Search for supersymmetry in pp collisions at √s = 7 TeV in final states with missing transverse momentum and b-jets

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2011.06.015

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for supersymmetry in pp collisions at $\sqrt{s} = 7$ TeV in final states with missing transverse momentum and b-jets

ATLAS Collaboration

1. Introduction

Supersymmetry (SUSY) [1] is one of the most compelling theories to describe physics beyond the Standard Model (SM). It naturally solves the hierarchy problem and provides a possible candidate for dark matter. SUSY is a symmetry that relates fermionic and bosonic degrees of freedom, and postulates the existence of superpartners for the SM particles. Experimental data imply that supersymmetry is broken and that the superpartners are expected to be heavier than the SM partners. In the framework of a generic R-parity conserving minimal supersymmetric extension of the SM, the MSSM [2], SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP) is stable. In a large variety of models, the LSP is the lightest neutralino, $\tilde{\chi}_1^0$, which is only weakly interacting.

If supersymmetric particles exist at the TeV energy scale, the coloured superpartners of quarks and gluons, the squarks (\tilde{q}) and gluinos (\tilde{g}), are expected to be copiously produced via the strong interaction at the Large Hadron Collider (LHC) [3,4]. Their decays via cascades ending with the LSP produce striking experimental signatures leading to final states containing multi-jets, missing transverse momentum (its magnitude is referred to as E_T^{miss} in the following) – resulting from the undetected neutralinos – and possibly leptons. First searches for the production of SUSY particles at the LHC have been published recently [5–7].

In the MSSM, the scalar partners of right-handed and left-handed quarks, \tilde{q}_R and \tilde{q}_L, can mix to form two mass eigenstates. These mixing effects are proportional to the corresponding fermion masses and therefore become important for the third generation. In particular, large mixing can yield sbottom (b̄1) and stop (t̄1) mass eigenstates which are significantly lighter than other squarks. Consequently, b̄1 and t̄1 could be produced with large cross sections at the LHC, either via direct pair production or, if kinematically allowed, through a $g\tilde{g}$ production with subsequent $\tilde{g} \rightarrow b\tilde{b}_1$ or $\tilde{g} \rightarrow t\tilde{t}_1$ decays. Depending on the SUSY particle mass spectrum, the cascade decays of gluino-mediated and pair-produced sbottoms or stops result in complex final states consisting of E_T^{miss}, several jets, among which b-quark jets (b-jets) are expected, and possibly leptons.

In this Letter, a search for final states involving E_T^{miss} and b-quark jets is discussed. Results on searches for direct sbottom [8, 9], stop [10,11] and gluino mediated production [12] have been previously reported by the Tevatron experiments, placing exclusion limits on the mass of these particles in several MSSM scenarios.

The search described here is based on pp collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC in 2010. The total data set corresponds to an integrated luminosity of 35 pb$^{-1}$ [13]. To enhance the sensitivity to different SUSY models, the search was performed using two mutually exclusive final states, characterised by the presence of leptons. They are referred to as zero-lepton and one-lepton analyses in the following.

In the zero-lepton analysis, events are required to contain energetic jets, of which one must be identified as a b-jet, large E_T^{miss} and no isolated leptons (e or μ). The zero-lepton analysis
is employed to search for gluinos and sbottoms in MSSM scenarios where the b_1 is the lightest squark, all other squarks are heavier than the gluino, and $m_{\tilde{g}} > m_{\tilde{b}_1} > m_{\tilde{g}_2}$, such that the branching ratio for $\tilde{g} \rightarrow b_1b_1$ decays is 100%. Sbottoms are produced via gluino-mediated processes or via direct pair production. They are assumed to decay exclusively via $b_1 \rightarrow b_1\chi_1^0$, where $m_{\tilde{g}_2}$ is assumed to be 60 GeV, above the present exclusion limit [14].

In the one-lepton analysis, events are required to contain energetic jets, of which one must be identified as a b-jet, large E_T^{miss} and at least one high-p_T electron or muon. This analysis is sensitive to SUSY scenarios in which the stop is the lightest squark and with energetic charged leptons in addition to \tilde{g} decay. The stop decay channel $t_1 \rightarrow b\tilde{g}^\pm$ dominates, possible subsequent $\tilde{g}^\pm \rightarrow \chi_1^0l^\pm v$ decays result in experimental signatures with energetic charged leptons in addition to b-jets and E_T^{miss}. In the present analysis, only \tilde{g}^\pm and $t_1\tilde{t}_1$ pair production are considered, with 100% branching ratios for the $\tilde{g}^\pm \rightarrow t_1\tilde{t}_1$ and $t_1 \rightarrow b\tilde{g}^\pm$ decays. The chargino is assumed to have a mass $m_{\tilde{\chi}_1^\pm} \sim 2 \cdot m_{\tilde{g}_2}$, with $m_{\tilde{g}_2} = 60$ GeV, and to decay through a virtual W boson (BR($\tilde{g} \rightarrow \chi_1^0l^\pm v$)) = 11%.

