is otherwise arbitrary.) The mix of processes (equations (8.1)–(8.3)) included in the signal model is given in section 8.2. The space is sampled in a rough grid (sample points indicated by a *) and the limits are interpolated.

of figure 6 after also requiring $N_{jets} > 0$. Hypothetical signal predictions are overlaid. The KS-distance of this distribution is 0.29, with a SM p-value of 67% for the three channels combined.

Although particle names are denoted here in a supersymmetry context, these cascade topologies occur quite generally, such as in models with universal extra dimensions [46, 47]. The topology is described using the minimal particle content necessary, and the effective theory is parameterised directly in the masses of the new particles, making the conclusions independent of any fundamental parameters specific to a particular theory.
Figure 10. From left: observed 95% CL cross-section upper limits [pb] as a function of $m_{\tilde{\chi}_1^\pm, \tilde{\chi}_2^0}$ and $m_{\tilde{q}}$ for $m_{\tilde{q}} = 300, 400,$ and 500 GeV. The mix of processes (equations (8.1)–(8.3)) included in the signal model is given in section 8.2. The space is sampled in a rough grid (sample points indicated by a \star) and the limits are interpolated.

In this scheme there are three processes:

\begin{align}
\tilde{q}\tilde{q} &\rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^\mp qq \rightarrow W^{\pm}W^{\mp} \chi_1^0 \chi_1^0 qq \quad (8.1) \\
\tilde{q}\tilde{q} &\rightarrow \tilde{\chi}_1^\pm \chi_2^0 qq \rightarrow W^{\pm}Z \chi_1^0 \chi_1^0 qq \quad (8.2) \\
\tilde{q}\tilde{q} &\rightarrow \chi_1^0 \chi_2^0 qq \rightarrow ZZ \chi_1^0 \chi_1^0 qq \quad (8.3)
\end{align}

Leptonic decay modes of the W and Z bosons are considered. This analysis uses an admixture that equally favours combinations of the chargino $\tilde{\chi}_1^{\pm}$ and neutralino $\tilde{\chi}_2^0$ (assumed to have the same mass), $\text{BF}(\tilde{q}\rightarrow q\chi_1^{\pm}) = \text{BF}(\tilde{q}\rightarrow q\chi_2^0) = 0.5$, resulting in a 1:2:1 composition of the three processes above. If all decay modes are considered, the number of events expected from the WW process is higher than from the other channels due to the higher leptonic branching fractions of W bosons. Considering only leptonic decays, the two pairs of same-sign leptons in ZZ events lead to twice the selection efficiency of the other two channels. The limits presented can be scaled to constrain other mixtures of W and Z decays.
Figure 11. Distributions of jet multiplicity with $E_T^{\text{miss}} > 30$ GeV in ee (top left), $\mu\mu$ (top right) and $e\mu$ (bottom) channels. The final bin includes events with two or more jets. Shown are data (points) and backgrounds (solid stacked histograms). The combined statistical and systematic uncertainty is shown as a dashed blue line. Overflow events are included in the final bin. In the ee channel, the Z reflection is suppressed by excluding $80 < m_{\ell\ell} < 95$ GeV.

Cross-section limits (figure 9 and figure 10) are presented as a function of the masses of a chargino/neutralino, the squark (\tilde{q}), and the lightest supersymmetric particle ($\tilde{\chi}_1^0$), which is neutral and stable. The observed limits are consistent with expected limits in the no-signal hypothesis. These cross-section limits apply to any theory with a non-zero cross section from this topology (scaled by the appropriate branching fraction). They depend on the experimental acceptance, and the particle masses, with no significant dependence on other characteristics such as particle spin. To set mass limits on a particular model, one would need only to find the intersection of the predicted cross-section with the observed cross-section upper limits. For example, one may consider a supersymmetric theory with a gluino mass of 510 GeV. The exclusion region for this model is shown in figure 9. The signal expected from this topology was generated using MADGRAPH for the hard-scattering and initial squark production, and BRIDGE [48] for particle decay.
8.3 Heavy down-type quarks

The last model considered has a fourth-generation d-type quark decaying to tW [18], and is tested using the jet multiplicity distribution in events with significant missing transverse momentum, $E_{\text{miss}}^T > 30$ GeV. The jet multiplicity of events in this subsample is shown in figure 11. The KS-distance of this distribution is 0.45, with a SM p-value of 31%, for the three channels combined.

The signal from $d_4\bar{d}_4$ production includes significant missing momentum carried by neutrinos. The signal expected in this model was generated using PYTHIA. Events with $E_{\text{miss}}^T > 30$ GeV are selected from the inclusive sample to set limits on this model. The limits are derived using a three-bin template: zero, one and two or more jets, due to the small number of events used to estimate the flavour fake contribution at high jet multiplicities.

The observed and Standard Model expected cross-section limits for d_4 production assuming $\text{BF}(d_4 \to tW) = 1$ are shown in figure 12. The intersection of the limit with the next-to-next-to-leading order theoretical cross-section yields a lower bound of 290 GeV on the d_4 mass, which is somewhat lower than the expected limit of 320 GeV due to high-multiplicity events observed in the $e\mu$ and $\mu\mu$ channels. Such weaker limits are observed in 10% of simulated experiments drawn from the background hypothesis.

9 Conclusion

The yields in ee, $e\mu$, and $\mu\mu$ are measured and the observed high-p_T isolated same-sign dilepton events show no significant discrepancy with the SM. In a model-independent statistical analysis of the inclusive sample, no evidence of unknown physical sources of same-sign dilepton events is found. Considering the dilepton invariant mass spectrum integrated
above 110 GeV, we set upper limits on the fiducial cross-section of a new high-mass source, $0.13(\nu\nu), 0.17(\mu\mu), 0.32(\epsilon\mu)$ pb (95% CL).

