Observation of Long-Range Elliptic Azimuthal Anisotropies in √s =13 and 2.76 TeV pp Collisions with the ATLAS Detector

ATLAS Collaboration

DOI
10.1103/PhysRevLett.116.172301

Publication date
2016

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Observation of Long-Range Elliptic Azimuthal Anisotropies in $\sqrt{s} = 13$ and 2.76 TeV pp Collisions with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 15 September 2015; revised manuscript received 19 November 2015; published 27 April 2016)

ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, $\Delta \phi$, and pseudorapidity, $\Delta \eta$, in $\sqrt{s} = 13$ and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval $|\eta| < 2.5$. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at $\Delta \phi = 0$ that extends over a wide range of $\Delta \eta$, which has been referred to as the “ridge.” Per-trigger-particle yields, $Y(\Delta \phi)$, are measured over $2 < |\Delta \eta| < 5$. For both collision energies, the $Y(\Delta \phi)$ distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 20 reconstructed tracks, and a constant combinatoric contribution modulated by $\cos(2 \Delta \phi)$. The fitted Fourier coefficient, v_2, exhibits factorization, suggesting that the ridge results from per-event $\cos(2 \phi)$ modulation of the single-particle distribution with Fourier coefficients v_2. The v_2 values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p_T dependence similar to that measured in $p + Pb$ and Pb + Pb collisions. The v_2 values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in $p + Pb$ collisions, and that the dynamics responsible for the ridge has no strong \sqrt{s} dependence.

DOI: 10.1103/PhysRevLett.116.172301

Measurements of two-particle angular correlations in high-multiplicity proton-proton (pp) collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV at the LHC showed an enhancement in the production of pairs at small azimuthal-angle separation, $\Delta \phi$, that extends over a wide range of pseudorapidity differences, $\Delta \eta$, and which is often referred to as the “ridge” [1]. The ridge has also been observed in proton-lead ($p + Pb$) collisions [2–7], where it is found to result from a global sinusoidal modulation of the per-event single-particle azimuthal angle distributions [3–6]. While many theoretical interpretations of the ridge, including those based on hydrodynamics [8–12], saturation [13–23], or other mechanisms [24–30], have been, or could be applied to both pp and $p + Pb$ collisions, it has not yet been demonstrated that the ridge in pp collisions results from single-particle azimuthal anisotropies. Testing whether the ridges in pp and $p + Pb$ collisions arise from the same underlying features of the single-particle distributions may provide insight into the physics responsible for the phenomena. Separately, a study of the \sqrt{s} dependence of the ridge in pp collisions may help distinguish between competing explanations.

This Letter uses 14 nb$^{-1}$ of $\sqrt{s} = 13$ TeV data and 4.0 pb$^{-1}$ of $\sqrt{s} = 2.76$ TeV data recorded during LHC run 2 and run 1, respectively, to address these issues. The maximum number of inelastic interactions per crossing was 0.04 and 0.5 for the 13 and 2.76 TeV data, respectively. Two-particle angular correlations are measured as a function of $\Delta \eta$ and $\Delta \phi$ in different intervals of the measured charged-particle multiplicity and different p_T intervals spanning $0.3 < p_T < 5$ GeV: $0.3–0.5$ GeV, $0.5–1$ GeV, $1–2$ GeV, $2–3$ GeV, $3–5$ GeV. Separate p_T-integrated results use $0.5 < p_T < 5$ GeV. Per-trigger-particle yields are obtained from the long-range ($|\Delta \eta| > 2$) component of the correlation. A new template-fitting method is applied to these yields to test for sinusoidal modulation similar to that observed in $p + Pb$ collisions.