In addition to the aforementioned phenomenological MSSM models, the results are interpreted in the framework of minimal supergravity (MSUGRA/CMSM [15]) and in specific Grand Unification Theories (GUTs) based on the gauge group SO(10) [16]. For MSUGRA/CMSM, limits on the universal scalar and gaugino mass parameters ($m_0, m_{1/2}$) are presented for fixed values of the ratio of the Higgs vacuum expectation value, $\tan\beta = 40$, the common trilinear coupling at the GUT scale $A_0 = 0$ GeV (~ 500 GeV), and the sign of the Higgsino mixing parameter $\mu > 0$. Taking large values of $\tan\beta$ or negative values of A_0 with other model parameters held fixed leads to lower third generation sparticle masses compared to those of the other sparticles. Depending on m_0 and $m_{1/2}$, any of the final states such as $q\bar{q}$, $q\tilde{g}$ and $\tilde{g}\tilde{g}$ might be dominant. In the SO(10) scenario, the SUSY particle mass spectrum is characterised by the low masses of the gluinos (300–600 GeV), charginos (100–180 GeV) and neutralinos (50–90 GeV), whereas all scalar particles have masses beyond the TeV scale. Depending on the sparticle masses, chargino–neutralino and gluino-pair production dominate. The three-body gluino decays $\tilde{g} \rightarrow b\bar{b}\tilde{\chi}_1^0$ and $\tilde{g} \rightarrow b\tilde{g}^\pm$ are expected to lead to final states with high b-jet multiplicities. Two specific models are considered [17], the D-term splitting model, DR3, and the Higgs splitting model, HS.

2. The ATLAS detector

The ATLAS detector [18] comprises an inner detector surrounded by a thin superconducting solenoid, and a calorimeter system. Outside the calorimeters is an extensive muon spectrometer in a toroidal magnetic field.

The inner detector system is immersed in a 2 T axial magnetic field and provides tracking information for charged particles in a pseudorapidity range $|\eta| < 2.5$. The highest granularity is achieved around the vertex region using silicon pixel and microstrip detectors. These detectors allow for an efficient tagging of jets originating from b-quark decays using impact parameter measurements and the reconstruction of secondary decay vertices. The transition radiation tracker, which surrounds the silicon detectors, contributes to track reconstruction up to $|\eta| = 2.0$ and improves the electron identification by the detection of transition radiation. The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. The highly segmented electromagnetic calorimeter consists of lead absorbers with liquid argon as the active material and covers the pseudorapidity range $|\eta| < 3.2$. In the region $|\eta| < 1.8$, a presampler detector consisting of a thin layer of liquid argon is used to correct for the energy lost by electrons, positrons, and photons upstream of the calorimeter. The hadronic tile calorimeter is a steel/scintillating-tile detector and is placed directly outside the envelope of the electromagnetic calorimeter. In the forward regions, it is complemented by two end-cap calorimeters using liquid argon as active material and copper or tungsten as absorber material.

Muon detection is based on the magnetic deflection of muon tracks in the large superconducting air-core toroid magnets, instrumented with separate trigger and high-precision tracking chambers. A system of three toroids, a barrel and two end-caps, generates the magnetic field for the muon spectrometer in the pseudorapidity range $|\eta| < 2.7$.

3. Simulated event samples

Simulated event samples were used to determine the detector acceptance, the reconstruction efficiencies and the expected event yields for signal and background processes.

SUSY signal processes were generated for various models using the HERWIG++ [19] v2.4.2 Monte Carlo program. The particle mass spectra and decay modes were determined using the ISASUSY from ISAJET [20] v7.80 and SUSYHIT [21] v1.3 programs. The latter was used for the assumed MSSM scenarios, which are parametrised in the $(m_0, m_{1/2})$ and $(m_{\tilde{g}}, m_{\tilde{g}_2})$ planes, with gluino masses above 300 GeV. The SUSY sample yields were normalised to the results of next-to-leading order (NLO) calculations, as obtained using the PROSINO [22] v2.1 program. For these calculations the CTEQ6.6M [23] parametrisation of the parton density functions (PDFs) was used and the renormalisation and factorisation scales were set to the average mass of the sparticles produced in the hard interaction.

