Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton–lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector

ATLAS Collaboration

DOI
10.1140/epjc/s10052-016-4002-3

Publication date
2016

Document Version
Final published version

Published in
European Physical Journal C

License
CC BY

Citation for published version (APA):
Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton–lead collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV with the ATLAS detector

ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Received: 5 August 2015 / Accepted: 7 March 2016 / Published online: 12 April 2016
© CERN for the benefit of the ATLAS collaboration 2016. This article is published with open access at Springerlink.com

Abstract The centrality dependence of the mean charged-particle multiplicity as a function of pseudorapidity is measured in approximately 1 μb$^{-1}$ of proton–lead collisions at a nucleon–nucleon centre-of-mass energy of $\sqrt{s_{\text{NN}}} = 5.02$ TeV using the ATLAS detector at the Large Hadron Collider. Charged particles with absolute pseudorapidity less than 2.7 are reconstructed using the ATLAS pixel detector. The $p + \text{Pb}$ collision centrality is characterised by the total transverse energy measured in the Pb-going direction of the forward calorimeter. The charged-particle pseudorapidity distributions are found to vary strongly with centrality, with an increasing asymmetry between the proton-going and Pb-going directions as the collisions become more central. Three different estimations of the number of nucleons participating in the $p + \text{Pb}$ collision have been carried out using the Glauber model as well as two Glauber–Gribov inspired extensions to the Glauber model. Charged-particle multiplicities per participant pair are found to vary differently for these three models, highlighting the importance of including colour fluctuations in nucleon–nucleon collisions in the modelling of the initial state of $p + \text{Pb}$ collisions.

Contents

1 Introduction ... 1
2 Experimental setup 2
3 Event selection 3
4 Monte Carlo simulation 4
5 Centrality selection 4
6 Measurement of charged-particle multiplicity 5
 6.1 Two-point tracklet and pixel track methods ... 5
 6.2 Extraction of the charged-particle distribution 7
7 Systematic uncertainties 8
8 Results .. 10
9 Particle multiplicities per participant pair 11

10 Conclusions .. 13
Appendix: Glauber model analysis 14
References ... 17

1 Introduction

Proton–nucleus ($p + A$) collisions at the Large Hadron Collider (LHC) [1] provide an opportunity to probe the physics of the initial state of ultra-relativistic heavy-ion ($A + A$) collisions without the presence of thermalisation and collective evolution [2]. In particular, $p + A$ measurements can provide insight into the effect of an extended nuclear target on the dynamics of soft and hard scattering processes and subsequent particle production. Historically, measurements of the average charged-particle multiplicity as a function of pseudorapidity, $dN_{\text{ch}}/d\eta$, where pseudorapidity is defined as $\eta = -\ln \tan(\theta/2)$ with θ the particle angle with respect to the beam direction, have yielded important insight into soft particle production dynamics in proton– and deuteron–nucleus ($p/d + A$) collisions [3–8] and provided essential tests of models of inclusive soft hadron production.

Additional information is obtained if measurements of the charged-particle multiplicities are presented as a function of centrality, an experimental quantity that characterises the $p/d + A$ collision geometry. Previous measurements in $d + \text{Au}$ collisions at the Relativistic Heavy Ion Collider (RHIC) [9] have characterised the centrality using particle multiplicities at large pseudorapidity, either symmetric around mid-rapidity [10] or in the Au fragmentation direction [11]. These measurements have shown that the rapidity-integrated particle multiplicity in $d + \text{Au}$ collisions scales with the number of inelastically interacting, or “participating”, nucleons, N_{part}. This scaling behaviour has been interpreted as the result of coherent multiple soft interactions of the projectile nucleon in the target nucleus, and is known as the wounded–nucleon (WN) model [12]. The charged-
particle multiplicity distributions as a function of pseudorapidity measured in central $d + Au$ collisions are asymmetric and peaked in the Au-going direction [7]. This observation has been explained using well-known phenomenology of soft hadron production [13].

There are alternative descriptions of the centrality dependence of the $dN_{ch}/d\eta$ distribution in $d + Au$ collisions at RHIC [14,15] and $p + Pb$ collisions at the LHC [15–17] based on parton saturation models. Measurements of the centrality dependence of $dN_{ch}/d\eta$ distributions in $p + Pb$ collisions provide an essential test of soft hadron production mechanisms at the LHC. Such tests have become of greater importance given the observation of two-particle [18–21] and multi-particle [21–23] correlations in the final state of $p + Pb$ collisions at the LHC. These correlations are currently interpreted as resulting from either initial-state saturation effects [15,24,25] or from the collective dynamics of the final state [26–30]. For either interpretation, information on the centrality dependence of $dN_{ch}/d\eta$ can provide important input for determining the mechanism responsible for these structures.

