Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in $\sqrt{s} = 7$ TeV proton-proton collisions

DOI
10.1016/j.physletb.2011.10.006

Publication date
2011

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in $\sqrt{s} = 7$ TeV proton–proton collisions

ATLAS Collaboration

1. Introduction

Events composed of one high transverse energy jet and large missing transverse momentum constitute one of the simplest and most striking signatures that can be observed at a hadron collider. The main Standard Model (SM) contribution to this “monojet” final state is a Z boson plus jet production where the Z boson decays to two undetected neutrinos. Processes involving physics beyond the Standard Model have been suggested as additional sources of monojet events, including Large Extra Dimension (LED) scenarios [1], Split Supersymmetry [2–4], and pair production of Dark Matter particles in association with a jet [5–7]. In this Letter, the data are interpreted in the context of a LED model.

Large Extra Dimensions have been proposed as a way to remove the hierarchy problem [8] and to explain why gravity is so much weaker than the other forces. In the LED scenario of Arkani-Hamed, Dimopoulos, and Dvali (ADD) [1], gravitational modes propagate in the $(4+n)$-dimensional bulk of space–time, while the other SM fields are confined to our usual four dimensions. The observed large difference in the characteristic mass scale of gravity (Planck mass) and the electroweak scale (W boson mass) is the result of the four-dimensional interpretation of the Planck scale. The four-dimensional Planck scale, M_{Pl}, is related to the fundamental $(4+n)$-dimensional Planck scale, M_D, by $M_{Pl}^2 = M_D^{4+n} R^n$, where n and R are the number and size of the extra dimensions, respectively. An appropriate choice of R for a given n allows for a value of M_{Pl} close to the electroweak scale. The extra spatial dimensions are compactified, resulting in a Kaluza-Klein tower of massive graviton modes. At hadron colliders, these graviton modes can be produced in association with a jet. The production processes include $qg \rightarrow qG$, $gg \rightarrow gG$, and $q\bar{q} \rightarrow gG$, where G stands for graviton, q for quark, and g for gluon. As gravitons do not interact with the detector, these processes give rise to a monojet signature in the final state.

Previous monojet searches performed in Run I and Run II at the Tevatron [9,10] found no evidence of physics beyond the Standard Model.

2. The ATLAS detector and data samples

The ATLAS detector [11] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and an external muon spectrometer incorporating three large superconducting toroid magnets. A three-level trigger system is used to select interesting events for recording and subsequent offline analysis. Only data for which all subsystems described above are fully operational are used. Applying these requirements to pp collision data taken at a centre-of-mass energy of $\sqrt{s} = 7$ TeV with stable beam conditions during the 2010 LHC run results in a data sample with a time-integrated luminosity of 33 pb$^{-1}$, determined with an uncertainty of 3.4% [12,13].

3. Object reconstruction

Jet candidates are reconstructed using the anti-k_t jet clustering algorithm [14,15] with a distance parameter of 0.4. The inputs to this algorithm are clusters of calorimeter cells seeded by those with energies significantly above the measured noise. Jet momenta are constructed by performing a four-vector sum over these cell clusters, treating each cluster as an (E, \vec{p}) four-vector with zero mass. The resulting jet energies are corrected for the effects of calorimeter non-compensation and inhomogeneities by
using p_T- and η-dependent calibration factors based on Monte Carlo (MC) simulations and validated with extensive test-beam and collision-data studies [16]. Electron candidates are required to have $p_T > 20$ GeV and $|\eta| < 2.47$, and to pass the medium electron shower shape and track selection criteria described in [17]. Muon candidates are required to have $p_T > 10$ GeV and $|\eta| < 2.4$ and to pass the combined reconstruction criteria described in [17], which include the association of a stand-alone muon spectrometer track to an inner detector track. Muons are required to be isolated to reduce the background contribution from jet “punch through” which consists of particles originating from a high p_T jet, going through the calorimeter and reaching the muon spectrometer. The sum of the transverse momenta of the tracks not associated with the muon in a cone of radius $R = 0.2$ in η-ϕ space around the muon direction is required to be less than 1.8 GeV.

The measurement of the magnitude of the missing transverse momentum (E_{T}^{miss}) is done using all energy deposits in the calorimeter up to $|\eta|$ of 4.5. These clusters are calculated taking into account the different response of the calorimeters to hadrons compared to electrons or photons, as well as dead material and out-of-cluster energy losses [18].