For the backgrounds the following Standard Model processes were considered:

- $t\bar{t}$ and single top production: events were generated using the generator MC@NLO [31,32] v3.41. For the evaluation of systematic uncertainties, additional $t\bar{t}$ samples were generated using the POWHEG [33] and ACERMC [34] programs.
- $W(J/\gamma)\rightarrow l^\pm(\rightarrow e^\pm\ell^-)$ + jet production: events with light and heavy (b) flavour jets were generated using the ALPGEN [35] v2.13 program. A generator level cut $m_{\ell\ell} > 40$ GeV was applied to the $Z(\rightarrow \ell^\pm\ell^-)$ process.
- Jet production via QCD processes (referred to as “QCD background” in the following): events were generated using the PYTHIA [30] v6.4.21 generator. For the evaluation of systematic uncertainties, samples produced with ALPGEN were used.
- Di-boson ($W+Z$ and ZZ) production: events were generated using ALPGEN, however, compared to the other backgrounds their contribution was found to be negligible, after the application of the selection criteria.

All signal and background samples were generated at $\sqrt{s} = 7$ TeV using the ATLAS MC09 parameter tune [36], processed with the GEANT4 [37] simulation of the ATLAS detector [38], and then reconstructed and passed through the same analysis chain as the data. For all generators, except for PYTHIA, the HERWIG + JIMMY [19,39] modelling of the parton shower and underlying event was used (v6.510 and v4.31, respectively).

\footnote{The azimuthal angle ϕ is measured around the beam axis and the polar angle θ is the angle from the beam axis. The pseudorapidity is defined as $\eta = -\ln \tan(\theta/2)$. The distance ΔR in the $\eta-\phi$ space is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.}
The most important background processes and their production cross sections, multiplied by the relevant branching ratios (BR). Contributions from higher order QCD corrections are included for W and Z boson production (NLO) and for $t\bar{t}$ production (NLO + NNLL corrections). The inclusive QCD jet cross section is given at leading order (LO). The QCD sample was generated with a cut on the transverse momentum of the partons involved in the hard-scattering process, p_T.

<table>
<thead>
<tr>
<th>Physics process</th>
<th>σ [BR [nb]]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \rightarrow \ell v$ (+jets)</td>
<td>31.4 ± 1.6 [24–26]</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \ell^+ \ell^-$ (+jets)</td>
<td>3.20 ± 0.16 [24–26]</td>
</tr>
<tr>
<td>$Z \rightarrow \ell^+ \ell^-$ (+jets)</td>
<td>5.82 ± 0.29 [24–26]</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.165 ± 0.011 [27–29]</td>
</tr>
<tr>
<td>Single top</td>
<td>0.037 ± 0.002 [27–29]</td>
</tr>
<tr>
<td>Dijet ($p_T > 8$ GeV)</td>
<td>10.47 × 10^6 [30]</td>
</tr>
</tbody>
</table>

For the comparison to data, all background cross sections, except the QCD background cross section, were normalised to the results of higher order QCD calculations. A summary of the relevant cross sections is given in Table 1. For the next-to-next-to-leading order (NNLO) W and Z/γ^* production cross sections, an uncertainty of ±5% is assumed [40]. For the $t\bar{t}$ production cross section, the corresponding uncertainty on the NLO + NNLL (next-to-next-to-leading logarithms) cross section was estimated to be ±6.5% [34–36]. For the QCD background, no reliable prediction can be obtained from a leading order Monte Carlo simulation and data-driven methods were used to determine the residual contributions of this background to the selected event samples, as discussed in Section 5.

4. Data and event selection

After the application of beam, detector and data-quality requirements, the data set used for this analysis resulted in a total integrated luminosity of 35 pb$^{-1}$.

For the zero-lepton analysis, events were selected at the trigger level by requiring jets with high transverse momentum. The selection is fully efficient for events containing at least one jet with $p_T > 120$ GeV. A further trigger level requirement of $E_T^{miss} > 25$ GeV was applied [41]. For the one-lepton analysis, the trigger selection was based on single lepton triggers, which retain events if an electron with $p_T > 15$ GeV or a muon with $p_T > 13$ GeV is present within the trigger acceptance.

In the data sample selected, jet candidates were reconstructed by using the anti-k_t jet clustering algorithm [42,43] with a distance parameter of $R = 0.4$. The inputs to this algorithm are three-dimensional topological calorimeter energy clusters. The jet energies were corrected for inhomogeneities and for the non-compensation nature of the calorimeter by using p_T- and η-dependent calibration factors. They were determined from Monte Carlo simulation and validated using extensive test-beam measurements and studies of pp collision data (Ref. [44] and references therein). Only jets with $p_T > 20$ GeV and within $|\eta| < 2.5$ were retained. Candidates for b-jets were identified among jets with $p_T > 30$ GeV using an algorithm that reconstructs a vertex from all tracks which are displaced from the primary vertex and associated with the jet. The parameters of the algorithm were chosen such that a tagging efficiency of 50% (1%) was achieved for b-jets (light flavour or gluon jets) in $t\bar{t}$ events in Monte Carlo simulation [45].