Recent measurements from the ALICE experiment [31] show behaviour in the centrality dependence of the charged-particle-pseudorapidity distributions, which is qualitatively similar to that observed at RHIC. That analysis compared different methods for characterising centrality and suggested that the method used to define centrality may have a significant impact on the centrality dependence of the measured $dN_{ch}/d\eta$ distribution.

An important component of any centrality-dependent analysis is the geometric model used to relate experimental observables to the geometry of the nuclear collision. Glauber Monte Carlo models [32], which simulate the interactions of the incident nucleons using a semi-classical eikonal approximation, have been successfully applied to many different $A + A$ measurements at RHIC and the LHC. A key parameter of such models is the inelastic nucleon–nucleon cross-section, which is taken to be 70 mb for this analysis [31]. However, the Glauber multiple-scattering approximation assumes that the nucleons remain on the mass shell between successive scatterings, and this assumption is badly broken in ultra-relativistic collisions. Corrections to the Glauber model [33], hereafter referred to as “Glauber–Gribov,” are needed to account for the off-shell propagation of the nucleons between collisions.

A particular implementation of the Glauber–Gribov approach is provided by the colour-fluctuation model [34–37]. That model accounts for event-to-event fluctuations in the configuration of the incoming proton that are assumed to be frozen over the timescale of a collision and that can change the effective cross-section with which the proton scatters off nucleons in the nucleus. These event-by-event fluctuations in the cross-section can be represented by a probability distribution $P(\sigma)$. The width of that distribution can be characterised by a parameter ω_σ, which is the relative variance of the σ distribution, $\omega_\sigma \equiv \langle (\sigma/\sigma_{\text{tot}} - 1)^2 \rangle$. The usual total cross-section, σ_{tot}, is the event-averaged cross-section, or, equivalently, the first moment of the $P(\sigma)$ distribution, $\sigma_{\text{tot}} = \int_0^\infty d\sigma P(\sigma) \sigma$. The parameter ω_σ can be measured using diffractive proton–proton scattering at high energy [35,36]. First estimates of ω_σ at LHC energies [36] extrapolated to 5 TeV yielded $\omega_\sigma \sim 0.11$, while a more recent analysis suggested $\omega_\sigma \sim 0.2$ [37]. Because the cross-section fluctuations in the Glauber–Gribov colour-fluctuation (GGCF) model may have a significant impact on the interpretation of the results of this analysis, the geometry of $p + Pb$ collisions has been evaluated using both the standard Glauber model and the GGCF model with $\omega_\sigma = 0.11$ and 0.2.

This paper presents measurements of the centrality dependence of $dN_{ch}/d\eta$ in $p + Pb$ collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV using 1 μb$^{-1}$ of data recorded by the ATLAS experiment [38] in September 2012. Charged particles are detected in the ATLAS pixel detector and are reconstructed using a two-point tracklet algorithm similar to that used for the Pb + Pb multiplicity measurement [39]. Measurements of $dN_{ch}/d\eta$ are presented for several intervals in collision centrality characterised by the total transverse energy measured in the forward section of the ATLAS calorimeter on the Pb-going side of the detector. A standard Glauber model [32] and the GGCF model [36,37] with $\omega_\sigma = 0.11$ and 0.2 are used to estimate $\langle N_{\text{part}} \rangle$ for each centrality interval, allowing a measurement of the N_{part} dependence of the charged-particle multiplicity.

The paper is organised as follows. Section 2 describes the subdetectors of the ATLAS experiment relevant for this measurement. Section 3 describes the event selection. Section 4 describes the Monte Carlo simulations used to understand the performance and derive the corrections to the measured quantities. Section 5 describes the choice of centrality variable. Section 6 describes the measurement of the charged-particle multiplicity and Sect. 7 describes the estimation of the systematic uncertainties. Section 8 presents the results of the measurement, and the interpretation of the yields of charged particles per participant is discussed in Sect. 9. Section 10 concludes the paper. The estimation of the geometric parameters in each centrality interval for the Glauber and GGCF models is presented in detail in the “Appendix”.

2 Experimental setup

The ATLAS detector is described in detail in Ref. [38]. The data selection and analysis presented in this paper is performed using the ATLAS inner detector (ID), calorimeters,
minimum-bias trigger scintillators (MBTS), and the trigger system. The inner detector measures charged-particle tracks using a combination of silicon pixel detectors, silicon microstrip detectors (SCT), and a straw-tube transition radiation tracker (TRT), all immersed in a 2 T axial magnetic field. The pixel detector is divided into “barrel” and “endcap” sections. For collisions occurring at the nominal interaction point, the barrel section of the pixel detector allows measurements of charged-particle tracks over $|\eta| < 2.2$. The endcap sections extend the detector coverage, spanning the pseudorapidity interval $1.6 < |\eta| < 2.7$. The SCT and TRT detectors cover $|\eta| < 2.5$ and $|\eta| < 2$, respectively, through a combination of barrel and endcap sections.