Experimental sensitivity is demonstrated to four specific models of new phenomena that could be discovered in pp collisions at the LHC. Constraints are interpreted in the analysis of subsamples with non-zero jet multiplicity or $E_T^{\text{miss}} > 30$ GeV. Majorana neutrino mass values below 460 GeV are excluded for production by the effective operator V assuming a new physics scale of 1 TeV. Also excluded are LRS W_R with mass less than 0.7 TeV over most of the parameter space, and mass less than 1.0 TeV for a large range of neutrino masses. Cross-section limits are provided on a generic topology of supersymmetry and UED, as a function of the masses of field quanta. These limits may be applied to any model with contributions from this topology by appropriate scaling. Finally, a lower limit of 290 GeV is obtained on the mass of fourth generation d-type quarks.

Acknowledgments

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
References

ATLAS collaboration, G. Aad et al., *The ATLAS Experiment at the CERN Large Hadron Collider*, 2008 JINST 3 S08003 [SPIRES].

The ATLAS collaboration

C. Zendler20, A.V. Zenin128, O. Zenin128, T. Ženiš144a, Z. Zenonos122a,122b, S. Zenz14, D. Zerwas115, G. Zevi della Porta57, Z. Zhang32d,32b,aa, H. Zhang38, J. Zhang5, X. Zhang32d, Z. Zhang115, L. Zhao108, T. Zhao138, Z. Zhao32b, A. Zhemchugov65, S. Zheng32a, J. Zhong151,ac, B. Zhou87, N. Zhou163, Y. Zhou151, C.G. Zhu32d, H. Zhu41, Y. Zhu172, X. Zhuang98, V. Zhuravlov99, D. Ziemsinska61, R. Zimmermann20, S. Zimmermann20, S. Zimmermann48, M. Ziolkowski141, R. Žitoun4, L. Živković34, V.V. Zmouchko128,*, G. Zobernig172, A. Zoccoli19a,19b, Y. Zolnierowski4, A. Zsenei29, M. zur Nedden15, V. Zutshi106, L. Zwalinski29.

1 University at Albany, Albany NY, United States of America
2 Department of Physics, University of Alberta, Edmonton AB, Canada
3 \(a\) Department of Physics, Ankara University, Ankara; \(b\) Department of Physics, Dumlupinar University, Kutahya; \(c\) Department of Physics, Gazi University, Ankara; \(d\) Division of Physics, TOBB University of Economics and Technology, Ankara; \(e\) Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
6 Department of Physics, University of Arizona, Tucson AZ, United States of America
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 \(a\) Institute of Physics, University of Belgrade, Belgrade; \(b\) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 \(a\) Department of Physics, Bogazici University, Istanbul; \(b\) Division of Physics, Dogus University, Istanbul; \(c\) Department of Physics Engineering, Gaziantep University, Gaziantep; \(d\) Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 \(a\) INFN Sezione di Bologna; \(b\) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
Physikalisches Institut, University of Bonn, Bonn, Germany
Department of Physics, Boston University, Boston MA, United States of America
Department of Physics, Brandeis University, Waltham MA, United States of America

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro;
Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

National Institute of Physics and Nuclear Engineering, Bucharest; University Politehnica Bucharest, Bucharest; West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa ON, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;
Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;
Department of Modern Physics, University of Science and Technology of China, Anhui; Department of Physics, Nanjing University, Jiangsu; High Energy Physics Group, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

INFN Gruppo Collegato di Cosenza; Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
Department of Physics, Duke University, Durham NC, United States of America
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
section de Physique, Université de Genève, Geneva, Switzerland
(a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy
Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
Department of Physics, Hampton University, Hampton VA, United States of America
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
(a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
(b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
(c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Science, Hiroshima University, Hiroshima, Japan
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington IN, United States of America
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organisation, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
\(^{(a)}\)INFN Sezione di Lecce; \(^{(b)}\)Dipartimento di Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

Department of Physics, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst MA, United States of America

Department of Physics, McGill University, Montreal QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America

\(^{(a)}\)INFN Sezione di Milano; \(^{(b)}\)Dipartimento di Fisica, Università di Milano, Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America

Group of Particle Physics, University of Montreal, Montreal QC, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
(a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
(a)INFN Sezione di Pavia; (b)Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
(a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
(a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina SK, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
\(^{(a)}\)INFN Sezione di Roma I; \(^{(b)}\)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
\(^{(a)}\)INFN Sezione di Roma Tor Vergata; \(^{(b)}\)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
\(^{(a)}\)INFN Sezione di Roma Tre; \(^{(b)}\)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
\(^{(a)}\)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; \(^{(b)}\)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; \(^{(c)}\)Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000; \(^{(d)}\)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; \(^{(e)}\)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford CA, United States of America
\(^{(a)}\)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; \(^{(b)}\)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
\(^{(a)}\)Department of Physics, University of Johannesburg, Johannesburg; \(^{(b)}\)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
\(^{(a)}\)Department of Physics, Stockholm University; \(^{(b)}\)The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
Also at Department of Physics, University of Coimbra, Coimbra, Portugal
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Department of Physics, Middle East Technical University, Ankara, Turkey
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Manhattan College, New York NY, United States of America
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at High Energy Physics Group, Shandong University, Shandong, China
Also at California Institute of Technology, Pasadena CA, United States of America
Also at section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
Also at Institute of Physics, Jagiellonian University, Krakow, Poland
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Also at Department of Physics, Nanjing University, Jiangsu, China
* Deceased