WooIR: A New Open Page Stream Segmentation Dataset

van Heusden, R.; Kamps, J.; Marx, M.

DOI
10.1145/3539813.3545150

Publication date
2022

Document Version
Final published version

Published in
ICTIR'22

License
CC BY-NC-ND

Citation for published version (APA):
WooIR: A New Open Page Stream Segmentation Dataset

Ruben van Heusden
r.j.vanheusden@uva.nl
University of Amsterdam
Amsterdam, The Netherlands

Jaap Kamps
kamps@uva.nl
University of Amsterdam
Amsterdam, The Netherlands

Maarten Marx
maartenmarx@uva.nl
University of Amsterdam
Amsterdam, The Netherlands

ABSTRACT

In this work we present WooIR, an open realistic benchmark for Page Stream Segmentation (PSS), the task of recovering document boundaries from aggregated streams of pages. Our dataset consists of over 200 streams of scanned in documents, 7K documents, 45K pages and 10M words, originating from documents released by the Dutch government in response to requests made under the Freedom of Information Act. Apart from the introduction of the dataset we perform several baseline experiments on the dataset and compare six metrics for the PSS task, in an attempt to unify the field in the usage of evaluation metrics more suited to the task. Analysis of the six metrics on the WooIR dataset shows that the dataset contains a good balance of easy and hard samples. The Panoptic Quality metric from the image segmentation field seems the most appropriate evaluation metric for the PSS task.

CCS CONCEPTS

• Information systems → Evaluation of retrieval results; Clustering and classification.

KEYWORDS

Page Stream Segmentation, Text classification, Clustering, Metrics, Benchmark

1 INTRODUCTION

Having access to words and documents is a fundamental assumption underlying the field of Information Retrieval. However, there are document collections for which the unit of storage, the file, does not correspond to the unit of retrieval, the document. Typically, the documents are presented in a sequence, and the original document boundaries have to be recovered. This process is known under the name of Page Stream Segmentation (PSS), and has been studied, among others, for legal [7, 25], archival [9, 14–16, 21, 25, 36], and historic [40] collections. Common to the collections are that the streams consist of a wide variety of documents, of very different lengths, usually containing scans with OCREd text, and no or few metadata available. Common to the literature on PSS is the use of non-disclosed private datasets, viewing PSS as the classification task of predicting the starting pages of documents and using evaluation metrics at the level of pages.

All approaches to PSS in some way use the idea pioneered in Hearst’s TextTiling paper [19] that a drop in similarity between pages is a strong signal for a document boundary. State of the art systems use both the content (the text) and the visual form (layout, fonts, headers, images, etc) of the pages as features, take the state of the art neural architectures for text and image classification, run them in parallel, and combine the outputs or the last embedding layer to make the prediction.

For newcomers in the field, like us, it is hard to assess and compare the different approaches, because of the lack of agreed upon tasks, benchmark train and test corpora, and evaluation metrics. So we decided to fill this gap and create a publicly available benchmark, a review of proposed metrics, and a number of strong baselines. We have set up a small local competition on this benchmark and expect to have a leaderboard with the state of the art approaches available at the time of the conference.

This PSS dataset consists of documents released by the Dutch government in response to Freedom of Information (FIA) Requests. FIA requests in the Netherlands fall under the Wet Open Overheid (WOO) (Open Government Act), from which the dataset derives its name. In almost all cases the released documents come in the form of a non-segmented stream of documents concatenated into one (often huge) PDF file, making setting up a search engine for these FIA requests a daunting task.

The paper is organized as follows. The next section surveys related work. Section 3 lists all proposed metrics and gives uniform definitions. Sections 4 and 5 describe existing datasets and our new WooIR benchmark, and section 6 reports on a number of unsupervised baselines on this benchmark.

The dataset will become publicly available via the following url: https://irlab.science.uva.nl/resources/wooir_pss.