The barrel section of the pixel detector consists of three layers of staves at radii of 50.5, 88.5 and 122.5 mm from the nominal beam axis, and extending ± 400.5 mm from the centre of the detector in the z direction. The endcap consists of three disks placed symmetrically on each side of the interaction region at z locations of ± 493, ± 578 and ± 648 mm from the centre of the detector. All pixel sensors in the pixel detector, in both the barrel and endcap regions, are identical and have a nominal size of 50 μm \times 400 μm.

The MBTS detect charged particles in the range $2.1 < |\eta| < 3.9$ using two hodoscopes, each of which is subdivided into 16 counters positioned at $z = \pm 3.6$ m. The ATLAS calorimeters cover the full azimuth and the pseudorapidity range $|\eta| < 4.9$ with the forward part (FCal) consisting of two modules positioned on either side of the interaction region and covering $3.1 < |\eta| < 4.9$. The FCal modules are composed of tungsten and copper absorbers with liquid argon as the active medium, which together provide ten interaction lengths of material.

The LHC delivered its first proton–nucleus collisions in a short $p + $Pb “pilot” run at $\sqrt{s_{NN}} = 5.02$ TeV in September 2012. During that run the LHC was configured with a clockwise 4 TeV proton beam and an anti-clockwise 1.57 TeV per-nucleon Pb beam that together produced collisions with a nucleon–nucleon centre-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV and a longitudinal rapidity boost of 0.465 units with respect to the ATLAS laboratory frame. Following a common convention used for $p + A$ measurements, the rapidity is taken to be positive in the direction of the proton beam, i.e. opposite to the usual ATLAS convention for $p p$ collisions. With this convention, the ATLAS labor-a-
4 Monte Carlo simulation

The response of the ATLAS detector and the performance of the charged-particle reconstruction algorithms are evaluated using one million minimum-bias 5.02 TeV Monte Carlo (MC) \(p + \text{Pb}\) events, produced by version 1.38b of the HIJING event generator [42] with diffractive processes disabled. The four-momentum of each generated particle is longitudinally boosted by a rapidity of 0.465 to match the beam conditions in the data. The detector response to these events is fully simulated using GEANT4 [43,44]. The resulting events are digitised using conditions appropriate for the pilot \(p + \text{Pb}\) run and fully reconstructed using the same algorithms that are applied to the experimental data. This MC sample is primarily used to evaluate the efficiency of the ATLAS detector for the charged-particle measurements.

The detector response and event selection efficiencies for peripheral and diffractive \(p + \text{Pb}\) events have properties similar to those for inelastic or diffractive \(pp\) collisions, respectively. To evaluate these responses and efficiencies, the \(pp\) samples are generated at \(\sqrt{s} = 5.02\) TeV with particle kinematics boosted to match the \(p + \text{Pb}\) beam conditions. Separate samples of minimum-bias, single-diffractive, and double-diffractive \(pp\) collisions with one million events each are produced using both PYTHIA6 [45] (version 6.425, AMBT2 parameter set (tune) [46], CTEQ6L1 PDF [47]) and PYTHIA8 [48] (version 8.150, 4C tune [49], MSTW2008LO PDF [50]), and simulated, digitised and reconstructed in the same manner as the \(p + \text{Pb}\) events. These six samples are primarily used for the Glauber model analysis described in the “Appendix”.

5 Centrality selection

For \(\text{Pb} + \text{Pb}\) collisions, the ATLAS experiment uses the total transverse energy, \(\sum E_T\), measured in the two forward calorimeter sections to characterise the collision centrality [51]. However, the intrinsic asymmetry of the \(p + \text{Pb}\) collisions and the rapidity shift of the centre-of-mass causes an asymmetry in the soft particle production measured on the two sides of the calorimeter. Figure 1 shows the correlation between the summed transverse energies measured in the proton-going (3.1 < \(\eta\) < 4.9) and Pb-going (−4.9 < \(\eta\) < −3.1) directions, \(\sum E_T^p\) and \(\sum E_T^{\text{Pb}}\), respectively. The transverse energies are evaluated at an energy scale calibrated for electromagnetic showers and have not been corrected for hadronic response.

Figure 1 shows that the mean \(\sum E_T^p\) rapidly flattens with increasing \(\sum E_T^{\text{Pb}}\) for \(\sum E_T^{\text{Pb}} \gtrsim 30\) GeV, indicating that \(\sum E_T^p\) is less sensitive than \(\sum E_T^{\text{Pb}}\) to the increased particle production expected to result from multiple interactions of the proton in the target nucleus in central collisions. Thus, \(\sum E_T^{\text{Pb}}\) alone, rather than \(\sum E_T^{\text{Pb}} + \sum E_T^p\), is chosen as the primary quantity used to characterise \(p + \text{Pb}\) collision centrality for the measurement presented in this paper. However, we describe alternate choices of the centrality-defining region below and evaluate the sensitivity of the measurement to this definition.