4. Event selection

Events must be accepted by an E_{T}^{miss} trigger [19] with a nominal threshold of 40 GeV, evaluated using energy depositions in the calorimeters. The trigger is over 99% efficient for events with a reconstructed E_{T}^{miss} above 120 GeV. The efficiency of the E_{T}^{miss} trigger was determined with events selected using a muon trigger. Events are then required to pass a set of basic kinematic selections that are aimed at reducing electroweak, non-collision, and detector-induced backgrounds. These selections require the event to have a monojet topology characterized by one unbalanced high p_T jet resulting in large E_{T}^{miss}.

The selections are:

- Events are required to have a reconstructed primary vertex with at least five associated tracks. This ensures that the recorded event is consistent with a proton–proton collision.
- The highest p_T jet is required to have a charge fraction $f_{ch} = \sum_{i} p_{T_{i}}^{\text{jet}} / \sum_{i} p_{T_{i}}^{\text{track,jet}} < 0.02$, where $\sum_{i} p_{T_{i}}^{\text{track,jet}}$ is the scalar sum of the transverse momenta of tracks associated with the primary vertex within a cone of radius $R = 0.4$ around the jet axis, and $p_{T_{i}}^{\text{jet}}$ is the transverse momentum as determined from calorimetric measurements. Furthermore, events are rejected if they contain any other jet with an electromagnetic fraction $f_{em} < 0.10$, or any jet in the pseudorapidity range $|\eta| < 2$ with $f_{em} > 0.95$ and a charge fraction $f_{ch} < 0.05$. The requirement $f_{em} < 0.10$ suppresses jets produced by cosmic rays or beam halo muons that interact in the hadronic calorimeter. The latter requirements reject events in which beam halo muons deposit a large amount of energy in the electromagnetic calorimeter while keeping a high efficiency for jets originating from pp collisions.
- Additional selections to reject events with detector noise and non-collision backgrounds are applied: events are rejected if any jet with $p_T > 20$ GeV and $|\eta| < 4.5$ does not pass all of the additional quality selection criteria described in Ref. [20].
- Events are required to have no identified electrons or muons according to the selection criteria stated above. Although the signal selection vetoes leptons, control regions with identified leptons are used in this analysis to evaluate the agreement between the MC predictions and the data.

Although the results of this analysis are interpreted in the Letter in terms of the LED model, the event selections have not been tuned to maximize the sensitivity to any particular theoretical model. To maintain sensitivity to a wide range of models, two sets of kinematic selections, LowPt and HighPt, are defined. The LowPt selections are chosen such that the E_{T}^{miss} trigger with the highest integrated luminosity is fully efficient. Using lower jet p_T and E_{T}^{miss} selections has been motivated in the past to set limits on the pair production of Dark Matter particles [5]. The HighPt cuts are motivated by a potential increase in sensitivity in models such as ADD where there is a benefit from reducing the number of background events. However, enough events in the data control samples must be left to validate the MC predictions.

The LowPt (HighPt) selections are:

- Highest jet $p_T > 120$ GeV and $|\eta| < 2.0$ ($p_T > 250$ GeV and $|\eta| < 2.0$).
- Second highest jet $p_T < 30$ GeV and $|\eta| < 4.5$ ($p_T < 60$ GeV and $|\eta| < 4.5$). The threshold is raised for the HighPt region to preserve signal acceptance.
- $E_{T}^{\text{miss}} > 120$ GeV ($E_{T}^{\text{miss}} > 220$ GeV).
- For the HighPt selection, $\Delta\phi(\text{jet}_{2}, E_{T}^{\text{miss}}) > 0.5$, where jet2 is the second highest p_T jet, and the third highest jet is required to have $p_T < 30$ GeV. The number of events in which the large value of E_{T}^{miss} is caused by a mis-measurement of the second-leading jet is reduced by requiring a large azimuthal separation between the direction of the second-leading jet and the missing transverse momentum.

5. Background estimate and comparison with data

The SM background to the monojet signature is dominated by $Z(\rightarrow \nu\bar{\nu}) + \text{jets}$ and $W + \text{jets}$ production, and includes contributions from $Z/\gamma^{*}(\rightarrow \ell^{+}\ell^{-}) + \text{jets}$ ($\ell = e, \mu, \tau$), multi-jet, tt, and $\gamma + \text{jets}$ processes. The W/Z plus jets backgrounds are estimated using Monte Carlo event samples normalized to data in control regions. The multi-jets background contribution is determined from data in the case of the LowPt analysis, while multi-jets MC simulation is employed for the HighPt selection. Potential contributions from beam-related background and cosmic rays are estimated using data. The remaining SM backgrounds from tt and $\gamma + \text{jets}$ are determined using simulated samples. These processes, which contribute a negligible number of events in both the LowPt region and the HighPt region, will not be discussed further.