The measurements were performed using the ATLAS inner detector (ID), minimum-bias trigger scintillators (MBTSs), forward calorimeter (FCal), and the trigger and data acquisition systems [31]. The ID detects charged particles within $|\eta| < 2.5$ using a combination of silicon pixel detectors, silicon microstrip detectors (SCTs), and a straw-tube transition radiation tracker (TRT), all immersed in a 2 T axial magnetic field [32,33]. The MBTS system detects charged particles using two hodoscopes of counters positioned at $z = \pm 3.6$ m. The FCal covers $3.1 < |\eta| < 4.9$ and uses tungsten and copper absorbers with liquid argon...
as the active medium. Between run 1 and run 2, an additional, innermost pixel layer was added to the ID and the MBTS was replaced.

The ATLAS trigger system [34] consists of a level-1 (L1) trigger implemented using a combination of dedicated electronics and programmable logic, and a software-based high-level trigger (HLT). Charged-particle tracks were reconstructed in the HLT using methods similar to those applied in the offline analysis, allowing triggers that select on the number of tracks with $p_T > 0.4$ GeV associated with a single vertex. For the 13 TeV measurements, a minimum-bias L1 trigger required one or more signals in the MBTS while the high-multiplicity trigger (HMT) required at least 900 SCT hits and at least 60 HLT-reconstructed tracks. For the 2.76 TeV data, the minimum-bias trigger selected random crossings at L1 and applied a threshold to the number of SCTs and pixel hits in the HLT, while several HMT triggers were formed by applying thresholds on the total FCal transverse energy at L1 and different thresholds on the number of HLT-reconstructed tracks. HMT triggers are only used where their multiplicity selection is more than 90% efficient. The inefficiency of the HMT triggers does not affect the measurements presented in this Letter. This has been checked by comparing the results obtained with and without the HMT-triggered events, over the N_{ch}^{rec} range where the HMT is not fully efficient.

Charged-particle tracks and collision vertices are reconstructed in the ID using algorithms that were re-optimized between LHC runs 1 and 2 [35]. Tracks used in the analysis are required to have $p_T > 0.3$ GeV, $|\eta| < 2.5$ and to satisfy additional selection criteria that differ slightly between the 2.76 [4] and 13 TeV [36] data.

Events used in the analysis are required to have at least one reconstructed vertex. For events containing multiple vertices (pileup), only tracks associated with the vertex having the largest $\sum p_T^2$, where the sum is over all tracks associated with the vertex, are used. The measured charged-particle multiplicity, N_{ch}^{rec}, is defined as the number of tracks having $p_T > 0.4$ GeV associated with this vertex. The distributions of N_{ch}^{rec} are shown in Fig. 1. The structures in the distributions result from the different HMT trigger thresholds.

The efficiency, $\epsilon(p_T, \eta)$, of the track reconstruction and track selection requirements is evaluated using simulated nondiffractive pp events obtained from the PYTHIA 8 [37] event generator (A2 tune [38], MSTW2008LO PDFs [39]) that are passed through a GEANT4 [40] simulation of the ATLAS detector response and reconstructed using the algorithms applied to the data [41]. The efficiencies for the two data sets are similar, but differ due to changes in the detector and reconstruction algorithms between runs 1 and 2. In the simulated events, the efficiency reduces the measured multiplicity relative to the PYTHIA 8 $p_T > 0.4$ GeV charged-particle multiplicity by approximately multiplicity-independent factors of 1.18 ± 0.05 and 1.22 ± 0.05 for the 13 and 2.76 TeV data, respectively. The uncertainties in these factors result from systematic uncertainties in the tracking efficiencies, which are described in detail in Ref. [36]. Those systematic uncertainties vary with pseudorapidity between 1.1% (central) and 6.5% (forward) and result from uncertainties on the material description.