Electron candidates were required to satisfy the ‘medium’ (zero-lepton analysis) or ‘tight’ (one-lepton analysis) selection criteria. Muon candidates were identified either as a match between an extrapolated inner detector track and one or more segments in the muon spectrometer, or by associating an inner detector track to a muon spectrometer track. The combined track parameters were derived from a statistical combination of the two sets of track parameters.

<table>
<thead>
<tr>
<th>m_T</th>
<th>$m_{\tilde{g}}$</th>
<th>$m_{\tilde{t}_1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 GeV</td>
<td>100 GeV</td>
<td>100 GeV</td>
</tr>
</tbody>
</table>

Electrons and muons were required to have $p_T > 20$ GeV and $|\eta| < 2.47$ or $|\eta| < 2.4$, respectively. Further details on lepton identification can be found in Ref. [40].

The calculation of E_T^{miss} is based on the modulus of the vectorial sum of the p_T of the reconstructed jets (with $p_T > 20$ GeV and over the full calorimeter coverage $|\eta| < 4.9$), leptons (including non-isolated muons) and the calorimeter clusters not belonging to reconstructed objects.

After object identification, overlaps were resolved. Any jet within a distance $\Delta R = 0.2$ of a ‘medium’ electron candidate was discarded. The event was rejected if one or more ‘medium’ electrons were identified in the transition region $1.37 < |\eta| < 1.52$ between the barrel and endcap calorimeters. Any remaining lepton within $\Delta R = 0.4$ of a jet was discarded.

Events were selected if a reconstructed primary vertex was found associated with five or more tracks, and if they passed basic quality criteria against detector noise and non-collision backgrounds.

In the zero-lepton analysis, events were required to have at least one jet with $p_T > 120$ GeV, two additional jets with $p_T > 30$ GeV and $E_T^{miss} > 100$ GeV. At least one jet is required to be $t\bar{t}$-tagged. Events containing identified ‘medium’ electron or muon candidates were rejected. The effective mass, m_{eff}, is defined as the scalar sum of E_T^{miss} and the transverse momenta of the highest p_T jets (up to a maximum of four). Events were required to have $E_T^{miss}/m_{eff} > 0.2$. In addition, the smallest azimuthal separation between the E_T^{miss} direction and the three leading jets, $\Delta \phi_{min}$, was required to be larger than 0.4. The last requirement reduces the amount of QCD background effectively since, in this case, E_T^{miss} results from mis-reconstructed jets or from neutrinos emitted along the direction of the jet axis by heavy flavour decays.

In the one-lepton analysis, events were required to have at least one muon or a ‘tight’ electron, two jets with $p_T > 60$ GeV and $p_T > 30$ GeV respectively, $E_T^{miss} > 80$ GeV and $m_T > 100$ GeV, where m_T is the transverse mass constructed using the highest p_T lepton and E_T^{miss}. At least one jet is required to be b-tagged. The m_T cut rejects events with a W boson in the final state.

In both analyses, further cuts on m_{eff} were applied to maximise the sensitivity to gluino-mediated production of sbottoms or stops. A threshold on m_{eff} at 600 GeV (500 GeV) was chosen for the zero-lepton (one-lepton) analysis. It should be noted that for the one-lepton analysis the transverse momenta of reconstructed leptons are included in the definition of the m_{eff}.

The event selection efficiency for each SUSY signal hypothesis was calculated as the sum of the efficiencies for the $\tilde{g}\tilde{g}$ and $\tilde{b}_1\tilde{b}_1$ ($\tilde{t}_1\tilde{t}_1$) processes, weighted by their respective NLO cross sections. For the zero-lepton selection, the efficiency varies between 7% and 50% across the $(m_{\tilde{g}}, m_{\tilde{b}_1})$ plane. The lowest values are found at large $\Delta m = m_{\tilde{g}} - m_{\tilde{b}_1}$, where the production of $\tilde{b}_1\tilde{b}_1$ pairs dominates. As Δm decreases, high efficiency values are found down to $\Delta m \approx 20$ GeV. For the one-lepton channel, the efficiency for the $(\tilde{g}\tilde{g}, \tilde{t}_1\tilde{t}_1)$-type SUSY signals varies between 0.4% and 3% across the $(m_{\tilde{g}}, m_{\tilde{t}_1})$ plane and depends on $\Delta m = m_{\tilde{t}_1} - m_{\tilde{t}_1}$, in a similar way to the gluino–sbottom case.

Electron candidates were selected on the basis of their identification and p_T by requiring $p_T > 50$ GeV and $|\eta| < 2.5$. Further details on electron identification can be found in Ref. [40]. For the zero-lepton analysis, events were required to have at least one taggable $t\bar{t}$ jet, with $p_T > 80$ GeV and at least one jet with $p_T > 30$ GeV and $E_T^{miss} > 100$ GeV. The efficiency for the zero-lepton analysis is the scalar sum of the p_T of the reconstructed jets (with $p_T > 20$ GeV and over the full calorimeter coverage $|\eta| < 4.9$), leptons (including non-isolated muons) and the calorimeter clusters not belonging to reconstructed objects.