2 RELATED WORK

The task of splitting streams of information into consecutive and coherent blocks is a well known task that spans different modalities and has many practical applications. Think for example of detecting speaker changes in debates or the segmentation of large volumes of scanned documents in digitalization efforts.

A classic example of stream segmentation is the segmentation of a piece of text into paragraphs, or coherent pieces of text concerning the same topic, such as the segmentation of a thesis into its separate sections. One of the earliest approaches to this problem was proposed in [19], where the TextTiling method for splitting
Web Page Segmentation dataset to provide all features considered by previous work based on the extended BCubed metric from Amigo et al. [2].

Moreover, most of these papers evaluate their methods on private datasets, making it difficult to compare methods across papers. As a result, many approaches that tackle this problem exist, differing in approach from methods that use purely textual features [4, 10, 17, 28], to methods that use only visual features [1, 31] or methods that use both.

A task related to Page Stream Segmentation is that of Web Page Segmentation, which revolves around the segmentation of web pages into coherent visual units or blocks. An overview of the task is presented by Kiesel et al. [22], which reveals many similarities between the fields of PSS and Web Page Segmentation. As with PSS, a variety of methods for segmenting the web pages exists, such as using visual features, textual features, and the usage of the DOM elements of the web page. A crucial difference with datasets used in PSS is the availability of structural information in the form of the HTML or DOM tree. Kiesel et al. argue that the usage of different incomparable evaluation metrics and datasets with lacking features hinder the progress in the task as it makes fair comparisons between metrics difficult. In their work, they present an evaluation framework based on the extended BCubed metric from Amigo et al. [2] to measure segment similarity and introduce the Webis-WebSeg-20 dataset that contains segmentations for 8490 webpages and the first Web Page Segmentation dataset to provide all features provided by previous work in one dataset, allowing for fair comparisons of various methods that use these different features.

The segmentation task is not limited to the domains of text and images, but can also concern audio recordings, such as the detection of speaker changes in debate recordings, or detecting coherent segments in recorded lectures [13, 27]. These methods often make use of features such as intonation, prosody or structural features such as the length of pauses between speech [20].
3.1 Classification metrics comparing binary vectors

Accuracy is an often used metric, even though the classes are usually rather imbalanced, with far fewer starting pages. The obvious alternative is precision, recall and their harmonic mean F1 for the starting pages. Precision and recall are easily defined using the dot product. Given two segmentations \(t \) and \(h \) of the same stream, the precision \(P(t, h) \) equals \(\frac{t \cdot h}{\sigma(h)} \) and the recall equals the same numerator divided by \(\sigma(t) \).

Accuracy and F1 can be defined using the exclusive or, which indicates the false positives and negatives, and whose count equals the Hamming distance. We do that in the next subsection.

The WindowDiff metric introduced in [34] is a well argued improvement of the \(F_k \) measure from [6]. For a vector \(v \), let \(v[i:i+k] \) denote the subsequence of length \(k \) starting at position \(i \). First set \(D^k_1(t, h) = 1 \) if \(\sigma(t[i:i+k]) \neq \sigma(h[i:i+k]) \), and 0 otherwise. Then, WindowDiff\(_k\)\((t, h)\) is the mean \(D^k_1(t, h) \) taken over all \(1 \leq i \leq N-k \). This computes a sliding window over the gold standard and predicted stream, and sums the amount of times that the number of boundaries in the sliding window differ for both streams. The hyperparameter \(k \) is set to one and a half to double the size of the average true document in the stream, i.e., \(k = 1.5|t|/|σ(t)| \). A critique and further refinement of WindowDiff is developed in [24].

3.2 Distance metrics comparing binary vectors

The Hamming distance [18] between \(t \) and \(h \) equals \(\sigma(t \oplus h) \), (with \(\oplus \) denoting XOR) and this is the total number of errors made in \(h \).