The present analysis follows methods used in previous ATLAS two-particle correlation measurements in Pb + Pb and $p + Pb$ collisions [4,6,42–44]. Two-particle correlations for charged particle pairs with transverse momenta p_T^a and p_T^b are measured as a function of $\Delta \phi \equiv \phi^a - \phi^b$ and $\Delta \eta \equiv \eta^a - \eta^b$, with $|\Delta \eta| \leq 5$, determined by the acceptance of the ID. The particles a and b are conventionally referred to as the “trigger” and “associated” particles, respectively. The correlation function is defined as

$$C(\Delta \eta, \Delta \phi) = \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}, \quad (1)$$
where S and B represent the same event and “mixed event” pair distributions, respectively [45]. When constructing S and B, pairs are weighted by the inverse product of their reconstruction efficiencies $1/e(p_T^a, \eta^a)e(p_T^b, \eta^b)$. Detector acceptance effects largely cancel in the S/B ratio.

Examples of correlation functions in the 13 TeV data are shown in Fig. 2 for N_{ch} intervals 0–20 (left) and ≥ 120 (right), respectively, for $0.5 < p_T^{a,b} < 5$ GeV. The $C(\Delta \eta, \Delta \phi)$ distributions have been truncated at different maximum values to suppress a strong peak at $\Delta \eta = \Delta \phi = 0$ that arises primarily from jets. The correlation functions also show a $\Delta \eta$-dependent enhancement centered at $\Delta \phi = \pi$, which is understood to result primarily from dijets. In the higher N_{ch} interval, a ridge is observed as the enhancement near $\Delta \phi = 0$ that extends over the full $\Delta \eta$ range of the measurement.

One-dimensional correlation functions, $C(\Delta \phi)$, are obtained by integrating the numerator and denominator of Eq. (1) over the long-range part of the correlation function, $2 < |\Delta \eta| < 5$. These are converted into “per-trigger-particle yields,” $Y(\Delta \phi)$, according to [4,6,45]

$$Y(\Delta \phi) = \left(1 - \frac{\int B(\Delta \phi) d\Delta \phi}{\int d\Delta \phi} \right) C(\Delta \phi),$$

where N^a denotes the efficiency-corrected total number of trigger particles. Results are shown in Fig. 3 for selected N_{ch} intervals in the 13 and 2.76 TeV data, for the $p_T^{a,b}$ ranges $0.5 < p_T^{a,b} < 5$ GeV. Panel (a) in the figure shows $Y(\Delta \phi)$ for $0 \leq N_{\text{ch}} < 20$ for both collision energies; these exhibit a minimum at $\Delta \phi = 0$ and a broad peak at $\Delta \phi \sim \pi$ that is understood to result primarily from dijets but may also include contributions from low-p_T resonance decays and global momentum conservation. The higher $Y(\Delta \phi)$ values for the 2.76 TeV data are due to the relative inefficiency of the 2.76 TeV triggers for the lowest multiplicity events, which results in larger $\langle N_{\text{ch}} \rangle$ for the 2.76 TeV data in this N_{ch} interval. Panels (b), (d), and (f) show results from the 13 TeV data for the 40–50, 60–70, and ≥ 90 N_{ch} intervals, respectively. Panels (c) and (e) show the results from the 2.76 TeV data for 50–60 and 70–80 N_{ch} intervals, respectively. With increasing N_{ch}, the minimum at $\Delta \phi = 0$ fills in, and a peak appears and increases in amplitude.

To separate the ridge from angular correlations present in low-multiplicity $p+p$ collisions, a template fitting procedure is applied to the $Y(\Delta \phi)$ distributions. Motivated by the peripheral subtraction method applied in $p+\text{Pb}$ collisions [4], the measured $Y(\Delta \phi)$ distributions are assumed to result from a superposition of a “peripheral” $Y(\Delta \phi)$ distribution, scaled up by a multiplicative factor and a constant modulated by $\cos(2\Delta \phi)$. The resulting template fit function,

$$Y_{\text{templ}}(\Delta \phi) = FY_{\text{perih}}(\Delta \phi) + Y_{\text{ridge}}(\Delta \phi),$$

