Observation of Long-Range Elliptic Azimuthal Anisotropies in $\sqrt{s} = 13$ and 2.76 TeV pp Collisions with the ATLAS Detector

ATLAS Collaboration

DOI
10.1103/PhysRevLett.116.172301

Publication date
2016

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Observation of Long-Range Elliptic Azimuthal Anisotropies in $\sqrt{s} = 13$ and 2.76 TeV pp Collisions with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 15 September 2015; revised manuscript received 19 November 2015; published 27 April 2016)

ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, $\Delta \phi$, and pseudorapidity, $\Delta \eta$, in $\sqrt{s} = 13$ and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval $|\eta| < 2.5$. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at $\Delta \phi = 0$ that extends over a wide range of $\Delta \eta$, which has been referred to as the “ridge.” Per-trigger-particle yields, $Y(\Delta \phi)$, are measured over $2 < |\Delta \eta| < 5$. For both collision energies, the $Y(\Delta \phi)$ distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 20 reconstructed tracks, and a constant combinatoric contribution modulated by $\cos(2\Delta \phi)$. The fitted Fourier coefficient, v_2, exhibits factorization, suggesting that the ridge results from per-event $\cos(2\phi)$ modulation of the single-particle distribution with Fourier coefficients v_2. The v_2 values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p_T dependence similar to that measured in p+Pb and Pb+Pb collisions. The v_2 values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p+Pb collisions, and that the dynamics responsible for the ridge has no strong \sqrt{s} dependence.

DOI: 10.1103/PhysRevLett.116.172301

Measurements of two-particle angular correlations in high-multiplicity proton-proton (pp) collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV at the LHC showed an enhancement in the production of pairs at small azimuthal-angle separation, $\Delta \phi$, that extends over a wide range of pseudorapidity differences, $\Delta \eta$, and which is often referred to as the “ridge” [1]. The ridge has also been observed in proton-lead (p+Pb) collisions [2–7], where it is found to result from a global sinusoidal modulation of the per-event single-particle azimuthal angle distributions [3–6]. While many theoretical interpretations of the ridge, including those based on hydrodynamics [8–12], saturation [13–23], or other mechanisms [24–30], have been, or could be applied to both pp and p+Pb collisions, it has not yet been demonstrated that the ridge in pp collisions results from single-particle azimuthal anisotropies. Testing whether the ridges in pp and p+Pb collisions arise from the same underlying features of the single-particle distributions may provide insight into the physics responsible for the phenomena. Separately, a study of the \sqrt{s} dependence of the ridge in pp collisions may help distinguish between competing explanations.

This Letter uses 14 nb$^{-1}$ of $\sqrt{s} = 13$ TeV data and 4.0 pb$^{-1}$ of $\sqrt{s} = 2.76$ TeV data recorded during LHC run 2 and run 1, respectively, to address these issues. The maximum number of inelastic interactions per crossing was 0.04 and 0.5 for the 13 and 2.76 TeV data, respectively. Two-particle angular correlations are measured as a function of $\Delta \eta$ and $\Delta \phi$ in different intervals of the measured charged-particle multiplicity and different p_T intervals spanning $0.3 < p_T < 5$ GeV: $0.3–0.5$ GeV, $0.5–1$ GeV, $1–2$ GeV, $2–3$ GeV, $3–5$ GeV. Separate p_T-integrated results use $0.5 < p_T < 5$ GeV. Per-trigger-particle yields are obtained from the long-range ($|\Delta \eta| > 2$) component of the correlation. A new template-fitting method is applied to these yields to test for sinusoidal modulation similar to that observed in p+Pb collisions.

The measurements were performed using the ATLAS inner detector (ID), minimum-bias trigger scintillators (MBTSs), forward calorimeter (FCal), and the trigger and data acquisition systems [31]. The ID detects charged particles within $|\eta| < 2.5$ using a combination of silicon pixel detectors, silicon microstrip detectors (SCTs), and a straw-tube transition radiation tracker (TRT), all immersed in a 2 T axial magnetic field [32,33]. The MBTS system detects charged particles using two hodoscopes of counters positioned at $z = \pm 3.6$ m. The FCal covers $3.1 < |\eta| < 4.9$ and uses tungsten and copper absorbers with liquid argon

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
as the active medium. Between run 1 and run 2, an additional, innermost pixel layer was added to the ID and the MBTS was replaced.