Now we can define, given \(t \) and \(h \), the accuracy as

\[
\frac{|t| - \sigma(t \oplus h)}{|t|}
\]

and the harmonic mean F1 as

\[
\frac{t \cdot h}{t \cdot h + 0.5\sigma(t \oplus h)}
\]

Hamming distance counts the number of substitutions needed to turn one word into another. The Levenshtein distance counts the minimum number of substitutions, insertions and deletions needed. These last two operations are not suited for evaluating a segmentation. For example, consider the case where the gold standard \(t \) has document separations at the even positions in the stream, and the prediction \(h \) at the odd positions. The prediction is wrong for every boundary, but by inserting a \(1 \) at the first position and removing the last \(0 \), the prediction can be lined up. This arguably leads to a distance score that is too low.

A lesser known fourth operation, introduced by Damerau [11], is on the other hand well suited for our task. It allows swapping two positions at the cost of 1 operation. So we can "move" a page boundary which is off by one page in one operation instead of two substitutions. We call the minimum number of swaps and substitutions needed to turn \(h \) into \(t \) the Damerau-Hamming distance between \(t \) and \(h \). [33] propose an edit like distance measure on the blocks instead of the binary vectors, which is equivalent to the Damerau-Hamming distance.

3.3 Classification metrics comparing the blocks in the partition

The Straight Through Pass (STP) metric from [16] measures the fraction of documents in a stream that are correctly classified, and do not need any further adjustment of boundaries. So that is the recall of the segmentation at the level of the complete blocks. Obviously we can also define the precision and the harmonic mean at the level of blocks. We call the latter Block F1. Note that, when the number of blocks is known (what we called \(k \)-Stream Segmentation), precision, recall and thus F1 become the same measure.

This measure is very strict, as it only gives credit if the predicted document is exactly the same as the gold standard. Within the field of Named Entity Recognition several weaker versions have been proposed, especially when NEs tend to be long. A similar elegant weaker "partial match like" version comes from the field of image recognition and segmentation. The task is to recognize a certain object (e.g., a cancer cell) in an image and provide the boundaries of that object. Because one is dealing with pixels in this setting, scoring an algorithm by counting exactly correct bounding boxes is too strict, as being a few pixels off is usually not a problem for practical applications. The metric used to measure this is called Panoptic Quality (PQ), introduced in [23].

This PQ is in essence a weighted version of Block F1 in which partial matches which overlap more than half are counted as a True Positive but are weighted in the calculation of F1 by the amount of overlap. That is why we refer to it as weighted Block F1. The overlap between a ground truth block \(p_t \) and a predicted block \(p_h \) is measured by their jaccard similarity and is called Intersection over Union \(IoU(p_h, p_t) \). A pair \((p_h, p_t) \) is a True Positive if \(IoU(p_h, p_t) > 0.5 \). Note that this constraint enforces at most one True Positive pair for each true block \(p_t \). Let \(TP \) be the set of True Positives. Then the set of False Positives \(FP \) consists of all \(p_h \) which are not part of a True Positive pair and similarly, \(p_t \epsilon FN \) if \(p_t \) is not part of a TP pair. Now we define F1 as usual except that we weight the True Positives in the numerator. Let

\[
WTP = \sum (IoU(p_h, p_t) \mid (p_h, p_t) \epsilon TP).
\]

Note that \(0 \leq WTP \leq |TP| \), as the Jaccard similarity is bounded by 0 and 1. Now the Weighted Block F1 is simply

\[
\frac{WTP}{|TP| + 0.5(|FP| + |FN|)}
\]

As usual, this F1 can be equivalently defined as \(2PR/(P + R) \), when we define Precision and Recall with \(WTP \) in the numerator.