Samples of simulated $Z(\rightarrow \nu\nu) + \text{jets}$, $Z/\gamma^{*}(\rightarrow \ell^{+}\ell^{-}) + \text{jets}$, and $W(\rightarrow \nu\ell) + \text{jets}$ events are generated using ALPGEN v2.13 [21] interfaced to HERWIG v6.510 [22] for parton shower and fragmentation, and to JIMMY v4.31 [23] to model underlying event contributions. The CTEQ6L1 [24] parton distribution functions (PDFs) are employed, and the cross sections are initially normalized to predictions calculated to next-to-next-to-leading order (NNLO) in perturbative QCD as determined by the FEWZ [25] program using MSTW2008 PDFs [26]. These MC predictions are subsequently normalized using control samples in data as detailed below. Multi-jets background contributions are simulated using LO perturbative QCD matrix elements for $2 \rightarrow 2$ processes plus parton shower in the leading logarithmic approximation, as implemented in PYTHIA;
v6.421 [27], with the ATLAS-MC09 tuning that uses the MRST 2007 LO* PDFs [28]. All the MC samples are produced using the ATLAS detector simulation software [29] based on GEANT4 [30].

The SM MC predictions for the dominant \(W/Z \) plus jets background processes suffer from sizeable theoretical uncertainties. These uncertainties are related to the parton distribution functions, the renormalization and factorization scales in the perturbative QCD calculations, the modeling of the parton showers, the underlying event contributions, and the fragmentation of partons into hadrons. In addition, the MC predictions are affected by the limited knowledge of the absolute jet energy scale and resolution [31], trigger efficiency, and the total integrated luminosity [12]. In this analysis, \(W/Z \) plus jets data control samples are used to normalize the MC predictions, resulting in a significant reduction of their systematic uncertainties.

The data control samples are selected by removing the lepton veto from the requirements described previously. These samples with an identified electron or muon are dominated by \(W(\rightarrow e\nu) + \) jets and \(W(\rightarrow \mu\nu) + \) jets events but also include contributions from \(W(\rightarrow \tau\nu) + \) jets and \(Z/\gamma^{*}(\rightarrow \ell^{+}\ell^{-}) + \) jets processes. A small contamination from \(t\bar{t} \) production is subtracted using MC. The normalization factors are obtained for a given set of kinematic selections by taking the ratio of the number of events observed in the data to the number of events predicted by the MC. The kinematic selections are varied from \(E_{T}^{\text{miss}} > 120 \text{ GeV} \) and leading jet \(p_{T} > 120 \text{ GeV} \) up to \(E_{T}^{\text{miss}} > 220 \text{ GeV} \) and leading jet \(p_{T} > 250 \text{ GeV} \). The \(p_{T} \) threshold on the jet veto is also increased from 0 GeV (no threshold) to the nominal LowPt and HighPt thresholds of 30 GeV and 60 GeV, respectively. The dependence of the normalization factors on the kinematic selections is discussed later.

The muon candidate sample is used to normalize the \(W(\rightarrow \mu\nu) + \) jets, \(Z(\rightarrow \nu\nu) + \) jets, and \(Z/\gamma^{*}(\rightarrow \mu^{+}\mu^{-}) + \) jets MC predictions. To emulate these backgrounds where muons are not identified and leave very little energy in the calorimeters, the \(E_{T}^{\text{miss}} \) is not corrected to take into account the momentum of the identified muons. For the LowPt selections, a normalization factor of 0.99±0.06 is obtained. For the HighPt region, the small number of events left after applying the selections results in a large statistical uncertainty on the normalization factor. To reduce this uncertainty, the number of events in the control sample is increased by lowering the \(E_{T}^{\text{miss}} \) and highest jet \(p_{T} \) thresholds to 180 and 200 GeV, respectively. This results in a normalization factor of 0.91±0.10. Since the kinematic selections are slightly lower than those of the signal region, the dependence of the normalization factor on the selections was studied. No significant dependence was observed as the \(E_{T}^{\text{miss}} \), highest jet \(p_{T} \), and jet veto thresholds were varied.