The ATLAS trigger system [34] consists of a level-1 (L1) trigger implemented using a combination of dedicated electronics and programmable logic, and a software-based high-level trigger (HLT). Charged-particle tracks were reconstructed in the HLT using methods similar to those applied in the offline analysis, allowing triggers that select on the number of tracks with $p_T > 0.4$ GeV associated with a single vertex. For the 13 TeV measurements, a minimum-bias L1 trigger required one or more signals in the MBTS while the high-multiplicity trigger (HMT) required at least 900 SCT hits and at least 60 HLT-reconstructed tracks. For the 2.76 TeV data, the minimum-bias trigger selected random crossings at L1 and applied a threshold to the number of SCTs and pixel hits in the HLT, while several HMT triggers were formed by applying thresholds on the total FCal transverse energy at L1 and different thresholds on the number of HLT-reconstructed tracks. HMT triggers are only used where their multiplicity selection is more than 90% efficient. The inefficiency of the HMT triggers does not affect the measured multiplicity relative to the PYTHIA 8 [37] event generator (A2 tune [38], MSTW2008LO PDFs [39]) that are passed through a GEANT4 [40] simulation of the ATLAS detector response and reconstructed using the algorithms applied to the data [41]. The efficiencies for the two data sets are similar, but differ due to changes in the detector and reconstruction algorithms between runs 1 and 2. In the simulated events, the efficiency reduces the measured multiplicity by approximately 1.18 ± 0.05 and 1.22 ± 0.05 for the 13 and 2.76 TeV data, respectively. The uncertainties in these factors result from systematic uncertainties in the tracking efficiencies, which are described in detail in Ref. [36]. Those systematic uncertainties vary with pseudorapidity between 1.1% (central) and 6.5% (forward) and result from uncertainties on the material description.

The present analysis follows methods used in previous ATLAS two-particle correlation measurements in Pb + Pb and p + p collisions [4,6,42–44]. Two-particle correlations for charged particle pairs with transverse momenta p_T^a and p_T^b are measured as a function of $\Delta \phi \equiv \phi^a - \phi^b$ and $\Delta \eta \equiv \eta^a - \eta^b$, with $|\Delta \eta| \leq 5$, determined by the acceptance of the ID. The particles a and b are conventionally referred to as the “trigger” and “associated” particles, respectively. The correlation function is defined as

$$C(\Delta \eta, \Delta \phi) = \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)},$$

(1)
where S and B represent the same event and “mixed event” pair distributions, respectively [45]. When constructing S and B, pairs are weighted by the inverse product of their reconstruction efficiencies $1/e(p_{T}^{a}, \eta^{a})e(p_{T}^{b}, \eta^{b})$. Detector acceptance effects largely cancel in the S/B ratio.

Examples of correlation functions in the 13 TeV data are shown in Fig. 2 for $N_{\text{ch}}^{\text{rec}}$ intervals 0–20 (left) and ≥ 120 (right), respectively, for $0.5 < p_{T}^{a,b} < 5$ GeV. The $C(\Delta\eta, \Delta\phi)$ distributions have been truncated at different maximum values to suppress a strong peak at $\Delta\eta = \Delta\phi = 0$ that arises primarily from jets. The correlation functions also show a $\Delta\eta$-dependent enhancement centered at $\Delta\phi = \pi$, which is understood to result primarily from dijets. In the higher $N_{\text{ch}}^{\text{rec}}$ interval, a ridge is observed as the enhancement near $\Delta\phi = 0$ that extends over the full $\Delta\eta$ range of the measurement.

