Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in $\sqrt{s} = 7$ TeV proton-proton collisions with the ATLAS detector

DOI
10.1140/epjc/s10052-011-1647-9

Publication date
2011

Document Version
Final published version

Published in
European Physical Journal C

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in $\sqrt{s} = 7$ TeV proton–proton collisions with the ATLAS detector

The ATLAS Collaboration
CERN, 1211 Geneva 23, Switzerland

Abstract Results are presented of a search for particles decaying into final states with significant missing transverse momentum and exactly two identical flavour leptons (e, μ) of opposite charge in $\sqrt{s} = 7$ TeV collisions at the Large Hadron Collider. This channel is particularly sensitive to supersymmetric particle cascade decays producing flavour correlated lepton pairs. Flavour uncorrelated backgrounds are subtracted using a sample of opposite flavour lepton pair events. Observation of an excess beyond Standard Model expectations following this subtraction procedure would offer one of the best routes to measuring the masses of supersymmetric particles. In a data sample corresponding to an integrated luminosity of 35 pb$^{-1}$ no such excess is observed. Model-independent limits are set on the contribution to these final states from supersymmetry and are used to exclude regions of a phenomenological supersymmetric parameter space.

In this letter the first results are reported of a search for the production of particles at ATLAS in events with exactly two leptons of identical flavour (e or μ) and opposite charge, and significant missing transverse momentum (E_{T}^{miss}). This signature can be generated in supersymmetry (SUSY) [1–9] events by the correlated production of leptons, for instance via the decay chains $\tilde{\chi}^0_2 \rightarrow \tilde{\ell}^{\pm} \rightarrow \tilde{\chi}^0_1 \ell^{+} \ell^{-}$ or $\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 \ell^{+} \ell^{-}$. Such events offer one of the best routes to model-independent measurements of the masses of SUSY particles via end-points in the lepton pair invariant mass distribution [10–12]. The dominant sources of Standard Model (SM) background generally possess equal branching fractions for the production of lepton pairs of identical and different flavour, and can therefore be removed with a ‘flavour subtraction’ procedure [10] in which the observation in the $e\mu$ channel is subtracted from that in the ee and $\mu\mu$ channels. The subtraction reduces the impact on the analysis of various experimental uncertainties, common to both the identical- and different-flavour channels. This method is applicable to a variety of different kinds of new physics. As a benchmark, this letter presents the results in terms of a search for SUSY. The results reported here are complementary to those of inclusive SUSY particle searches using lepton pairs [13], and also to those of inclusive searches requiring jets, E_{T}^{miss} and zero leptons [14] or one lepton [15]. A search by CMS for SUSY in events with lepton pairs is reported in [16].

The ATLAS detector [17] is a multipurpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector (SCT), and a transition radiation tracker (TRT) which also provides particle identification capability. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by high-granularity liquid-argon (LAr) sampling electromagnetic calorimeters. Hadronic coverage is provided by an iron-scintillator tile calorimeter in the central rapidity range. The end-cap and forward regions are instrumented with LAr calorimetry for both electromagnetic and hadronic measurements. The muon spectrometer (MS) surrounds the calorimeters and consists of three large superconducting toroids, a system of precision tracking chambers, and detectors for triggering.

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
The pp-collision data used in this analysis were collected between March and November 2010 at the LHC operating at a centre-of-mass energy of 7 TeV. Application of basic beam, detector and data-quality requirements results in a total integrated luminosity of 35 pb$^{-1}$. The uncertainty on the luminosity is estimated to be 11% [18]. The data have been collected with a single lepton (e or μ) trigger. The detailed trigger requirements vary throughout the data-taking period due to the rapidly increasing LHC luminosity and the commissioning of the trigger system, but always have a threshold that ensures a trigger efficiency for leptons with transverse momentum $p_T > 20$ GeV at the plateau. The efficiency of the triggers is studied with data, and agrees well with expectations.