For the muon candidate sample, a comparison is shown in Fig. 1 between the data and the \(W/Z \) plus jets MC predictions normalized for the HighPt region as a function of the leading jet \(p_{T} \) threshold in events with no second-leading jet with \(p_{T} > 60 \text{ GeV} \).

The background calculation procedure described above makes the assumption, which is supported by the MC simulation, that the normalization used for \(W(\rightarrow \ell\nu) + \) jets backgrounds is valid for \(Z/\gamma^{*}(\rightarrow \ell^{+}\ell^{-}) + \) jets backgrounds. Since the largest background comes from \(Z(\rightarrow \nu\nu) + \) jets events and the contribution from the rest of the \(Z + \) jets backgrounds is very small, the relevant assumption is that the normalization factor used for the \(Z(\rightarrow \nu\nu) + \) jets background should be the same as the one used for the \(W(\rightarrow \mu\nu) + \) jets background. This assumption is tested by constructing samples with a set of selections aimed specifically at identifying \(Z \) and \(W \) bosons in events with jets and \(E_{T}^{\text{miss}} \): the \(W(\rightarrow \mu\nu) \) candidate events are required to have an identified muon with \(p_{T} > 20 \text{ GeV} \), transverse mass squared between 40 < \(m_{\ell\nu} < 100 \text{ GeV} \), \(E_{T}^{\text{miss}} > 100 \text{ GeV} \), a leading jet with \(p_{T} > 100 \text{ GeV} \), and no additional jets with \(p_{T} > 30 \text{ GeV} \). The \(Z/\gamma^{*}(\rightarrow \mu^{+}\mu^{-}) + \) jets data control samples are selected by requiring two oppositely charged leptons with \(p_{T} > 20 \text{ GeV} \), a dilepton invariant mass in the range 71 < \(M_{\ell\ell} < 111 \text{ GeV} \), \(E_{T}^{\text{miss}} > 100 \text{ GeV} \), a leading jet with \(p_{T} > 100 \text{ GeV} \), and no additional jets with \(p_{T} > 30 \text{ GeV} \). The \(E_{T}^{\text{miss}} \) is not corrected for the presence of the two muons. The normalization factors are found to be 0.91±0.13 for the \(W(\rightarrow \mu\nu) \) sample, and 0.88±0.18 for the \(Z/\gamma^{*}(\rightarrow \mu^{+}\mu^{-}) \) sample. These values are consistent with the normalization factors used for the background calculation.

The electron candidate sample is used to normalize the \(W(\rightarrow e\nu) + \) jets, \(Z/\gamma^{*}(\rightarrow e^{+}e^{-}) + \) jets, and \(W(\rightarrow \tau\nu) + \) jets MC predictions. Here, the electron is included in the \(E_{T}^{\text{miss}} \) calculation since an unidentified electron can deposit a large amount of energy in the calorimeters. This means that the \(E_{T}^{\text{miss}} \) selection is qualitatively different in the two samples even though the same value of the threshold is used. As a result, the number of events obtained in the two samples are not expected to be the same. For the LowPt kinematic selections, a normalization factor of 0.92±0.24 is obtained. For the HighPt kinematic selections, the procedure used previously for the muons of lowering the jet \(p_{T} \) and \(E_{T}^{\text{miss}} \) thresholds is followed and yields a normalization factor of 1.0±0.3. No significant kinematic selection dependence of the normalization factor was observed. For the electron candidate sample, a comparison in shown in Fig. 2 between the data and the \(W/Z \) plus jets MC predictions as a function of the leading jet \(p_{T} \) threshold in events with no second-leading jet with \(p_{T} > 60 \text{ GeV} \).

The normalization factor used for the electron backgrounds is also used for the \(W(\rightarrow \tau\nu \rightarrow \text{had.} + X) + \) jets backgrounds since the MC predicts that after all selections, the dominant fully hadronic \(\tau \)-lepton decay channel produces a similar reconstructed signal in the control region as that of the electron channel. The systematic difference in the normalization factors of the two channels is much smaller than the uncertainties associated with the electron background normalization, and is therefore neglected. The remaining small \(W(\rightarrow \tau\nu) + \) jets background contribution with a

1. The transverse mass is defined as \(m_{T} = \sqrt{2p_{T}E_{T}^{\text{miss}}(1 - \cos \Delta\phi)} \), where \(\Delta\phi \) is the azimuthal separation between the directions of the lepton and the missing transverse momentum.
The cosmic ray and beam-related backgrounds are estimated from empty and unpaired proton bunches in the collider that fulfill the event selection criteria. This estimate also accounts for the probability of overlaps between background contributions and genuine proton–proton collisions leading to monojet signatures. A total of 2.4 ± 1.1 non-collision background events are predicted in the LowPt analysis, while the contribution in the HighPt region is negligible.