The calculation of E_T^{miss} is based on the modulus of the vectorial sum of the p_T of the reconstructed jets (with $p_T > 20$ GeV and over the full calorimeter coverage $|\eta| < 4.9$), leptons (including non-isolated muons) and the calorimeter clusters not belonging to reconstructed objects.

No additional dedicated optimisations were performed for the MSUGRA/CMSSM and SO(10) scenarios. The efficiencies for the zero-lepton (one-lepton) selection for MSUGRA/CMSSM range between 8% (1%) for $m_{\tilde{g}_{1,2}} \approx 130$ GeV and 23% (12%) for $m_{\tilde{g}_{1,2}} \approx 340$ GeV, with a smaller dependence on m_0. For SO(10) models, the highest sensitivity is reached in the zero-lepton analysis, with dominant contributions via $\tilde{g}\tilde{g}$ production. In this case, the efficiencies vary between 7% and 20% as the gluino mass increases and are generally found to be larger for the DR3 scenario than for the HS scenario.
5. Standard model background estimation

Standard Model processes contribute to the events that survive the selection described in the previous section. The dominant source is $t\bar{t}$ production due to the presence of jets, E_T^{miss} and b-quarks in the final state.

The QCD background to the zero-lepton final state was estimated by normalising the PYTHIA Monte Carlo prediction to data in a QCD-enriched control region defined by $\Delta \phi_{\text{min}} < 0.4$. The Monte Carlo was then used to evaluate the ratio between the number of events in this control region and the signal region ($\Delta \phi_{\text{min}} > 0.4$). In the one-lepton final state the number of QCD multi-jet events was estimated using a matrix method similar to the one described in Ref. [40]. Cuts on the electron and muon identification were relaxed to obtain "loose" control samples that are dominated by QCD jets.

The non-QCD background in the zero-lepton final state was estimated using Monte Carlo simulation, while in the case of the one-lepton final state a data-driven technique is employed. This method exploits the low correlation between m_{eff} and m_{T}. Four regions were defined: (A) $40 < m_{T} < 100$ GeV and $m_{\text{eff}} < 500$ GeV, (B) $m_{T} > 100$ GeV and $m_{\text{eff}} < 500$ GeV, (C) $40 < m_{T} < 100$ GeV and $m_{\text{eff}} > 500$ GeV, and (D) $m_{T} > 100$ GeV and $m_{\text{eff}} > 500$ GeV. Regions A–C are dominated by background from $t\bar{t}$ and $W + 1$ jet production. Assuming that the variables are uncorrelated, the number of background events in the signal region is given by $N_B = N_C \times n_{\text{eff}}/N_A$, where N_A, N_B, N_C are the numbers of events in the regions A, B and C, respectively. A Monte Carlo simulation was used to validate the method and to establish possible sources of systematic uncertainties. The small number of events in the control regions is the main limitation of the method. It was also checked that a SUSY signal contamination does not bias the estimated background and that any bias is smaller than the systematic uncertainties assigned to the method and on the expected SUSY prediction.

6. Systematic uncertainties

Various systematic uncertainties affecting signal and background rates were considered.

For the zero-lepton analysis, the backgrounds from $t\bar{t}$ and $W/Z + 1$ jet production are taken from Monte Carlo simulation. The total uncertainty on this prediction was estimated to be $\pm 35\%$ after the final selection. It is dominated by the uncertainty on the jet energy scale (JES) [44], the uncertainty on the theoretical prediction of the background processes and the uncertainty on the determination of the b-tagging efficiency [45]. The uncertainty on the jet energy scale varies as a function of jet p_T, and decreases from 6% at 20 GeV to 4% at 100 GeV, with additional contributions taken into account the dependence of the jet response on the jet isolation and flavour. This translates into a $\pm 25\%$ uncertainty on the absolute prediction of the background from SM processes.

Uncertainties on the theoretical cross sections of the background processes (see Section 3), on the modelling of initial and final-state soft gluon radiation and the limited knowledge of the PDFs of the proton lead to uncertainties of $\pm 20\%$ and $\pm 25\%$ on the absolute predictions of the $t\bar{t}$ and the $W/Z + 1$ jet backgrounds, respectively.

The uncertainty on the determination of the tagging efficiency for b-jets, c-jets and light-jets introduces further uncertainties on the predicted background contributions at the level of $\pm 12\%$ for $t\bar{t}$ and $\pm 25\%$ for $W/Z + 1$ jets. Other uncertainties result from the modelling of additional pile-up interactions ($\pm 5\%$) and of the trigger efficiency ($\pm 3\%$) in the Monte Carlo simulation. For the QCD background estimation, the uncertainty is dominated by the limited number of Monte Carlo events available for the zero-lepton analysis.