One-dimensional correlation functions, $C(\Delta\phi)$, are obtained by integrating the numerator and denominator of Eq. (1) over the long-range part of the correlation function, $2 \leq |\Delta\eta| < 5$. These are converted into “per-trigger-particle yields,” $Y(\Delta\phi)$, according to [4,6,45]

$$Y(\Delta\phi) = \left(\frac{B(\Delta\phi)}{N^{a}}\int d\Delta\phi\right)C(\Delta\phi),$$

where N^{a} denotes the efficiency-corrected total number of trigger particles. Results are shown in Fig. 3 for selected $N_{\text{ch}}^{\text{rec}}$ intervals in the 13 and 2.76 TeV data, for the $p_{T}^{a,b}$ ranges $0.5 < p_{T}^{a,b} < 5$ GeV. Panel (a) in the figure shows $Y(\Delta\phi)$ for $0 \leq N_{\text{ch}}^{\text{rec}} < 20$ for both collision energies; these exhibit a minimum at $\Delta\phi = 0$ and a broad peak at $\Delta\phi \sim \pi$ that is understood to result primarily from dijets but may also include contributions from low-p_{T} resonance decays and global momentum conservation. The higher $Y(\Delta\phi)$ values for the 2.76 TeV data are due to the relative inefficiency of the 2.76 TeV triggers for the lowest multiplicity events, which results in larger $N_{\text{ch}}^{\text{rec}}$ for the 2.76 TeV data in this $N_{\text{ch}}^{\text{rec}}$ interval. Panels (b), (d), and (f) show results from the 13 TeV data for the 40–50, 60–70, and $\geq 90 N_{\text{ch}}^{\text{rec}}$ intervals, respectively. Panels (c) and (e) show the results from the 2.76 TeV data for 50–60 and 70–80 $N_{\text{ch}}^{\text{rec}}$ intervals, respectively. With increasing $N_{\text{ch}}^{\text{rec}}$, the minimum at $\Delta\phi = 0$ fills in, and a peak appears and increases in amplitude.

To separate the ridge from angular correlations present in low-multiplicity $p p$ collisions, a template fitting procedure is applied to the $Y(\Delta\phi)$ distributions. Motivated by the peripheral subtraction method applied in $p + $ Pb collisions [4], the measured $Y(\Delta\phi)$ distributions are assumed to result from a superposition of a “peripheral” $Y(\Delta\phi)$ distribution, scaled up by a multiplicative factor and a constant modulated by $\cos(2\Delta\phi)$. The resulting template fit function,

$$Y_{\text{templ}}(\Delta\phi) = FY_{\text{periph}}(\Delta\phi) + Y_{\text{ridge}}(\Delta\phi),$$

where

$$Y_{\text{ridge}}(\Delta\phi) = G[1 + 2v_{2,2}\cos(2\Delta\phi)],$$

has two free parameters, F and $v_{2,2}$. The coefficient, G, which represents the magnitude of the combinatoric component of $Y_{\text{ridge}}(\Delta\phi)$, is fixed by requiring that $\int_{0}^{\pi} d\Delta\phi Y_{\text{templ}} = \int_{0}^{\pi} d\Delta\phi Y$. The peripheral distribution is obtained from the $0 \leq N_{\text{ch}}^{\text{rec}} < 20$ interval. In the fitting procedure, the χ^{2} is calculated accounting for statistical uncertainties in both $Y(\Delta\phi)$ and $Y_{\text{periph}}(\Delta\phi)$ distributions.

FIG. 2. Two-particle correlation functions, $C(\Delta\eta, \Delta\phi)$, in 13 TeV pp collisions in $N_{\text{ch}}^{\text{rec}}$ intervals 0–20 (left) and ≥ 120 (right) for charged particles having $0.5 < p_{T}^{a,b} < 5$ GeV. The distributions have been truncated to suppress the peak at $\Delta\eta = \Delta\phi = 0$ and are shown over $|\eta| < 4.6$ to avoid statistical fluctuations at larger $|\Delta\eta|$.
Some results of the template fitting procedure are shown in panels (b)–(f) of Fig. 3; a complete set of fit results is provided in Ref. [46]. The scaled $Y_{\text{periph}}(\Delta \phi)$ distributions shifted up by G are shown with open points; the $Y_{\text{ridge}}(\Delta \phi)$ functions shifted up by $F Y_{\text{periph}}(0)$ are shown with the dashed lines, and the full fit function is shown by the solid curves. The function in Eq. (3) successfully describes the measured $Y(\Delta \phi)$ distributions in all $N_{\text{ch}}^{\text{rec}}$ intervals. In particular, it simultaneously describes the ridge, which arises from an interplay of the concave $Y_{\text{periph}}(\Delta \phi)$ and the cosine function, the height of the peak in the $Y(\Delta \phi)$ at $\Delta \phi \sim \pi$, and the narrowing of that peak which results from a negative contribution of the $2\epsilon_{2,2} \cos(2\Delta \phi)$ term in the region near $\Delta \phi = \pi/2$. The agreement between the template functions and the data allows for no significant $N_{\text{ch}}^{\text{rec}}$-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\epsilon_{2,2}$ values that are negligible compared to their statistical uncertainties.

Previous analyses of two-particle angular correlations in $p p$, $p + \text{Pb}$, and $\text{Pb} + \text{Pb}$ collisions have traditionally relied on the “zero yield at minimum” (ZYAM) hypothesis to separate the ridge from the dijet peak at $\Delta \phi \sim \pi$. In the ZYAM method, the ridge is functionally defined to be $Y(\Delta \phi) - Y_{\text{min}}$ over the restricted range $|\Delta \phi| < \phi_{\text{min}}$, where ϕ_{min} is the angle at which the yield starts to increase towards the dijet peak. The agreement between the template functions and the data allows for no significant $N_{\text{ch}}^{\text{rec}}$-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\epsilon_{2,2}$ values that are negligible compared to their statistical uncertainties.

Previous analyses of two-particle angular correlations in $p p$, $p + \text{Pb}$, and $\text{Pb} + \text{Pb}$ collisions have traditionally relied on the “zero yield at minimum” (ZYAM) hypothesis to separate the ridge from the dijet peak at $\Delta \phi \sim \pi$. In the ZYAM method, the ridge is functionally defined to be $Y(\Delta \phi) - Y_{\text{min}}$ over the restricted range $|\Delta \phi| < \phi_{\text{min}}$, where ϕ_{min} is the angle at which the yield starts to increase towards the dijet peak. The agreement between the template functions and the data allows for no significant $N_{\text{ch}}^{\text{rec}}$-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\epsilon_{2,2}$ values that are negligible compared to their statistical uncertainties.

Previous analyses of two-particle angular correlations in $p p$, $p + \text{Pb}$, and $\text{Pb} + \text{Pb}$ collisions have traditionally relied on the “zero yield at minimum” (ZYAM) hypothesis to separate the ridge from the dijet peak at $\Delta \phi \sim \pi$. In the ZYAM method, the ridge is functionally defined to be $Y(\Delta \phi) - Y_{\text{min}}$ over the restricted range $|\Delta \phi| < \phi_{\text{min}}$, where ϕ_{min} is the angle at which the yield starts to increase towards the dijet peak. The agreement between the template functions and the data allows for no significant $N_{\text{ch}}^{\text{rec}}$-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\epsilon_{2,2}$ values that are negligible compared to their statistical uncertainties.

Previous analyses of two-particle angular correlations in $p p$, $p + \text{Pb}$, and $\text{Pb} + \text{Pb}$ collisions have traditionally relied on the “zero yield at minimum” (ZYAM) hypothesis to separate the ridge from the dijet peak at $\Delta \phi \sim \pi$. In the ZYAM method, the ridge is functionally defined to be $Y(\Delta \phi) - Y_{\text{min}}$ over the restricted range $|\Delta \phi| < \phi_{\text{min}}$, where ϕ_{min} is the angle at which the yield starts to increase towards the dijet peak. The agreement between the template functions and the data allows for no significant $N_{\text{ch}}^{\text{rec}}$-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\epsilon_{2,2}$ values that are negligible compared to their statistical uncertainties.

Previous analyses of two-particle angular correlations in $p p$, $p + \text{Pb}$, and $\text{Pb} + \text{Pb}$ collisions have traditionally relied on the “zero yield at minimum” (ZYAM) hypothesis to separate the ridge from the dijet peak at $\Delta \phi \sim \pi$. In the ZYAM method, the ridge is functionally defined to be $Y(\Delta \phi) - Y_{\text{min}}$ over the restricted range $|\Delta \phi| < \phi_{\text{min}}$, where ϕ_{min} is the angle at which the yield starts to increase towards the dijet peak. The agreement between the template functions and the data allows for no significant $N_{\text{ch}}^{\text{rec}}$-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\epsilon_{2,2}$ values that are negligible compared to their statistical uncertainties.
ϕ_{min} is the location of the minimum of $Y(\Delta\phi)$ and $Y_{\text{min}} = Y(\phi_{\text{min}})$. However, the $Y(\Delta\phi)$ distributions measured in low-$N_{\text{ch}}^{\text{rec}}$ bins are concave in the region near $\Delta\phi \sim 0$. As a result, if the ridge and dijet correlations add—an assumption that is implicit in all previous analyses using the ZYAM method and is explicit in the template method used here—then the ZYAM method will both underestimate the ridge yield and produce ϕ_{min} values that vary, unphysically, with the ridge amplitude. In contrast, the template method used here explicitly accounts for the concave shape of the peripheral $Y(\Delta\phi)$. Thus, the template fitting procedure, for example, extracts a nonzero ridge amplitude from the $\sqrt{s} = 2.76$ TeV, $50 \leq N_{\text{ch}}^{\text{rec}} \leq 60$ $Y(\Delta\phi)$ distribution (middle left panel of Fig. 3) which is approximately flat near $\Delta\phi \sim 0$, and would, as a result, have approximately zero ridge signal using the ZYAM method.

Previous $p + $ Pb analyses used the peripheral-subtraction method, but applied the ZYAM procedure to the peripheral reference and, so, subtracted $Y(0)$ from $Y(\phi_{\text{per}}(\Delta\phi))$. Such a subtraction will necessarily change the $v_{2,2}$ values, and, when applied to the 13 TeV data, it reduces the measured $v_{2,2}$ by a multiplicative factor that varies from 0.4 to 0.8 over $30 \leq N_{\text{ch}}^{\text{rec}} < 130$ [46]. However, if, as suggested by the data, $Y(\phi_{\text{per}}(\Delta\phi))$ contains not only a hard component, $Y^{\text{hard}}(\Delta\phi)$, but also a modulated soft component,

$$Y_{\text{per}}(\Delta\phi) = Y^{\text{hard}}(\Delta\phi) + G_0[1 + 2v_{2,2}^0 \cos(2\Delta\phi)],$$

the peripheral ZYAM method will subtract $2FG_0v_{2,2}^0 \cos(2\Delta\phi)$ as part of the template fit, thereby reducing the extracted $v_{2,2}$. In contrast, the procedure used in this analysis subtracts $FG_0[1 + 2v_{2,2}^0 \cos(2\Delta\phi)]$, which reduces G in Eq. (4) but has less impact on $v_{2,2}$. In particular, if $v_{2,2}^0$ is equal to the real $v_{2,2}$ in a given $N_{\text{ch}}^{\text{rec}}$ interval, there will be no bias. Since the measured $v_{2,2}$ is approximately $N_{\text{ch}}^{\text{rec}}$ independent, the bias resulting from the presence of $v_{2,2}$ in the peripheral sample is expected to be small. Thus, the use of the nonsubtractatisfied peripheral reference is preferred over the more strongly biased ZYAM-subtracted reference.

If the $\cos(2\Delta\phi)$ dependence of $Y(\Delta\phi)$ arises from modulation of the single-particle ϕ distributions, then $v_{2,2}$ should factorize such that $v_{2,2}(p_T^a, p_T^b) = v_{2,2}(p_T^a) v_{2,2}(p_T^b)$ [42–44], where v_2 is the $\cos(2\phi)$ Fourier coefficient of the single-particle anisotropy. To test this, the analysis was performed using three p_T intervals: $0.5–5$, $0.5–1$, and $2–3$ GeV with $0.5 < p_T^a < 5$ GeV; results from the 2.76 TeV data for the 2–3 GeV interval were obtained using wider $N_{\text{ch}}^{\text{rec}}$ intervals to improve statistics. Results are shown in the top panels of Fig. 4; the left and right panels show the 2.76 and 13 TeV data, respectively. A significant p_T^a dependence is seen. Separately, the same analysis was applied requiring both p_T^a and p_T^b to fall within the above intervals. If factorization holds, the v_2 values calculated using