The SM background predictions are summarized in Table 1 and are found to be consistent with the number of observed events in the data of 611 and 39 for the LowPt and HighPt selections, respectively. The main systematic uncertainties in the electroweak backgrounds come from the normalization uncertainties, which are dominated by the statistics in the data control samples. The statistical uncertainties listed in Table 1 come from the limited number of events in the MC samples. A comparison of the SM predictions to the measured E_T^{miss} and leading-jet p_T distributions are provided in Figs. 3 and 4, respectively. Good agreement is observed in all cases. The results of χ^2 tests performed on the distributions of Figs. 3 and 4 lead to χ^2 per degree of freedom values in the range between 0.4 and 1.2.

6. Data interpretation and limits

Since the number of events observed in the LowPt and HighPt regions are found to be consistent with the background predictions, as shown in Table 1, 95% confidence level (CL) upper limits are set on the cross-section times acceptance and on the value of M_D as a function of the number of extra dimensions. All limits are computed using the CL$_S$ modified frequentist approach [32].

The 95% CL upper limits on cross section times acceptance are calculated considering the systematic uncertainties on the backgrounds and on the integrated luminosity. The resulting values are 3.26 pb and 0.51 pb for the LowPt and HighPt analysis, respectively.

To obtain limits on the ADD parameters M_D and R, model-dependent uncertainties on the signal cross sections and acceptances must be determined and included in the limit calculation.

For graviton production in the ADD scenario, a low-energy effective field theory [33] with energy scale M_D is used to calculate the signal cross section considering the contribution of different graviton mass modes. Signal samples corresponding to a number of extra dimensions varying between 2 and 6 are considered, with the renormalization and factorization scales set to $\frac{1}{2}M^2_C + p_T^2$, where M_C is the graviton mass and p_T denotes the transverse momentum of the recoiling parton. The samples are generated using the PYTHIA MC program with the ATLAS MC09 tuning defining all parameters including the MRST2007 LO* PDF set. The yields for
CTEQ6.6 PDFs [34] are obtained by reweighting these samples. All generated samples are passed through the full detector simulation, and are reconstructed and analyzed with the same analysis chain as for the data.

The approximation used in the calculation of the signal cross sections is expected to be valid only if the scales involved in the hard interaction are significantly smaller than M_D. An estimate of the relative importance of the signal predictions in the unknown ultra-violet kinematic region can be made by evaluating the cross section after rejecting events for which $\hat{s} > M^2_D$. A substantial contribution to the cross section from the region of phase space where \hat{s} is comparable to or larger than M^2_D would indicate that the model does not provide reliable predictions. In the case of 2 to 4 extra dimensions, and for the HighPt selections, the change in the accepted cross section varies between 2 and 28%, respectively. The effect is larger when the number of dimensions is increased, and can be as large as 60% for 6 dimensions. In this analysis, only predictions for up to 4 extra dimensions are therefore considered.

Systematic uncertainties that affect the production cross section include the PDF and scale uncertainties. The former are evaluated by studying the variations of the cross section obtained between the nominal CTEQ6.6 value and its 44 error sets. The uncertainty on the cross section related to the choice of renormalization and factorization scales is estimated by varying the scales upward and downward by a factor of two from their nominal value.

Systematic uncertainties affecting the signal acceptance are estimated as follows. The uncertainty coming from the modeling of initial and final state radiation (ISR/FSR) is estimated by varying the simulation parameters controlling ISR and FSR within a range that is consistent with experimental data [35]. The jet energy scale (JES) and resolution (JER) are varied by their uncertainties ([31] and [36]), and their impact on the signal acceptance is evaluated. The contributions of the PDF and scale uncertainties to the acceptance uncertainty are evaluated using the methods described above. The systematic uncertainty from the modeling of the pile-up is studied by comparing MC samples simulated without pile-up and with average of two interactions per bunch crossing, corresponding to the average number of interactions per crossing observed in the 2010 data.

4 The errors provided by CTEQ correspond to 90% confidence intervals. Here, they are rescaled to correspond to 68% intervals.
signal systematic uncertainties are considered and the CL acceptance limit of 0.51 pb is also shown for illustrative purposes. The cross section times acceptance predicted by the effective ADD theory for 2 and 4 extra dimensions are shown on the left side of Fig. 5 as a function of M_D. The bands around the curves reflect the uncertainties described previously. The cross section times acceptance limit of 0.51 pb is also shown for illustrative purposes.