Monte Carlo (MC) simulated event samples are used to develop and validate the analysis procedure and to estimate the residual SM backgrounds following flavour subtraction. Samples of QCD jet events are generated with PYTHIA [19], using the MSTW2007LO* modified leading-order parton distribution functions (PDF) [20], which are used with all leading-order (LO) MC codes. Production of top quark pairs is simulated with MC@NLO [21, 22] (with a top quark mass of 172.5 GeV) and the next-to-leading order (NLO) PDF set CTEQ6.6 [23], which is used with all NLO MC codes. Samples of W, Z and γ production with accompanying jets are produced with ALPGEN [24], Diboson (WW, WZ, ZZ) production is simulated with HERWIG [25, 26], single top production with MC@NLO [27, 28], and Drell–Yan production with PYTHIA. Fragmentation and hadronization for the ALPGEN and MC@NLO samples are performed with HERWIG, using JIMMY [29] for the underlying event. The MC samples are produced using the ATLAS MC09 parameter tune [30] and a GEANT4 [31] based detector simulation [32].

Criteria for electron and muon identification closely follow those described in Ref. [33]. Candidate electrons are required to pass “tight” electron selection criteria and isolation requirements, and have $p_T > 20$ GeV and $|\eta| < 2.47$. Identified electrons are used to select events for both the signal region of the analysis and control regions used to estimate backgrounds. “Medium” electron selection criteria are mainly based on lateral shower shape requirements in the calorimeter, while E_p (where E is the shower energy in the calorimeter and p the track momentum in the ID) and TRT cuts are applied for the tight electron selection, which provides additional rejection against conversions and fakes from hadrons. The electron isolation criteria require that the total transverse energy within a cone size $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ around the electron, is less than 0.15 of the electron p_T. Events are always vetoed if a medium electron is found in the transition region between the barrel and end-cap electromagnetic calorimeter, $1.37 < |\eta| < 1.52$. Muons are required to be identified either in both the ID and MS systems (combined muons) or as a match between an extrapolated ID track and one or more track segments in the MS. The ID track is required to have at least one pixel hit, more than five SCT hits, and a number of TRT hits that varies with η. For combined muons, a good match between ID and MS tracks is required, and the p_T values measured by these two systems must be compatible within the resolution. Isolation requirements are imposed, whereby the summed p_T of other ID tracks above 500 MeV within a distance $\Delta R < 0.2$ around the muon track is required to be less than 1.8 GeV. Only muons with $p_T > 20$ GeV and $|\eta| < 2.4$ are considered. For the final selection, the distance between the z coordinate of the primary vertex and that of the extrapolated muon track at the point of closest approach to the primary vertex must be less than 10 mm. Jets are reconstructed using the anti-k_T jet clustering algorithm [34] with a distance parameter $D = 0.4$. The inputs to this algorithm are clusters of calorimeter cells seeded by cells with energy significantly above the measured noise. Jets are constructed by performing a four-vector sum over these clusters, treating each cluster as an (E, p) four-vector with zero mass. Jets are corrected for calorimeter non-compensation, material and other effects using p_T- and η-dependent calibration factors obtained from Monte Carlo and validated with test-beam and collision-data studies [35]. Only jets with $p_T > 20$ GeV and $|\eta| < 2.5$ are considered. If a jet and a medium electron are both identified within a distance $\Delta R < 0.2$ of each other, the jet is discarded. Furthermore, identified medium electrons or muons are only considered if they satisfy $\Delta R > 0.4$ with respect to the closest remaining jet. Events are discarded if they contain any jet failing basic quality selection criteria, which rejects detector noise and non-collision backgrounds [36]. The calculation of the missing transverse momentum, E_T^{miss}, is based on the modulus of the vector sum of the p_T of the reconstructed objects (jets with $p_T > 20$ GeV, but over the full calorimeter coverage $|\eta| < 4.9$, and selected leptons), any additional non-isolated muons, and the calorimeter clusters not belonging to reconstructed objects.

“Signal region” events that contain lepton pairs of identical flavour (e^+e^- and $\mu^+\mu^-$) and different flavour ($e^\pm\mu^\mp$) are selected, with the two populations subsequently used to calculate the excess of identical-flavour events. Selected events must contain exactly two opposite sign leptons (e or μ), with invariant mass (m_{ll}) greater than 5 GeV. The E_T^{miss} must exceed 100 GeV in order to reject SM $Z+\text{jets}$ events whilst maintaining efficiency for a range of SUSY models. Events must also possess at least one reconstructed primary vertex with at least five associated tracks. A flavour subtraction is performed through the use of the quantity S.
defined as
\[S = \frac{N(e^+e^-)}{\beta(1-(1-\tau_e)^2)} - \frac{N(e^+\mu^-)}{1-(1-\tau_\mu)} \]
\[+ \frac{\beta N(\mu^+\mu^-)}{(1-(1-\tau_\mu)^2)}, \quad (1) \]

which measures the excess of identical-flavour events (first and third terms) over different-flavour events (second term), taking into account the electron and muon plateau trigger efficiencies (\(\tau_e\) and \(\tau_\mu\)) and the ratio of electron to muon efficiency times acceptance (\(\beta\)). The trigger efficiencies for offline reconstructed objects are \(\tau_e = (98.5\pm1.1)\%\) and \(\tau_\mu = (83.7\pm1.9)\%\), respectively, while \(\beta\) is determined from data to be 0.69\pm0.03, with the quoted errors including both systematic and statistical uncertainties.

The value of \(S\) obtained from selected identical-flavour and different-flavour lepton SM events is expected to be small but non-zero, due primarily to \(Z/\gamma^*\) boson production. The contributions to \(S\) expected from SM processes are estimated using a combination of Monte Carlo simulation and data-driven techniques. Contributions from single top and diboson events are estimated using the MC samples described above, scaled to the luminosity of the data sample. Contributions from \(Z/\gamma^*\)-jets, \(t\bar{t}\) and events containing fake leptons (from QCD jets and W+jets events) are estimated using MC samples normalised to data in an appropriate control region. The \(Z/\gamma^*\) control region contains lepton pair events satisfying the same selection criteria as the signal region but with \(E_T^{\text{miss}} < 20\) GeV and an additional 81 < \(m_{\ell\ell}\) < 101 GeV requirement. The \(t\bar{t}\) control region [13] contains "top-tagged" lepton pair events again satisfying the same selection criteria as signal candidates but with 60 < \(E_T^{\text{miss}}\) < 80 GeV and an additional requirement of \(\geq 2\) jets with \(p_T > 20\) GeV. The top-tagging requirement is imposed through the use of the variable \(m_{\text{CT}}\) [37], which can be calculated from the four-vectors of the selected jets and leptons:

\[m_{\text{CT}}^2(v_1, v_2) = \left[E_T(v_1) + E_T(v_2) \right]^2 - \left[p_T(v_1) - p_T(v_2) \right]^2, \quad (2) \]

where \(v_i\) can be a lepton, a jet, or a lepton-jet combination. Transverse momentum vectors are denoted by \(p_T\) and transverse energies \(E_T\) are defined as \(E_T = \sqrt{p_T^2 + m^2}\). This quantity is bounded from above by analytical functions of the top quark and \(W\) masses as described in [38]. Top-tagged events are required to possess \(m_{\text{CT}}\) values calculated from combinations of jets and leptons consistent with the expected bounds from \(t\bar{t}\) events, as well as lepton-jet invariant mass values consistent with top quark decays. An electron control region for fake lepton events requires events to possess \(E_T^{\text{miss}} < 60\) GeV, \(\Delta\phi\) between the \(E_T^{\text{miss}}\) vector and a jet < 0.1 and an electron with \(p_T > 30\) GeV. A single muon control region for fake lepton events requires events to possess \(E_T^{\text{miss}} < 30\) GeV, a muon with \(p_T < 40\) GeV and a transverse mass \(m_T(\mu, E_T^{\text{miss}}) < 30\) GeV. The electron and muon identification criteria are relaxed, to obtain a ‘looser’ sample dominated by fakes. A loose-tight matrix method is then used to estimate the number of events with fake leptons in the signal region after final selection criteria. This method, which uses the probabilities derived from data for loosely selected leptons and hadrons to satisfy the tight selection criteria to predict the mixture of real and fake leptons in the final sample, is similar to that described in [39]. The dominant uncertainties in the data-normalised background estimates arise from limited numbers of events in the control regions, theoretical uncertainties (including choice of generator, initial and final state radiation), an approximate \(\sim \pm 7\%\) jet energy scale uncertainty [40] and an approximate \(\sim 14\%\) jet energy resolution uncertainty [41]. The latter uncertainties affect the shapes of the MC \(E_T^{\text{miss}}\) distributions. Uncertainties on backgrounds estimated solely with MC are dominated by the jet energy scale and resolution.

The invariant mass distributions of lepton pairs in selected data events, prior to applying the \(E_T^{\text{miss}}\) requirement, are presented in Fig. 1, weighted by the multiplicative factors in (1) to yield the identical-flavour and different-flavour contributions to \(S\). After applying the \(E_T^{\text{miss}} > 100\) GeV requirement 4, 13 and 13 events are observed in the \(e^\pm e^\mp\), \(e^\pm \mu^\mp\) and \(\mu^\pm \mu^\mp\) channels, respectively. The expected numbers of events in these channels, determined using the techniques described above, are listed in Table 1 and are in reasonable agreement for the given luminosity as suggested by the probabilities for the SM to fluctuate at least to the level of observed events. The dominant contribution to each channel arises from \(t\bar{t}\) production. Using the observed numbers of

<table>
<thead>
<tr>
<th></th>
<th>(e^\pm e^\mp)</th>
<th>(e^\pm \mu^\mp)</th>
<th>(\mu^\pm \mu^\mp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>4</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>(Z/\gamma^*)+jets</td>
<td>0.40 \pm 0.46</td>
<td>0.36 \pm 0.20</td>
<td>0.91 \pm 0.67</td>
</tr>
<tr>
<td>Dibosons</td>
<td>0.30 \pm 0.11</td>
<td>0.36 \pm 0.10</td>
<td>0.61 \pm 0.10</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>2.50 \pm 1.02</td>
<td>6.61 \pm 2.68</td>
<td>4.71 \pm 1.91</td>
</tr>
<tr>
<td>Single top</td>
<td>0.13 \pm 0.09</td>
<td>0.76 \pm 0.25</td>
<td>0.67 \pm 0.33</td>
</tr>
<tr>
<td>Fakes</td>
<td>0.31 \pm 0.21</td>
<td>(-0.15 \pm 0.08)</td>
<td>0.01 \pm 0.01</td>
</tr>
<tr>
<td>Total SM</td>
<td>3.64 \pm 1.24</td>
<td>8.08 \pm 2.78</td>
<td>6.91 \pm 2.20</td>
</tr>
</tbody>
</table>
Fig. 1 Invariant mass distribution of identical-flavour lepton pairs prior to applying the E_T^{miss} requirement, weighted by the acceptance and efficiency factors as in (1). The stacked histograms show the expected distributions from MC samples normalised to the luminosity of the data. The band indicates the uncertainty on the expectation from finite statistics, cross section, luminosity, jet and lepton energy scales and resolutions. Also shown is the observed distribution for different-flavour pairs, weighted according to (1). In the region with $m_{ll} < 100$ GeV, the dominant contributions to the different-flavour data events are expected to come from $t \bar{t}$, QCD and $Z/\gamma^* +$jets events. The lower of the two Data/MC ratios is the comparison between data and MC normalised to the luminosity of the data for different-flavour events in each channel together with the measured values of τ_e, τ_{μ} and β, the observed value of S is found to be $S_{\text{obs}} = 1.98 \pm 0.15(\beta) \pm 0.02(\tau_e) \pm 0.06(\tau_{\mu})$, where the uncertainties are those from the respective efficiency parameters. The expected mean value of S from SM background events alone is $\bar{S}_b = 2.06 \pm 0.79(\text{stat}) \pm 0.78(\text{sys})$. The observation agrees very well with the SM background which is, however, expected to fluctuate considerably (see Fig. 2). The dominant contributions to \bar{S}_b are from $Z/\gamma^* +$jets and diboson processes. The dominant contributions from $t \bar{t}$ events to the individual channels largely cancel when calculating S, as expected. The $t \bar{t}$ population nevertheless has a significant impact on this analysis because the range of observed S values expected from a large number of hypothetical signal-free experiments is dominated by statistical fluctuations in the numbers of selected $t \bar{t}$ events in each channel.