has two free parameters, F and $v_{2,2}$. The coefficient, G, which represents the magnitude of the combinatoric component of $Y_{\text{ridge}}(\Delta \phi)$, is fixed by requiring that $\int_0^{\pi} d\Delta \phi Y_{\text{templ}} = \int_0^{\pi} d\Delta \phi Y$. The peripheral distribution is obtained from the $0 \leq N_{\text{ch}} < 20$ interval. In the fitting procedure, the χ^2 is calculated accounting for statistical uncertainties in both $Y(\Delta \phi)$ and $Y_{\text{perih}}(\Delta \phi)$ distributions.
Some results of the template fitting procedure are shown in panels (b)–(f) of Fig. 3; a complete set of fit results is provided in Ref. [46]. The scaled $Y_{\text{periph}}(\Delta \phi)$ distributions shifted up by G are shown with open points; the $Y_{\text{ridge}}(\Delta \phi)$ functions shifted up by $FY_{\text{periph}}(0)$ are shown with the dashed lines, and the full fit function is shown by the solid curves. The function in Eq. (3) successfully describes the measured $Y(\Delta \phi)$ distributions in all N_{ch}^rec intervals. In particular, it simultaneously describes the ridge, which arises from an interplay of the concave $Y_{\text{periph}}(\Delta \phi)$ and the cosine function, the height of the peak in the $Y(\Delta \phi)$ at $\Delta \phi \sim \pi$, and the narrowing of that peak which results from a negative contribution of the $2\nu_{2,2} \cos(2\Delta \phi)$ term in the region near $\Delta \phi = \pi/2$. The agreement between the template functions and the data allows for no significant N_{ch}^rec-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\nu_{2,2}$ values that are negligible compared to their statistical uncertainties.

Previous analyses of two-particle angular correlations in pp, $p + \text{Pb}$, and $\text{Pb} + \text{Pb}$ collisions have traditionally relied on the “zero yield at minimum” (ZYAM) hypothesis to separate the ridge from the dijet peak at $\Delta \phi \sim \pi$. In the ZYAM method, the ridge is functionally defined to be $Y(\Delta \phi) - Y_{\text{min}}$ over the restricted range $|\Delta \phi| < \phi_{\text{min}}$, where

$$Y(\Delta \phi) = 13 \text{ TeVs}$$

$0.5 < p_T < 5.0 \text{ GeV}$

$0 \leq N_{\text{ch}}^\text{rec} < 20$

$\sqrt{s} = 2.76 \text{ TeV}$

$Y(\Delta \phi)$

$\Delta \phi = \pi/2$. The agreement between the template functions and the data allows for no significant N_{ch}^rec-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\nu_{2,2}$ values that are negligible compared to their statistical uncertainties.

Previous analyses of two-particle angular correlations in pp, $p + \text{Pb}$, and $\text{Pb} + \text{Pb}$ collisions have traditionally relied on the “zero yield at minimum” (ZYAM) hypothesis to separate the ridge from the dijet peak at $\Delta \phi \sim \pi$. In the ZYAM method, the ridge is functionally defined to be $Y(\Delta \phi) - Y_{\text{min}}$ over the restricted range $|\Delta \phi| < \phi_{\text{min}}$, where

$$Y(\Delta \phi) = 13 \text{ TeVs}$$

$0.5 < p_T < 5.0 \text{ GeV}$

$0 \leq N_{\text{ch}}^\text{rec} < 20$

$\sqrt{s} = 2.76 \text{ TeV}$

$Y(\Delta \phi)$

$\Delta \phi = \pi/2$. The agreement between the template functions and the data allows for no significant N_{ch}^rec-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\nu_{2,2}$ values that are negligible compared to their statistical uncertainties.