For the one-lepton analysis, where a data-driven technique was employed, the small event number in the control regions was the dominant uncertainty ($\pm 25\%$). Residual uncertainties associated to the method due to the JES, b-tagging, lepton identification and theoretical predictions of the relative contributions of W and $t\bar{t}$ backgrounds were studied using Monte Carlo simulation and estimated to be at the level of $\pm 8\%$.

For the SUSY signal processes, various sources of uncertainties affect the theoretical NLO cross sections. Variations of the renormalisation and factorisation scales by a factor of two result in uncertainties of $\pm 16\%$ for $\tilde{g}\tilde{g}$ production and $\pm 30\%$ ($\pm 27\%$) for $\tilde{b}_1\tilde{b}_1$ ($\tilde{t}_1\tilde{t}_1$) pair production, almost independently of the sparticle mass and the SUSY model. Uncertainties for $\tilde{q}\tilde{q}$ and $\tilde{g}\tilde{g}$ production, relevant in MSUGRA/CMSSM scenarios, were estimated to be at the level of $\pm 10\%$ and $\pm 15\%$, respectively.

The number of predicted signal events is also affected by the PDF uncertainties, estimated using the CTEQ 6.6M PDF error eigenvector sets at the 90% CL limit, and rescaled by 1/1.645. The relative uncertainties on the $\tilde{g}\tilde{g}$ ($\tilde{b}_1\tilde{b}_1$, $\tilde{t}_1\tilde{t}_1$) cross sections were estimated to be in the range from $\pm 11\%$ to $\pm 25\%$ ($\pm 7\%$ to $\pm 16\%$) for the $\tilde{g}\tilde{g}$ ($\tilde{b}_1\tilde{b}_1$, $\tilde{t}_1\tilde{t}_1$) processes, depending on the gluino (stbotom, stop) masses. For first and second generation squark-pair and associated gluino–squark production, the uncertainty on the PDFs varies between $\pm 5\%$ and $\pm 15\%$ as the squark masses increase. The impact of detector related uncertainties, such as the JES and b-tagging, on the signal event yields depends on the masses of the most copiously produced sparticles. The total uncertainty varies between $\pm 25\%$ and $\pm 10\%$ as the gluino/squark masses increase from 300 GeV to 1 TeV, across the different scenarios, and it is dominated by the JES and the b-tagging uncertainty for low and high mass sparticles, respectively.

Finally, an additional $\pm 11\%$ uncertainty on the quoted total integrated luminosity was taken into account.

7. Results

In Fig. 1 the distributions of m_{eff} and of E_T^{miss} are shown for the two analyses. For the E_T^{miss} distributions all cuts described in Section 4 are applied. The m_{eff} distributions are shown after the application of all cuts, except for the m_{eff} cut.

The expectations from Standard Model background processes are superimposed. For illustration, the figures also include the distributions expected for SUSY signals. For the zero-lepton channel, a scenario with $m_{\tilde{t}} = 500$ GeV and $m_{\tilde{g}} = 380$ GeV is chosen, while for the one-lepton channel the relevant masses are $m_{\tilde{t}} = 400$ GeV and $m_{\tilde{g}} = 210$ GeV. In Table 2, the observed number of events and the predictions for contributions from Standard Model processes are presented. For both analyses, the data are in agreement with the Standard Model predictions, within uncertainties.

The results are translated into 95% C.L. upper limits on contributions from new physics. Limits were derived using a profile likelihood ratio [46,47], $A(s)$, where the likelihood function of the fit was written as $L(n|s, b, \theta) = P_s \times C_{\text{Syst}}$; n represents the number of observed events in data, s is the SUSY signal under consideration, b is the background, and θ represents the systematic uncertainties. The P_s function is a Poisson-probability distribution for event counts in the defined signal region and C_{Syst} represents the constraints on systematic uncertainties, which are treated as nuisance parameters with a Gaussian probability density function and correlated when appropriate. The exclusion p-values are obtained from the test statistic $A(s)$ using pseudo-experiments. One-sided upper limits are set with the power-constrained limits procedure [48].

Upper limits at 95% C.L. on the number of signal events in the signal regions are obtained independently of new physics models for the zero- and one-lepton final states. These numbers are
Fig. 1. Distributions of the effective mass, \(m_{\text{eff}} \) (left) and the \(E_{\text{T}}^{\text{miss}} \) (right) for data and for the expectations from Standard Model processes after the baseline selections in the zero-lepton (top) and one-lepton channel (bottom). The data correspond to an integrated luminosity of 35 pb\(^{-1}\). Black vertical bars show the statistical uncertainty of the data. The yellow band shows the full systematic uncertainty on the SM expectation. The \(E_{\text{T}}^{\text{miss}} \) distributions are shown after a cut on \(m_{\text{eff}} \) at 600 GeV (zero-lepton) and 500 GeV (one-lepton). For illustration, the distributions for one reference SUSY signal, relevant for each channel, are superimposed.