3.4 Clustering metrics comparing two partitions

The survey [2] evaluates a large number of cluster quality metrics and declares the BCubed metric [3] to be the preferred one. It is defined, given two segmentations \(t \) and \(h \) of the same stream as the mean of the BCubed \(F_k \) scores for each element \(e \) in the stream. We use the corresponding partitions \(p_t \) and \(p_h \) to define it: for an element \(e \) in a stream

\[
F1(e) = \frac{|p_h(e) \cap p_t(e)|}{|p_h(e) \cup p_t(e)| + 0.5 \cdot |p_h(e) \ominus p_t(e)|}
\]

where \(\ominus \) denotes the symmetric difference between the two sets A and B. Alternatively \(F1(e) \) can of course be defined using the
We now compare the Tobacco800 and A.I. Lab Splitter datasets with various document types, such as invoices, tax forms and contracts, concerning various types of documents such as invoices and articles portion of singleton documents. The distribution of the document belling has been done manually, with the help of a developed PSS of a segmentation model.

The A.I. Lab Splitter dataset consists of 4,292 streams. The labelling has been done manually, with the help of a developed PSS tagger. Table 1 shows several statistics for the three datasets.

Figure 1: Histograms for the number of pages in documents for both the Tobacco800 and the A.I. Lab Splitter dataset (loglog scale).

4 DATASETS

Most datasets used for evaluating Page Stream Segmentation methods are private, hindering progress in this field. We summarize some of these private datasets, and for the two publicly available datasets we perform a more detailed comparison with the WooIR dataset.

The A.I. Lab Splitter is a publicly available dataset that concerns data from lawsuits and items, such as faxes, invoices and reports. The A.I. Lab Splitter consists of documents that became public through legal procedures against five FIA-documents who made the released documents available as a zip archive instead of as a concatenated PDF. We concatenated the original documents into a stream. Concatenation was done in the same order as they appeared in the zip archive using the Linux `pdfinfo` command, and stored it publicly available, the documents in the dataset are also explicitly divided into a train and test set. The two test sets are held out and remain hidden, with researchers having the possibility to submit code which we will then run and return the results. Another suggested train test scenario is train on the one and test on the other.

The WooIR dataset has several unique characteristics when compared to existing datasets for Page Stream Segmentation. Not only is it publicly available, the documents in the dataset are also explicitly divided into streams, with the number of documents in the stream known, providing the opportunity for research into the k-Stream Segmentation task. The documents contained in one stream also belong to the same request and are expected to be topic-related.

5 WOOIR

We now describe the technical details of the WooIR dataset. It consists of two sets of streams of documents, all in Dutch, both split into a train and test set. The two test sets are held out and remain hidden, with researchers having the possibility to submit code which we will then run and return the results. Another suggested train test scenario is train on the one and test on the other.

Appendix A.2 and A.3 whether the two corpora are different in difficulty and whether the train and test sets are comparable.
Table 1: General statistics of open datasets used in Page Stream Segmentation. *Streams are not present in Tobacco800. For Kurtosis, the Fisher variant was used, meaning a normal distribution has a kurtosis of 0.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of streams</th>
<th>Number of Documents</th>
<th>Number of Pages</th>
<th>Median number of pages per document</th>
<th>Proportion of Singleton documents</th>
<th>Skew</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco800 [25]</td>
<td>N.A.*</td>
<td>742</td>
<td>1,290</td>
<td>1</td>
<td>0.67</td>
<td>10</td>
<td>123</td>
</tr>
<tr>
<td>A.I Lab splitter [7]</td>
<td>4.292</td>
<td>5.503</td>
<td>31.789</td>
<td>2</td>
<td>0.46</td>
<td>12</td>
<td>252</td>
</tr>
<tr>
<td>WoolIR</td>
<td>229</td>
<td>7.118</td>
<td>44.975</td>
<td>2</td>
<td>0.32</td>
<td>15</td>
<td>350</td>
</tr>
</tbody>
</table>

Table 2: Basic corpus statistics of the WoolIR dataset.