Previous analyses of two-particle angular correlations in pp, $p + \text{Pb}$, and $\text{Pb} + \text{Pb}$ collisions have traditionally relied on the “zero yield at minimum” (ZYAM) hypothesis to separate the ridge from the dijet peak at $\Delta \phi \sim \pi$. In the ZYAM method, the ridge is functionally defined to be $Y(\Delta \phi) - Y_{\text{min}}$ over the restricted range $|\Delta \phi| < \phi_{\text{min}}$, where

$$Y(\Delta \phi) = 13 \text{ TeVs}$$

$0.5 < p_T < 5.0 \text{ GeV}$

$0 \leq N_{\text{ch}}^\text{rec} < 20$

$\sqrt{s} = 2.76 \text{ TeV}$

$Y(\Delta \phi)$

$\Delta \phi = \pi/2$. The agreement between the template functions and the data allows for no significant N_{ch}^rec-dependent variation in the width of the dijet peak at $\Delta \phi = \pi$ except for that accounted for by the sinusoidal component of the fit function. Including additional $\cos(3\Delta \phi)$ and $\cos(4\Delta \phi)$ terms in Eq. (4) produces changes in the extracted $\nu_{2,2}$ values that are negligible compared to their statistical uncertainties.
ϕ_{min} is the location of the minimum of $Y(\Delta \phi)$ and $Y_{\text{min}} = Y(\phi_{\text{min}})$. However, the $Y(\Delta \phi)$ distributions measured in low-$N_{\text{ch}}^{\text{rec}}$ bins are concave in the region near $\Delta \phi \approx 0$. As a result, if the ridge and dijet correlations add—an assumption that is implicit in all previous analyses using the ZYAM method and is explicit in the template method used here—then the ZYAM method will both underestimate the ridge yield and produce ϕ_{min} values that vary, unphysically, with the ridge amplitude. In contrast, the template method used here explicitly accounts for the concave shape of the peripheral $Y(\Delta \phi)$. Thus, the template fitting procedure, for example, extracts a nonzero ridge amplitude from the $\sqrt{s} = 2.76$ TeV, $50 \lesssim N_{\text{ch}}^{\text{rec}} \lesssim 60$ $Y(\Delta \phi)$ distribution (middle left panel of Fig. 3) which is approximately flat near $\Delta \phi \approx 0$, and would, as a result, have approximately zero ridge signal using the ZYAM method.

Previous $p + \text{Pb}$ analyses used the peripheral-subtraction method, but applied the ZYAM procedure to the peripheral reference and, so, subtracted $Y(0)$ from $Y_{\text{periph}}(\Delta \phi)$. Such a subtraction will necessarily change the $v_{2,2}$ values, and, when applied to the 13 TeV data, it reduces the measured $v_{2,2}$ by a multiplicative factor that varies from 0.4 to 0.8 over $30 \leq N_{\text{ch}}^{\text{rec}} < 130$ [46]. However, if, as suggested by the data, $Y_{\text{periph}}(\Delta \phi)$ contains not only a hard component, $Y_{\text{hard}}(\Delta \phi)$, but also a modulated soft component,

$$Y_{\text{periph}}(\Delta \phi) = Y_{\text{hard}}(\Delta \phi) + G_0[1 + 2\nu_{2,2}^0 \cos(2\Delta \phi)],$$

the peripheral ZYAM method will subtract $2F G_0 \nu_{2,2}^0 \cos(2\Delta \phi)$ as part of the template fit, thereby reducing the extracted $v_{2,2}$. In contrast, the procedure used in this analysis subtracts $F G_0[1 + 2\nu_{2,2}^0 \cos(2\Delta \phi)]$, which reduces G in Eq. (4) but has less impact on $v_{2,2}$. In particular, if $\nu_{2,2}^0$ is equal to the real $v_{2,2}$ in a given $N_{\text{ch}}^{\text{rec}}$ interval, there will be no bias. Since the measured $v_{2,2}$ is approximately $N_{\text{ch}}^{\text{rec}}$ independent, the bias resulting from the presence of $v_{2,2}$ in the peripheral sample is expected to be small. Thus, the use of the unsubtracted peripheral reference is preferred over the more strongly biased ZYAM-subtracted reference.