Table 2
Summary of the expected and observed event yields. The QCD prediction for the zero-lepton channel is based on the semi-data-driven method described in the text. For the one-lepton channel, the results for both the Monte Carlo and the data-driven approach are given. Since the data-driven technique does not distinguish between top and \(W/Z \) backgrounds the total background estimate is shown in the top row.

<table>
<thead>
<tr>
<th></th>
<th>0-lepton</th>
<th>1-lepton Monte Carlo</th>
<th>1-lepton data-driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{t}t) and single top</td>
<td>12.2 ± 5.0</td>
<td>12.3 ± 4.0</td>
<td>14.7 ± 3.7</td>
</tr>
<tr>
<td>(W) and (Z)</td>
<td>6.0 ± 2.6</td>
<td>0.8 ± 0.4</td>
<td>-</td>
</tr>
<tr>
<td>QCD</td>
<td>1.4 ± 1.0</td>
<td>0.4 ± 0.4</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>Total SM</td>
<td>19.6 ± 6.9</td>
<td>13.5 ± 4.1</td>
<td>14.7 ± 3.7</td>
</tr>
<tr>
<td>Data</td>
<td>15</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

111 and 5.2, respectively, and correspond to 95% C.L. upper limits on effective cross sections for new processes of 0.32 pb and 0.15 pb for the zero- and one-lepton channel, respectively. These upper limits include the ±11% uncertainty on the quoted total integrated luminosity.

These results can be interpreted in terms of 95% C.L. exclusion limits in several SUSY scenarios. In Fig. 2 the observed and expected exclusion regions are shown in the \((m_{\tilde{g}}, m_{\tilde{b}_1})\) plane, for the hypothesis that the lightest squark \(\tilde{b}_1 \) is produced via gluino-mediated or direct pair production and decays exclusively via \(\tilde{b}_1 \to b\chi^0_1 \). The zero-lepton channel was considered for this model and the largest acceptance was found for \(\tilde{g}\tilde{g} \) production. The limits do not strongly depend on the neutralino mass assumption as long as \(m_{\tilde{g}} - m_{\chi^0_1} \) is larger than 250–300 GeV, due to the harsh kinematic cuts. Gluino masses below 590 GeV are excluded for sbottom masses up to 500 GeV. These limits depend weakly – via the dependence of the production cross section for \(\tilde{g}\tilde{g} \) production – on the masses of the first and second generation squarks, \(\tilde{q}_{1,2} \). Variations of these masses in the range between \(\sim 3 \) TeV and \(2 \cdot m_{\tilde{g}} \) reduce the excluded mass region by less than 20 GeV.

The zero-lepton analysis was also employed to extract limits on the gluino mass in the two SO(10) scenarios, DR3 and HS. Gluino masses below 500 GeV are excluded for the DR3 models considered, where \(\tilde{g} \to bb\chi^0_1 \) decays dominate. A lower sensitivity (\(m_{\tilde{g}} < 420 \) GeV) was found for the HS model, where larger branching ratios of \(\tilde{g} \to bb\chi^0_2 \) are expected and the efficiency of the selection is reduced with respect to the DR3 case.

The results of the one-lepton analysis were interpreted as exclusion limits on the \((m_{\tilde{g}}, m_{\tilde{t}_1})\) plane in the hypothesis that the lightest \(\tilde{t}_1 \) is produced via gluino-mediated or direct pair production. Stop masses above 130 GeV are considered, and \(\tilde{t}_1 \) is assumed to decay exclusively via \(\tilde{t}_1 \to b\chi^\pm_1 \). In Fig. 3 the observed and expected exclusion limits are shown as a function of \(m_{\tilde{g}} \) for...
two representative values of the stop mass. Gluino masses below 520 GeV are excluded for stop masses in the range between 130 and 300 GeV.

Finally, the results of both analyses were used to calculate 95% C.L. exclusion limits in the MSUGRA/CMSSM framework with large tan β. Fig. 4 shows the observed and expected limits in the $(m_0, m_{1/2})$ plane, assuming tan $\beta = 40$, and fixing $\mu > 0$ and $A_0 = 0$. The largest sensitivity is found for the zero-lepton analysis. The combination of the two analyses, which takes account of correlations between systematic uncertainties of the two channels, is also shown. Sbottom and stop masses below 550 GeV and 500 GeV are excluded with 95% C.L. Gluino masses below 500 GeV and 420 GeV are excluded for the $(m_0, m_{1/2})$ parameter space. The results are compared to previous limits from the LEP experiments [14].