Table 2
Systematic uncertainties (in %) on ADD graviton signal yields for the LowPt and HighPt kinematic regions, respectively.

<table>
<thead>
<tr>
<th>Source</th>
<th>LowPt (%)</th>
<th>HighPt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDFs</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>ISR/FSR</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Q^2 scale</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>JES</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>JER</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Pile-up</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total systematics</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Finally, the uncertainty of 3.4% on the luminosity is also included. The values of all the signal-related systematic uncertainties considered above are given in Table 2, where all correlations are taken into account.

Signal cross sections times acceptance predicted by the effective theory for 2 and 4 extra dimensions are shown on the left side of Fig. 5 as a function of M_D. The bands around the curves reflect the uncertainties described previously. The cross section times acceptance limit of 0.51 pb is also shown for illustrative purposes.

To compute the 95% CL limits on ADD model parameters, all signal systematic uncertainties are considered and the CL approach mentioned above is used. Since the HighPt selections provide the best expected limits, they are used to set the observed limits. The 95% CL observed limits on M_D are shown on the right side of Fig. 5. Table 3 lists the 95% CL lower (upper) limits on M_D (δ), obtained with the CTEQ6.6 PDF set. Using the nominal MRST PDF set, the limits are 2.3, 2.0, and 1.8 TeV for 2, 3, and 4 extra dimensions, respectively. The expected limits are within 5% of the observed values.

Finally, to quantify the remaining sensitivity of the observed limits on M_D to the ultra-violet behavior of the theory for the different number of extra dimensions, the 95% CL limits on M_D are re-calculated using the truncated phase space region with $\delta < M_D^0$. This translates into no significant change in the case of 2 and 3 extra dimensions and reduces the quoted limit for the case of 4 extra dimensions by 10%.

7. Conclusion

A search for new physics in final states containing a high-p_T jet and missing transverse momentum is performed using 33 pb$^{-1}$ of pp collision data collected by the ATLAS detector. Good agreement is observed between the data and Standard Model predictions in the two kinematic regions studied in this analysis. 95% CL upper limits on cross sections times acceptance are found to be 3.26 pb and 0.51 pb for the LowPt and HighPt analysis, respectively.

The results are then interpreted in terms of the ADD LED scenario where M_D values between 2.3 TeV and 1.8 TeV are excluded at the 95% confidence level for a number of extra dimensions varying from 2 to 4, respectively.

Acknowledgements

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN, CONICYT, Chile; CMS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DANSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, The Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

311

111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
112 Department of Physics, Oklahoma State University, Stillwater, OK, United States
113 Palacky University, RCPM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene, OR, United States
115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a) INFN Sezione di Pavia, Italy; (b) Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a) INFN Sezione di Pisa, Italy; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
124 (a) Laboratorio de Instrumentacion e Fisica Experimental de Particulas – LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a) INFN Sezione di Roma I, Italy; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata, Italy; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre, Italy; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Université des Sciences et des Techniques de Casablanca, Casablanca, Morocco; (b) Centre National de l’Energie des Sciences Nucléaires, Rabat, Morocco; (c) Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000, Morocco; (d) Faculté des Sciences, Université Mohamed Premier et LPTPM, Oujda, Morocco; (e) Faculté des Sciences, Université Mohammed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique), GIF-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States
138 Department of Physics, University of Washington, Seattle, WA, United States
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford, CA, United States
144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Johannesburg, Johannesburg, South Africa; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 (a) Department of Physics, Stockholm University, Sweden; (b) The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion - Israel Inst. of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 Interfaculty Particle Physics Research Center and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a) TRIUMF, Vancouver BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
161 Science and Technology Center, Tufts University, Medford, MA, United States
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
164 (a) INFN Gruppo Collegato di Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Fisica, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana, IL, United States
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Fisica Corpuscular (IFIC) and Departamento de Fisica Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170 Waseda University, Tokyo, Japan
171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison, WI, United States
173 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
174 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
175 Department of Physics, Yale University, New Haven, CT, United States
176 Yerevan Physics Institute, Yerevan, Armenia
177 Domaine scientifique de la Daua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

* Also at Laboratorio de Instrumentacion e Fisica Experimental de Particulas – LIP, Lisboa, Portugal.
* Also at Facultade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
* Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
* Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
* Also at TRIUMF, Vancouver BC, Canada.