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Corpus 1 Train</th>
<th>Corpus 1 Test</th>
<th>Corpus 2 Train</th>
<th>Corpus 2 Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Streams</td>
<td>113</td>
<td>43</td>
<td>52</td>
<td>21</td>
</tr>
<tr>
<td>Number of Documents</td>
<td>3.914</td>
<td>725</td>
<td>2.123</td>
<td>356</td>
</tr>
<tr>
<td>Number of Pages</td>
<td>19.102</td>
<td>6.115</td>
<td>16.537</td>
<td>3.221</td>
</tr>
<tr>
<td>Number of Words</td>
<td>4,541,516</td>
<td>1,509,730</td>
<td>4,141,853</td>
<td>1,077,740</td>
</tr>
<tr>
<td>Vocabulary Size</td>
<td>155,797</td>
<td>83,015</td>
<td>189,648</td>
<td>55,051</td>
</tr>
</tbody>
</table>

This is the case for Dutch. To the best of the authors knowledge, it is currently the largest publicly available dataset for page stream segmentation.

6 CORPUS BASELINES

We discuss the results of running several baselines on our WoolIR benchmark. None of the baselines uses learning. The two best performing baselines however rely on knowing the number of documents in a stream. We first run two extreme scenarios, putting all pages into one cluster, and considering each page a cluster. We then try fixed baselines using the corpus mean and median and more flexible baselines using the mean and median number of pages in a stream. We end with a text-only approach using agglomerative clustering. For the evaluation of the systems, we use Hamming-Damerau, WindowDiff, and the four F1 metrics. For all the baseline models presented here, the scores were reported by running the model over all data from both corpus 1 and 2. We always report the mean values over all streams.

We can conclude that all reported metrics, except for Hamming-Damerau, are appropriate for the task, that they have a good looking almost normal distribution over the WoolIR dataset, and that non-learned baselines can perform quite well already. We think that the Weighted Block F1 metric has the most appropriate score distributions and makes most intuitive sense when evaluating segmentation models for an Information Retrieval task.

6.1 Extreme baselines

We evaluate the two extreme clustering methods, each page a cluster and only one cluster, in Table 3, containing the mean scores and in Figure 4 which shows the distribution of the metrics over the N=229 streams.

What is most striking is the large difference in the Hamming-Damerau distance for the two extremes. This can be explained by the distribution of the data. On average, only 28% of each stream consists of ones / transitions. Thus, when measuring accuracy, the giant cluster makes much less mistakes than the singleton clusters. For the two extreme clusterings, Hamming-Damerau is equal to Hamming, which is equal to accuracy because all elements in the prediction are either all zeros or all ones, so swapping is pointless. The BCubed scores are rather close because BCubed is the harmonic mean of precision and recall, and for both extremes these two metrics are very far apart, ‘balancing’ each other out, resulting in similar scores (which we believe are too high for these nonsensical extremes). The reason that WindowDiff has such a low score for the case of the singleton clusters is again because of the distribution of the document lengths. The WindowDiff metric uses
(a) Example of a stream of scanned in document from the WooIR dataset. The black boundaries indicate the individual documents.

(b) Another example of the WooIR dataset, showing headers from the municipality of Amsterdam.

Figure 3: Several examples of documents from the WooIR dataset

Figure 4: KDE plots of the various metrics discussed for the two extremes for the WooIR dataset. Note that for the Singletons setting, Block F1 and Weighted Block F1 are equal. (N=229)

... the other hand, the model that never predicts boundaries receives credit more often. For the two extreme methods, both Block F1 and Weighted Block F1 have very low scores. This is because if the predicted stream has only one cluster, Block F1 will only assign...
credit if the gold standard stream also only has one cluster, and Weighted Block F1 will only assign a score if there is a gold standard block with an IoU larger than 0.5. A similar story holds for the method that predicts only singletons. Note that in this case Block F1 is equal to Weighted Block F1, as each predicted block is of length 1, and thus an IoU that is larger than 0.5 must also be of length 1 and is then also an exact match.