8. Conclusions

The ATLAS Collaboration has presented a first search for supersymmetry in final states with missing transverse momentum and at least one b-jet candidate in proton–proton collisions at 7 TeV. The results are based on data corresponding to an integrated luminosity of 35 pb$^{-1}$ collected during 2010. These searches are sensitive to the gluino-mediated and direct production of sbottoms and stops, the supersymmetric partners of the third generation quarks, which, due to mixing effects, might be the lightest squarks.

Since no excess above the expectations from Standard Model processes was found, the results are used to exclude parameter regions in various R-parity conserving SUSY models. Under the assumption that the lightest squark b_1 is produced via gluino-mediated processes or direct pair production and decays exclusively via $b_1 \rightarrow b \tilde{\chi}_1^+$, gluino masses below 590 GeV are excluded with 95% C.L. up to sbottom masses of 500 GeV. Alternatively, assuming that t_1 is the lightest squark and the gluino decays exclusively via $\tilde{g} \rightarrow t_1 t$, and $t_1 \rightarrow b \tilde{\chi}_1^+$, gluino masses below 520 GeV are excluded for stop masses in the range between 130 and 300 GeV.

In specific models based on the gauge group SO(10), gluinos with masses below 500 GeV and 420 GeV are excluded for the DR3 and HS models, respectively.

In an MSUGRA/CMSSM framework with large tan β, a significant region in the $(m_0, m_{1/2})$ plane can be excluded. For the parameters tan $\beta = 40$, $A_0 = 0$ and $\mu > 0$, sbottom masses below 550 GeV and stop masses below 470 GeV are excluded with 95% C.L. Gluino masses below 500 GeV are excluded for the m_0 range between 100 GeV and 1 TeV, independently on the squark masses. Changing the A_0 value from 0 to -500 GeV lead to significant variations in third generation squark mixing. Across the $(m_0, m_{1/2})$ parameter space, sbottom and stop masses decrease by about 10% and 30%, respectively, if A_0 is changed from 0 to -500 GeV. The exclusion region of the one-lepton analysis, mostly sensitive to stop final states, extends the zero-lepton reach by about 20 GeV in $m_{1/2}$ for $m_0 < 600$ GeV.
masses below 500 GeV are excluded for the mQ range between 100 GeV and 1 TeV, independently on the squark masses.

These analyses improve significantly on the regions of SUSY parameter space excluded by previous experiments that searched for similar scenarios.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BAMF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CF, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; INFN-CNAF, Italy; NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

1 University at Albany, Albany, NY, United States
2 Department of Physics, University of Alberta, Edmonton, AB, Canada
3 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gaziantep University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
6 Department of Physics, University of Arizona, Tucson, AZ, United States
7 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institute of High Energy Physics and University Autónoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogaziçi University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep;
19 (a) Department of Physics, Istanbul Technical University, Istanbul, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21 (a) Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, United States
23 Department of Physics, Brandeis University, Waltham, MA, United States
24 Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui, China;
34 Department of Physics, Nanjing University, Nanjing; (a) High Energy Physics Group, Shandong University, Shandong, China
35 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
36 Nevis Laboratory, Columbia University, Irvington, NY, United States
37 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
38 INFN Sezione di Genova; (a) Dipartimento di Fisica, Università di Genova, Genova, Italy
39 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
40 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
41 Physics Department, Southern Methodist University, Dallas, TX, United States
42 Physics Department, University of Texas at Dallas, Richardson, TX, United States
43 DESY, Hamburg and Zeuthen, Germany
44 Institute für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
45 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
46 Department of Physics, Duke University, Durham, NC, United States
47 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
48 Fachhochschule Wiener Neustadt, Wiener Neustadt, Austria
49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.B., Germany
51 Section de Physique, Université de Genève, Geneva, Switzerland
52 INFN Sezione di Padova; (a) Dipartimento di Fisica, Università di Padova, Padova, Italy
53 Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia
54 II Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
55 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
56 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
57 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
58 Department of Physics, Hampton University, Hampton, VA, United States
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
60 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
61 (a) ITI Institut für Technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
62 Faculty of Science, Hiroshima University, Hiroshima, Japan
63 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
64 Department of Physics, Indiana University, Bloomington, IN, United States
65 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
66 University of Iowa, Iowa City, IA, United States
67 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
70 Graduate School of Science, Kobe University, Kobe, Japan
71 Faculty of Science, Kyushu University, Fukuoka, Japan
72 Kyoto University of Education, Kyoto, Japan
73 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
74 Physics Department, Lancaster University, Lancaster, United Kingdom
75 INFN Sezione di Lecce; (a) Dipartimento di Fisica, Università del Salento, Lecce, Italy
76 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom