B cells and B cell directed therapies in rheumatoid arthritis: towards personalized medicine
Thurlings, R.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Chapter 5

B Cells and B Cell directed therapies in Rheumatoid Arthritis

CD22 IS NOT EXPRESSED MERELY ON B CELLS: COMMENT ON THE ARTICLE BY VOS ET AL
We read with interest the recent report by Vos and colleagues on the early depleting effects of rituximab in the synovial tissue of patients with rheumatoid arthritis (RA), showing that the depletion of CD22+ cells was incomplete. Recently, we reported the depleting effects of rituximab in paired samples of peripheral blood, bone marrow, and synovium. Our study revealed a complete depletion of the CD20+ subset of B cells in synovium, as shown by staining the cytoplasmic tail of the CD20 membrane protein. Our results and those of Vos et al are seemingly contradictory, and the existence of a CD22+,CD20- B cell subset may be relevant to the pathogenic mechanisms of RA. Therefore, we investigated the specificity and sensitivity of CD22, CD19, and CD20 as markers of B cells.

Briefly, peripheral blood mononuclear cells from 5 healthy volunteers were obtained through isolation over a Ficoll and freshly stained with the following markers: fluorescein isothiocyanate (FITC)–conjugated anti-CD20 (clone 2H7); phycoerythrin-conjugated anti-CD19 (clone HIB19); allophycocyanin (APC)–conjugated anti-CD22 (clone S-HCL-1); APC-conjugated anti-CD3 (UCHT1); and FITC-conjugated anti-CD3 (clone 5C7) (all from BD Biosciences, San Jose, CA). After incubation for 30 minutes in the dark, cells were washed and read on a FACScalibur flow cytometer (BD Biosciences) and analyzed with the FlowJo software program (Tree Star, Ashland, OR). In conclusion, these data indicated that CD22 is not a specific marker for B cells, raising the possibility that in the study by Vos et al the residual CD22 positivity after rituximab treatment can be explained by the presence of cell types not belonging to the B cell lineage. In this context, Han et al previously reported that in healthy persons basophils can be isolated with a purity of 99.4% by sorting CD22+,CD19- lymphocytes. Mast cells (tissue-infiltrating basophils) do not seem to express CD22 on their membrane but do show intracellular messenger RNA expression of CD22. Therefore, we believe further research into the residual CD22+ expressing cells is warranted, and that the results of CD22 single-staining should be interpreted with caution when used in the context of B cell depletion with rituximab.

CD22 IS NOT EXPRESSED MERELY ON B CELLS: COMMENT ON THE ARTICLE BY VOS ET AL.

To the Editor

We read with interest the recent report by Vos and colleagues on the early depleting effects of rituximab in the synovial tissue of patients with rheumatoid arthritis (RA), showing that the depletion of CD22+ cells was incomplete. Recently, we reported the depleting effects of rituximab in paired samples of peripheral blood, bone marrow, and synovium. Our study revealed a complete depletion of the CD20+ subset of B cells in synovium, as shown by staining the cytoplasmatic tail of the CD20 membrane protein. Our results and those of Vos et al are seemingly contradictory, and the existence of a CD22+,CD20- B cell subset may be relevant to the pathogenic mechanisms of RA. Therefore, we investigated the specificity and sensitivity of CD22, CD19, and CD20 as markers of B cells.

Briefly, peripheral blood mononuclear cells from 5 healthy volunteers were obtained through isolation over

Table No.1

<table>
<thead>
<tr>
<th>GATED POPULATION</th>
<th>% POSITIVE CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD22+cells</td>
<td>100.0</td>
</tr>
<tr>
<td>CD19+cells</td>
<td>97.6</td>
</tr>
<tr>
<td>CD20+cells</td>
<td>99.3</td>
</tr>
</tbody>
</table>

Expression of CD22, CD19, and CD20

REFERENCES

REFERENCES

REPLY

To the Editor

We appreciate the interest of Dr. Teng and his colleagues in our report. Based on their analysis of peripheral blood mononuclear cells from 5 healthy donors, they suggest that the residual CD20+ cell positivity in rheumatoid synovial tissue observed in a subset of the patients in our study after rituximab treatment does not necessarily represent persistent B cell infiltration but could be explained by expression of CD20 by basophils or perhaps mast cells in the synovium. We need to reject this hypothesis for the following reasons. 1) Previous work has shown that basophil granulocytes are absent in the synovium of patients with rheumatoid arthritis (RA). 2) Mast cells do not express CD20 at the protein level. We have confirmed our previous results by demonstrating CD19+ cells in the synovium after rituximab treatment, with results similar to those observed with CD22 staining (Figure 1).

Recently, we also showed a variable tissue response 16 weeks after rituximab treatment. Three other groups of investigators have confirmed our results using CD19 and CD20 as markers (8 weeks and 24 weeks after the initiation of treatment). Taken together, the evidence is clear that B cells may persist in the synovium in some patients, although on average there is a marked reduction in the number of such cells, as shown in our study.

How could we explain the complete depletion of CD20+ B cells in the synovium in the study by Teng and colleagues, when 4 other groups of investigators observed a variable tissue response? First, we need to consider false-negative results due to technical reasons. Teng et al used an antibody directed against the cytoplasmic tail of CD20 to detect synovial B cells after treatment with rituximab. When rituximab binds to CD20, this may induce redistribution of the CD20 molecule into lipid rafts, which induces proximity with molecules involved in signal transduction.

In conclusion, ample evidence suggests that B cell infiltration in the synovium may be persistent in a subset of patients with RA after rituximab treatment. It is tempting to speculate that the recently described persistence of synovial plasma cells in nonresponders to rituximab treatment and clinical improvement in rheumatoid arthritis.

FIGURE No.1

FIGURE 1. Change in the number of CD19+ B cells in synovial tissue 4 weeks after rituximab treatment. Data are presented as box plots, where the boxes represent the 25th to 75th percentiles, the lines within the boxes represent the median, and the lines outside the boxes represent the 10th and 90th percentiles. Circles indicate outliers. * P<0.05