$$v_2(p_T^a) v_{2,2}(p_T^b, p_T^c) = v_{2,2}(p_T^a, p_T^b) v_{2,2}(p_T^c) / \sqrt{v_{2,2}(p_T^a, p_T^b) v_{2,2}(p_T^c)},$$

where p_T^a and p_T^b indicate which of the three intervals, $0.5–5$, $0.5–1$, and $2–3$ GeV, p_T^a and p_T^b are required to lie within, should be independent of p_T. The v_2 values obtained using Eq. (6) are shown in the middle panels of Fig. 4. For both collision energies, the three sets of v_2 values agree within uncertainties, indicating that $v_{2,2}$ factorizes.

This analysis is sensitive to potential $N_{\text{ch}}^{\text{rec}}$-dependent changes in the shape of the peripheral reference. For example, the PYTHIA 8 sample shows a modest $N_{\text{ch}}^{\text{rec}}$-dependent change in the width of the dijet peak for small $N_{\text{ch}}^{\text{rec}}$. Also, the $v_{2,2}$ could vary with $N_{\text{ch}}^{\text{rec}}$ over the $0 < N_{\text{ch}}^{\text{rec}} < 20$ range. To test the sensitivity of the results presented here to such shape changes, the analysis was repeated using $0–5$, $0–10$, and $10–20$ $N_{\text{ch}}^{\text{rec}}$ intervals to form $Y_{\text{per}}^{(\phi)}(\Delta\phi)$. The largest resulting change in $v_{2,2}$ was taken as a systematic uncertainty. The relative uncertainty varies from 6% at $N_{\text{ch}}^{\text{rec}} = 30$ to 2% for $N_{\text{ch}}^{\text{rec}} \geq 60$ in the 13 TeV data, and is less than $<6\%$ for all $N_{\text{ch}}^{\text{rec}}$ for the 2.76 TeV data. When using the $0–5$ $N_{\text{ch}}^{\text{rec}}$ interval for $Y_{\text{per}}^{(\phi)}(\Delta\phi)$, $v_{2,2}$ values consistent with those shown in Fig. 4 are measured in $N_{\text{ch}}^{\text{rec}}$ intervals $5–10$, $10–15$ and $15–20$.

Potential systematic uncertainties on $v_{2,2}$ due to a residual $\Delta\phi$ dependence of the two-particle acceptance that does not cancel in the S/B ratio are evaluated following Ref. [47] and are found to be less than 1%. The effect of the uncertainty on the tracking efficiency on $v_{2,2}$ is determined to be less than 1%. A separate systematic on $v_{2,2}$ due to the ϕ and p_T resolution of the charged-particle measurement is estimated to be 2% (6%) for $p_T > 0.5$ GeV ($p_T < 0.5$ GeV). Events with unresolved multiple vertices decrease the measured $v_{2,2}$ by increasing the combinatoric pedestal in $Y(\Delta\phi)$ without increasing the modulation. The resulting systematic on $v_{2,2}$ increases with $N_{\text{ch}}^{\text{rec}}$ and is estimated to be less than 0.25% and 5% for the 13 and 2.76 TeV data, respectively. The combined systematic uncertainties on $v_{2,2}$ and on v_2 are shown by the shaded boxes in Fig. 4. The total $v_{2,2}$ systematic uncertainty for $0.5 < p_T^{a,b} < 5$ GeV varies between $\sim5\%$ at low $N_{\text{ch}}^{\text{rec}}$ to $\sim3\%$ at high $N_{\text{ch}}^{\text{rec}}$ in the 13 TeV data, while in the 2.76 TeV data the uncertainty is 8% for all $N_{\text{ch}}^{\text{rec}}$. The systematic uncertainty on v_2 is approximately half that for $v_{2,2}$.