To quantify the consistency between the observed S value and the SM prediction the expected distribution of S_b in the absence of SUSY must be determined. This distribution possesses a mean given by \bar{S}_b and a width dominated by statistical fluctuations in the numbers of events observed in each channel. The distribution can be determined by generating pseudo-experiments using the estimated mean numbers of background events from Table 1 as input. For each pseudo-experiment the mean number of background events in each channel and from each source are sampled, taking appropriate account of correlations between the uncertainties in the estimates of these means. The resulting total mean number of background events in each channel is then used to construct a Poisson distribution from which the observed number of events in that channel is drawn. The resulting sampled event counts in each channel are then used with (1), taking care also to sample values of τ_e, τ_{μ} and β according to their means and uncertainties, to determine a value of S_b. The distribution of S_b values obtained in this way is used to estimate the probability of observing a value of S at least as large as S_{obs}. The distribution of S_b values obtained from one million signal-free experiments using this procedure is shown in Fig. 2. The shape of the distribution is dominated by statistical fluctuations in the numbers of events in each channel, with the uncertainty on \bar{S}_b being negligible by comparison. The probability of observing a value of S at least as large as S_{obs} is 49.7% and hence no evidence of an excess of identical-flavour events beyond SM expectations is observed.

Limits are set on \bar{S}_s, the mean contribution to S from SUSY. The statistical procedure employed follows that used to determine the consistency of the observed value of S with the background expectation. The pseudo-experiments
are modified by adding signal event contributions to the input mean numbers of background events in each channel. An assumption must be made regarding the relative branching ratio of SUSY events into identical-flavour and different-flavour channels, as adding flavour uncorrelated SUSY contributions to the identical-flavour and different-flavour channels increases the width of the S distribution. Given such an assumption, a model-independent limit can be set on \hat{S}_i by comparing S_{obs} with the distribution of S values obtained from the new set of signal-plus-background pseudo-experiments.

If the assumption is made that the branching fractions for e^+e^- and $\mu^+\mu^-$ final states in SUSY events are identical, and the branching fraction for $e^\pm\mu^\mp$ final states is zero, a limit $\hat{S}_i < 8.8$ is set at 95% confidence level. Alternatively, if SUSY events are assumed to possess a different-flavour branching fraction of one half that for identical-flavour events, then the limit becomes $\hat{S}_i < 12.6$ at 95% confidence. The limits are driven by the statistical fluctuations in S_i rather than systematic and statistical uncertainties in \hat{S}_i and in the variance of the S_i distribution.

A similar procedure can be used to set limits within a specific SUSY parameter space. In this case the mean numbers of signal events added to each channel are sampled according to the expectations from each point in the parameter space of the model together with the uncertainties in these expectations. The fraction of resulting pseudo-experiments with $S < S_{\text{obs}}$ gives the probability of the signal-plus-background hypothesis being falsely rejected. If the probability of being falsely rejected is <5%, the point is excluded at 95% confidence.