If the $\cos(2\Delta \phi)$ dependence of $Y(\Delta \phi)$ arises from modulation of the single-particle ϕ distributions, then $v_{2,2}$ should factorize such that $v_{2,2}(p_T^a, p_T^b) = v_2(p_T^a) v_2(p_T^b)$ [42–44], where v_2 is the cosine Fourier coefficient of the single-particle anisotropy. To test this, the analysis was performed using three p_T intervals: 0.5–5, 0.5–1, and 2–3 GeV with $0.5 < p_T^a < 5$ GeV; results from the 2.76 TeV data for the 2–3 GeV interval were obtained using wider $N_{\text{ch}}^{\text{rec}}$ intervals to improve statistics. Results are shown in the top panels of Fig. 4; the left and right panels show the 2.76 and 13 TeV data, respectively. A significant p_T^a dependence is seen. Separately, the same analysis was applied requiring both p_T^a and p_T^b to fall within the above intervals. If factorization holds, the v_2 values calculated using

$$v_2(p_T) = v_{2,2}(p_T, p_T)/\sqrt{v_{2,2}(p_T, p_T)},$$

where p_T and p_T indicate which of the three intervals, 0.5–5, 0.5–1, and 2–3 GeV, p_T^a and p_T^b are required to lie within, should be independent of p_T. The v_2 values obtained using Eq. (6) are shown in the middle panels of Fig. 4. For both collision energies, the three sets of v_2 values agree within uncertainties, indicating that $v_{2,2}$ factorizes.

This analysis is sensitive to potential $N_{\text{ch}}^{\text{rec}}$-dependent changes in the shape of the peripheral reference. For example, the PYTHIA 8 sample shows a modest $N_{\text{ch}}^{\text{rec}}$-dependent change in the width of the dijet peak for small $N_{\text{ch}}^{\text{rec}}$. Also, the $v_{2,2}$ could vary with $N_{\text{ch}}^{\text{rec}}$ over the $0 < N_{\text{ch}}^{\text{rec}} < 20$ range. To test the sensitivity of the results presented here to such shape changes, the analysis was repeated using 0–5, 0–10, and 10–20 $N_{\text{ch}}^{\text{rec}}$ intervals to form $Y_{\text{periph}}(\Delta \phi)$. The largest resulting change in $v_{2,2}$ was taken as a systematic uncertainty. The relative uncertainty varies from 6% at $N_{\text{ch}}^{\text{rec}} = 30$ to 2% for $N_{\text{ch}}^{\text{rec}} \geq 60$ in the 13 TeV data, and is less than 6% for all $N_{\text{ch}}^{\text{rec}}$ for the 2.76 TeV data. When using the 0–5 $N_{\text{ch}}^{\text{rec}}$ interval for $Y_{\text{periph}}(\Delta \phi)$, $v_{2,2}$ values consistent with those shown in Fig. 4 are measured in $N_{\text{ch}}^{\text{rec}}$ intervals 5–10, 10–15 and 15–20.

Potential systematic uncertainties on $v_{2,2}$ due to a residual $\Delta \phi$ dependence of the two-particle acceptance that does not cancel in the S/B ratio are evaluated following Ref. [47] and are found to be less than 1%. The effect of the uncertainty on the tracking efficiency on $v_{2,2}$ is determined to be less than 1%. A separate systematic on $v_{2,2}$ due to the ϕ and p_T resolution of the charged-particle measurement is estimated to be 2% (6%) for $p_T > 0.5$ GeV ($p_T < 0.5$ GeV). Events with unresolved multiple vertices decrease the measured $v_{2,2}$ by increasing the combinatoric pedestal in $Y(\Delta \phi)$ without increasing the modulation. The resulting systematic on $v_{2,2}$ increases with $N_{\text{ch}}^{\text{rec}}$ and is estimated to be less than 0.25% and 5% for the 13 and 2.76 TeV data, respectively. The combined systematic uncertainties on $v_{2,2}$ and on v_2 are shown by the shaded boxes in Fig. 4. The total $v_{2,2}$ systematic uncertainty for $0.5 < p_T^{c,b} < 5$ GeV varies between $ \sim5\%$ at low $N_{\text{ch}}^{\text{rec}}$ to $\sim3\%$ at high $N_{\text{ch}}^{\text{rec}}$ in the 13 TeV data, while in the 2.76 TeV data the uncertainty is 8% for all $N_{\text{ch}}^{\text{rec}}$. The systematic uncertainty on v_2 is approximately half that for $v_{2,2}$.

As shown in Fig. 4, the measured v_2 are independent of $N_{\text{ch}}^{\text{rec}}$ and are consistent between the two collision energies within uncertainties. The p_T dependence of v_2 for the 50–60 $N_{\text{ch}}^{\text{rec}}$ interval, shown in the bottom left panel of Fig. 4, is similar for both collision energies to that previously measured in $p + \text{Pb}$ and Pb + Pb collisions. It increases with p_T at low p_T, reaches a maximum between 2 and 3 GeV, and then decreases at higher p_T. The bottom right panel of Fig. 4 shows the p_T dependence of v_2 for different $N_{\text{ch}}^{\text{rec}}$ intervals; no significant dependence is observed.
In summary, ATLAS has measured the multiplicity and p_T dependence of two-charged-particle correlations in $\sqrt{s} = 13$ and 2.76 TeV pp collisions at the LHC. The correlation functions at both energies show a ridge whose strength increases with multiplicity. A new template fitting procedure shows that the per-trigger-particle yields for $|\Delta \eta| > 2$ are described well by a superposition of the yields measured in a low-multiplicity interval and a constant modulated by $\cos(2 \Delta \phi)$. Thus, as observed in $p + \text{Pb}$ collisions [4], the pp data presented here are...
compatible with both a “near-side” ridge centered at $\Delta \phi = 0$ and an “away-side” ridge centered at $\Delta \phi = \pi$ that both result from a sinusoidal component of the two-particle correlation. The extracted Fourier coefficients, $t_{2,2}$, exhibit factorization, which is characteristic of a global modulation of the per-event single-particle distributions also seen in factorization, which is characteristic of a global modulation.

They increase with p_T for $p_T \lesssim 3$ GeV and then decrease at higher p_T, following a trend similar to that observed in $p + \text{Pb}$ and $\text{Pb} + \text{Pb}$ collisions. These results suggest that the ridges in $p + \text{Pb}$ and $\text{Pb} + \text{Pb}$ collisions may arise from a similar physical mechanism which does not have a strong \sqrt{s} dependence.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, BMF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MEStD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Note added.—Recently, we became aware of a related work [48].

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Istanbul, Turkey
4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13Institute of Physics, University of Belgrade, Belgrade, Serbia
14Department for Physics and Technology, University of Bergen, Bergen, Norway
15Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
16Department of Physics, Humboldt University, Berlin, Germany
17Albert Einstein Center for Fundamental Physics and High Energy Physics, University of Bern, Bern, Switzerland
18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19aDepartment of Physics, Bogazici University, Istanbul, Turkey
19bDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
19cDepartment of Physics, Dogus University, Istanbul, Turkey
19dINFN Sezione di Bologna, Italy
19eDipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
19fPhysikalisches Institut, University of Bonn, Bonn, Germany
20Department of Physics, Boston University, Boston, Massachusetts, USA
21Department of Physics, Brandeis University, Waltham, Massachusetts, USA
22Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
23Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24Physics Department, Brookhaven National Laboratory, Upton, New York, USA
25Transilvania University of Brasov, Brasov, Romania
26National Institute of Physics and Nuclear Engineering, Bucharest, Romania
27National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
27aUniversity Politehnica Bucharest, Bucharest, Romania
27bWest University in Timisoara, Timisoara, Romania
28Department de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
29Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
30Department of Physics, Carleton University, Ottawa, Ontario, Canada
31Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
32aDepartmento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
32bDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

PRL 116, 172301 (2016) PHYSICAL REVIEW LETTERS