Figure 4 shows the KDE plots of the various scores for the extreme baselines. We can see that Bcubed, Hamming-Damerau and Boundary F1 all have a distribution that is quite ‘wide’, with the WindowDiff, Block F1 and Weighted Block F1 metrics having a very ‘peaky’ distribution around 0 when examining the singletons prediction. This can in large be explained by the aforementioned reasons for the individual scores. For the case of the giant cluster predictions, things are slightly different, with the Hamming-Damerau distance having a different distribution when compared to the other metrics. This can be explained by the fact that if one giant cluster is predicted, Hamming-Damerau only penalizes boundaries in the gold standard, but gives points for correct zeros, which occur much more often in the dataset. The slight bump around a score of one for most metrics in the case of the giant cluster can be explained by the fact that there are a number of streams that only contain one document, leading to perfect scores for those streams.

Table 3: Mean scores of the two extreme baselines of one giant cluster and only singleton clusters. (N=229).

<table>
<thead>
<tr>
<th>Method</th>
<th>Bcubed F1</th>
<th>Boundary F1</th>
<th>Hamming Damerau</th>
<th>Block F1</th>
<th>Weighted Block F1</th>
<th>Window Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>singletons</td>
<td>0.37</td>
<td>0.40</td>
<td>0.28</td>
<td>0.14</td>
<td>0.14</td>
<td>0.08</td>
</tr>
<tr>
<td>giant cluster</td>
<td>0.40</td>
<td>0.32</td>
<td>0.81</td>
<td>0.14</td>
<td>0.19</td>
<td>0.38</td>
</tr>
</tbody>
</table>

6.2 Fixed and flexible page length baselines

We now report on more sensible baselines, using the mean and median document lengths, both for a corpus and per stream. These could be estimated from labelled data. In the case of k-stream segmentation, we know the mean document length per stream, but of course not the median. As the document lengths are right skewed, the mean is almost always larger than the median.

For the fixed document size baselines, all documents in the stream have the same length, except possibly for the remainder, which is kept as-is.

We expected that the baselines per stream would perform better than the corpus-fixed one, and that the median would be better than the mean because of the large document outliers. We can see that in the case of the stream mean segmentation, the WindowDiff and Weighted Block F1 metrics have very similar distributions, with one seeming to be a shifted version of the other. Table 4 shows that indeed the variable baselines score higher than the fixed ones, but there is no clear advantage of the median over the mean.

As with the extreme baselines, we again see of bump of the scores of most metrics around 1 in Figure 5, which can be explained by streams containing only one document or only documents of the same length, in which case taking the stream mean obviously leads to a perfect score.

6.3 Hierarchical Clustering baseline

In this baseline, we use the information that a stream contains some k number of documents, which we called the k stream segmentation task. We use constrained (clusters contain consecutive pages) bottom-up hierarchical clustering with cosine similarity between character ngram TF-IDF representations of pages, and single linkage, similar to [9]. The TF-IDF representations are calculated per stream, where the Document Frequency is taken over pages. The number of clusters is set equal to the known number of documents. We experimented with character ngram range and found that using 2- through 5-grams gave the best scores. Because in this formulation of the task we supply the algorithm with the number of gold standard clusters, we remove samples that only contain one cluster as these would be trivial in this setting and unfairly inflate the score of the algorithm. This yields us a total of 205 streams.

Figure 6 shows the KDE plots for the scores obtained by hierarchical clustering. From all KDE plots this is clearly the best, as most
metrics approach a normal distribution, and that is what we like to see for a benchmark. One thing that needs some more explanation however is the differing distribution for the Hamming-Damerau metric on the hierarchical clustering baseline when compared to the distributions of the other metrics.

The Hamming-Damerau distance has much more samples with high scores than the other metrics. This can be explained by the fact that the metric does not take the severity of a mistake into account. Splitting one very large document into two documents only results in 1 mistake for the metric, while for example in BCubed, the recall of all the items is cut in half. In the case of WindowDiff, mistakes are also punished more harshly because of the sliding window. If a certain part of the stream contains no transitions but the prediction contains for example 2-5 characters ngrams for \(k \)-stream segmentation, the two metrics at the level of pages, accuracy, here formalized as Hamming-Damerau distance, and Boundary F1 present an overly optimistic view of the performance of a Page Stream Splitter. The score distributions of the other four page level metrics for the agglomerative clustering splitter (Figure 6) show that there is enough room for improvement in the dataset. We feel that Weighted Block F1, known as Panoptic Quality in the image segmentation literature, is the most appropriate metric for PSS when the thus splitted documents are subsequently inputted to an IR system. Future work, possibly along the lines of the desiderata of [2], has to find out whether this is indeed the case.