As shown in Fig. 4, the measured v_2 are independent of $N_{\text{ch}}^{\text{rec}}$ and are consistent between the two collision energies within uncertainties. The p_T dependence of v_2 for the $50–60 N_{\text{ch}}^{\text{rec}}$ interval, shown in the bottom left panel of Fig. 4, is similar for both collision energies to that previously measured in $p + $ Pb and Pb + Pb collisions. It increases with p_T at low p_T, reaches a maximum between 2 and 3 GeV, and then decreases at higher p_T. The bottom right panel of Fig. 4 shows the p_T dependence of v_2 for different $N_{\text{ch}}^{\text{rec}}$ intervals; no significant dependence is observed.
In summary, ATLAS has measured the multiplicity and \(p_T \) dependence of two-charged-particle correlations in \(\sqrt{s} = 13 \text{ and } 2.76 \text{ TeV} \) \(pp \) collisions at the LHC. The correlation functions at both energies show a ridge whose strength increases with multiplicity. A new template fitting procedure shows that the per-trigger-particle yields for \(|\Delta \eta| > 2 \) are described well by a superposition of the yields measured in a low-multiplicity interval and a constant modulated by \(\cos(2\Delta \phi) \). Thus, as observed in \(p + \text{Pb} \) collisions \([4]\), the \(pp \) data presented here are...
compatible with both a “near-side” ridge centered at $\Delta \phi = 0$ and an “away-side” ridge centered at $\Delta \phi = \pi$ that both result from a sinusoidal component of the two-particle correlation. The extracted Fourier coefficients, $t_{2,2}$, exhibit factorization, which is characteristic of a global modulation of the per-event single-particle distributions also seen in $p + \text{Pb}$ and $\text{Pb} + \text{Pb}$ collisions. The amplitudes, v_2, of the single-particle modulation, are N_{ch} independent and agree between 2.76 and 13 TeV within uncertainties. They increase with p_T for $p_T \lesssim 3$ GeV and then decrease at higher p_T, following a trend similar to that observed in $p + \text{Pb}$ and $\text{Pb} + \text{Pb}$ collisions. These results suggest that the ridges in pp and $p + \text{Pb}$ collisions may arise from a similar physical mechanism which does not have a strong \sqrt{s} dependence.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DMRK, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, BFG, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; MSTDF, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristea programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Note added.—Recently, we became aware of a related work [48].

PRL 116, 172301 (2016) PHYSICAL REVIEW LETTERS week ending 29 APRIL 2016

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, New York, USA
3 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4 Department of Physics, Ankara University, Ankara, Turkey
4a Istanbul Aydin University, Istanbul, Turkey
4b Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
4c IAP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
6 Department of Physics, University of Arizona, Tucson, Arizona, USA
7 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
12 Institute of Physics, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 Department of Physics, Bogazici University, Istanbul, Turkey
19 Department of Physics Engineering, Gaziantepe University, Gaziantepe, Turkey
19a Department of Physics, Dogus University, Istanbul, Turkey
19b INFN Sezione di Bologna, Italy
20 Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, Massachusetts, USA
23 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
24 Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24a Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
24b Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
24c Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
26 Transilvania University of Brasov, Brasov, Romania
26a National Institute of Physics and Nuclear Engineering, Bucharest, Romania
26b National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
26c University Politehnica Bucharest, Bucharest, Romania
26d West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, Ontario, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
32a Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago, Chile
32b Departamento de Fisica, Universidad Técnica Federico Santa María, Valparaíso, Chile

172301-16
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, Wisconsin, USA

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, Connecticut, USA

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

*aDeceased.

Also at Department of Physics, King’s College London, London, United Kingdom.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at TRIUMF, Vancouver, British Columbia, Canada.

Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, USA.

Also at Department of Physics, California State University, Fresno, CA, USA.

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

Also at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.

Also at Tomsk State University, Tomsk, Russia.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at Universita di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.

Also at Louisiana Tech University, Ruston, LA, USA.

Also at Institut Català de Recerca i Estudis Avançats, ICREA, Barcelona, Spain.

Also at Graduate School of Science, Osaka University, Osaka, Japan.

Also at Department of Physics, National Tsing Hua University, Taiwan.

Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

Also at CERN, Geneva, Switzerland.

Also at Georgian Technical University (GTU), Tbilisi, Georgia.

Also at Manhattan College, New York, NY, USA.

Also at Hellenic Open University, Patras, Greece.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at School of Physics, Shandong University, Shandong, China.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at International School for Advanced Studies (SISSA), Trieste, Italy.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Department of Physics, Stanford University, Stanford, CA, USA.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.