As an example, two-dimensional grids in the parameter space of a 24-parameter MSSM model [42] are considered (to be referred to as ‘MSSM PhenoGrid2”). The 24-parameter MSSM is a generic MSSM on which flavour and CP violation have been imposed. For these grids the following parameters are fixed: $m_A = 1000 \text{ GeV}$, $\mu = 1.5 \text{ min}(m_{\tilde{q}}, \tilde{\chi}_0^0)$, $\tan \beta = 4$, $A_t = \mu \tan \beta$, $A_b = \mu \tan \beta$, and $A_{\tilde{q}} = \mu \tan \beta$. The masses of the 3rd generation sfermions are set to 2 TeV, and common squark mass and slepton mass parameters are assumed for the first two generations. Two grids in the $m_{\tilde{g}}-m_{\tilde{q}}$ plane are studied: one with a compressed spectrum yielding a soft final state kinematics, defined by $m_{\tilde{g}} = M - 50 \text{ GeV}$, $m_{\tilde{q}} = M - 150 \text{ GeV}$ and $m_{\tilde{l}_1} = M - 100 \text{ GeV}$, where M is the minimum of the gluino and squark mass (‘compressed spectrum’); and one with a very light LSP, yielding a harder spectrum of leptons, jets and E_T^{miss}, with $m_{\tilde{g}} = M - 100 \text{ GeV}$, $m_{\tilde{q}} = 100 \text{ GeV}$ and $m_{\tilde{l}_1} = M/2 \text{ GeV}$ (‘light neutralino’). Signal events are generated with HERWIG for the MSSM grids. The cross sections are calculated at NLO with PROSPINO [43]. Theoretical and experimental uncertainties are determined for each model and used when sampling the mean numbers of signal events in each channel. Theoretical uncertainties are evaluated by varying the factorisation and renormalisation scales and the CT10Q6.6 PDF sets [23] used for the cross section calculation. Experimental uncertainties are dominated by the uncertainty on the jet energy scale and resolution. An 11% luminosity uncertainty is included. The results are shown in the $m_{\tilde{g}}-m_{\tilde{q}}$ plane in Fig. 3. For ‘compressed spectrum’ (‘light neutralino’) models and $m_{\tilde{g}} = m_{\tilde{q}} + 10 \text{ GeV}$, the 95% confidence lower limit on $m_{\tilde{g}}$ is 503 (558) GeV.

In summary, a flavour subtraction technique has been used to search for an excess beyond SM expectations of high missing transverse momentum events containing opposite charge identical-flavour lepton pairs. No significant excess has been observed, allowing limits to be set on the model-independent quantity \hat{S}_i, which measures the mean excess from SUSY taking into account flavour-dependent acceptances and efficiencies. This search and limit is of course applicable to other new physics scenarios, not just the SUSY scenario described here.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSGT, Belarus; CNPq and FAPESP, Brazil; NERC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MST/MCT, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; FOM and NWO, The Netherlands; RCN, Norway; MNWS, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSI, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK.
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Yu.A. Golfand, E.P. Likhtman, JETP Lett. 13, 323–326 (1971)
12. D. Costanzo, D.R. Tovey, J. High Energy Phys. 04, 084 (2009)
36. ATLAS Collaboration, ATLAS-CONF-2010-038, cds:1277678
38. G. Polesello, D.R. Tovey, J. High Energy Phys. 03, 030 (2010)
41. ATLAS Collaboration, ATLAS-CONF-2010-054, cds:1281311

The ATLAS Collaboration

Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;
(b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;
(b) Department of Modern Physics, University of Science and Technology of China, Anhui;
(c) Department of Physics, Nanjing University, Jiangsu;
(d) High Energy Physics Group, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory forParticle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
(b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
(c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Science, Hiroshima University, Hiroshima, Japan

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

(a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

Department of Physics, Queen Mary University of London, London, United Kingdom
Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison WI, United States of America

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven CT, United States of America

Yerevan Physics Institute, Yerevan, Armenia

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

a Also at Laboratorio de Instrumentacao e Física Experimental de Partículas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciências and CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
g Also at Department of Physics, University of Coimbra, Coimbra, Portugal
h Also at Università di Napoli Parthenope, Napoli, Italy
i Also at Institute of Particle Physics (IPP), Canada
j Also at Louisiana Tech University, Ruston LA, United States of America
k Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
l Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
m Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
n Also at Manhattan College, New York NY, United States of America
o Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
p Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
q Also at High Energy Physics Group, Shandong University, Shandong, China
r Also at California Institute of Technology, Pasadena CA, United States of America
s Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
t Also at Section de Physique, Université de Genève, Geneva, Switzerland
u Also at Departamento de Física, Universidade de Minho, Braga, Portugal
v Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
w Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
x Also at Institute of Physics, Jagiellonian University, Krakow, Poland
y Also at Department of Physics, Oxford University, Oxford, United Kingdom
z Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
aa Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
ab Also at Department of Physics, Nanjing University, Jiangsu, China

Deceased