ACKNOWLEDGMENTS

This research was supported in part by the Netherlands Organization for Scientific Research through the ACCESS project grant CISC.CC.016 (https://www.nwo.nl/en/projects/cisccc016).

REFERENCES

Table 5: Mean scores of using agglomerative clustering with 2-5 characters ngrams for \(k \)-stream segmentation (N=205)

<table>
<thead>
<tr>
<th></th>
<th>BCubed F1</th>
<th>Boundary F1</th>
<th>Hamming Damerau</th>
<th>Block F1</th>
<th>Weighted Block F1</th>
<th>Window Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierach. Clustering</td>
<td>0.64</td>
<td>0.49</td>
<td>0.79</td>
<td>0.23</td>
<td>0.36</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Figure 6: Metric scores for the hierarchical clustering setting (N=205). The vertical lines indicate the means of the various metrics.

[21] Romain Karpinski and Abdel Belaïd. 2016. Combination of structural and factual features for the K-stream hierarchical segmentation algorithm re-

A APPENDIX

A.1 KDE plots for number of documents per stream

Figure 7: Kernel Density Estimation plots for the corpus 1 and corpus 2 respectively, with the distributions for train and test overlaid on each other. (N_corpus1−train = 113, N_corpus1−test = 43, N_corpus2−train = 52, N_corpus2−test = 21)

A.2 K-stream hierarchical clustering for all subcorpora

Figure 8: Kernel Density Estimation plots BCubed F1 scores for the K-stream hierarchical segmentation algorithm reported for both corpus 1 and 2 separately. (N_corpus1−train = 92, N_corpus1−test = 43, N_corpus2−train = 49, N_corpus2−test = 21)
Figures 7 and 8 show the KDE plots for the number of documents per stream and the BCubed F1 score for the train and test portions of both corpus 1 and corpus 2. Both figures show that the differences in distributions between the train and test portions of both corpora are small and Figure 8 shows that there do not appear to be any major differences in BCubed F1 score distribution between the corpora, indicating that the train test splits for both corpora are representative of the train portions.

A.3 Kolmogorov-Smirnov tests

<table>
<thead>
<tr>
<th>Compared Sets</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train 1 - Test 1</td>
<td>0.42</td>
</tr>
<tr>
<td>Train 2 - Test 2</td>
<td>0.051</td>
</tr>
<tr>
<td>All 1 - All 2</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compared Sets</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train 1 - Test 1</td>
<td>0.57</td>
</tr>
<tr>
<td>Train 2 - Test 2</td>
<td>0.006</td>
</tr>
<tr>
<td>All 1 - All 2</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table 6: P values for the Kolmogorov-Smirnov tests for the data presented in Figure 7 and 8. Test comparing the train and test portions of both corpus 1 and corpus 2 against each other were conducted, as well as comparing all of corpus 1 with all of corpus 2.

In order to perform a more detailed analysis on the significance of the differences between train and test portions and corpus 1 and corpus 2 as a whole, we performed two-sample Kolmogorov-Smirnov tests on the distributions shown in Figures 7 and 8 and reported the scores in Table 6. We take a p value smaller than 0.05 to reject the hypothesis that both samples came from the same underlying distribution. From the table we can see that although for corpus 1 the number of documents per stream and the BCubed F1 scores for the train and test set are not significantly different, this is not the case for corpus 2. For corpus 2, both the number of documents per stream and the BCubed F1 scores for train and test are significantly different, although the sample sizes for both sets are considerably smaller than their corpus 1 counterparts. Finally, although the distribution of the number of documents per stream is significantly different between corpus 1 and corpus 2, the BCubed F1 scores are not.