The distribution of \(\sum E_T^{\text{Pb}}\) for events passing the \(p + \text{Pb}\) analysis selection is shown in Fig. 2. The following centrality intervals are defined in terms of percentiles of the \(\sum E_T^{\text{Pb}}\) distribution: 0–1, 1–5, 5–10, 10–20, 20–30, 30–40, 40–60, 60–80 % and the interval 90–100 % that is not used in this analysis.

![Fig. 1 Distribution of proton-going (\(\sum E_T^p\)) versus Pb-going (\(\sum E_T^{\text{Pb}}\)) total transverse energy in the forward calorimeter for \(p + \text{Pb}\) collisions included in this analysis. The curve shows the average \(\sum E_T^p\) as a function of \(\sum E_T^{\text{Pb}}\).](image1)

![Fig. 2 Distribution of the Pb-going total transverse energy in the forward calorimeter \(\sum E_T^{\text{Pb}}\) values for events satisfying all analysis cuts including the Pb-going rapidity gap exclusion. The alternating shaded and unshaded bands indicate centrality intervals, from right (central) to left (peripheral), 0–1, 1–5, 5–10, 10–20, 20–30, 30–40, 40–60, 60–80 % and the interval 90–100 % that is not used in this analysis.](image2)
position of the events in the most peripheral 90–100% interval is not well constrained; these events are excluded from the analysis. The nominal centrality intervals were defined after accounting for a 2% inefficiency, as described in the “Appendix”, for the fiducial class of p + Pb events defined above to pass the applied event selection. Alternate intervals were also defined by varying this estimated inefficiency to 0 and 4%, and is used as a systematic check on the results. While the inefficiency is confined to the 90–100% interval, it influences the \(\sum E_T^{\text{Pb}} \) ranges associated with each centrality interval. Potential hard scattering contributions to \(\sum E_T^{\text{Pb}} \) have been evaluated in a separate analysis [52] by explicitly subtracting the contributions from reconstructed jets that fall partly or completely in the Pb-going FCal acceptance. That analysis showed negligible impact from hard scattering processes on the measured \(\sum E_T^{\text{Pb}} \) distribution.

To test the sensitivity of the results to the choice of pseudorapidity interval used for the \(E_T \) measurement, two alternative \(\sum E_T \) quantities are defined. The former, \(\sum E_T^{\eta<\eta_0} \), is defined as the total transverse energy in FCal cells with \(\eta < \eta_0 \). The latter, \(\sum E_T^{\eta_0<\eta<\eta_1} \), is defined as the total transverse energy in the two intervals \(4.0 < \eta < 4.9 \) and \(-4.0 < \eta < -3.1 \), an approximately symmetric interval when expressed in pseudorapidity in the centre of mass system \(\eta_{\text{cm}} \). The first of these alternatives is used to evaluate the potential auto-correlation between the measured charged-particle multiplicities and the centrality observable by increasing the rapidity gap between the two measurements. The second is used to evaluate the differences between an asymmetric (Pb-going) and symmetric (both sides) centrality observable. The effect of these alternative definitions is discussed in Sect. 8.

The Glauber analysis [32] was applied to estimate \(\langle N_{\text{part}} \rangle \) for each of the centrality intervals used in this analysis. A detailed description is given in the “Appendix”: only a brief summary of the method is given here. The PHOBOS MC program [53] was used to simulate the geometry of inelastic \(p + \text{Pb} \) collisions using both the standard Glauber and GGCF models. The resulting \(N_{\text{part}} \) distributions are convolved with a model of the \(N_{\text{part}} \)-dependent \(\sum E_T^{\text{Pb}} \) distributions, the parameters of which are obtained by fitting the measured \(\sum E_T^{\text{Pb}} \) distribution. The average \(N_{\text{part}} \) associated with each centrality interval is obtained with systematic uncertainties. The results are shown in Fig. 3 for the Glauber model and for the GGCF model with \(\omega_{\eta} = 0.11 \) and 0.2.

6 Measurement of charged-particle multiplicity

6.1 Two-point tracklet and pixel track methods

The measurement of the charged-particle multiplicity is performed using only the pixel detector to maximise the efficiency for reconstructing charged particles with low transverse momenta. Two approaches are used in this analysis. The first is the two-point tracklet method commonly used in heavy-ion collision experiments [39,54,55]. Two variants of this method are implemented in this analysis to construct the \(dN_{\text{ch}}/d\eta \) distribution and to estimate the systematic uncertainties, as described below. The second method uses “pixel tracks”, obtained by applying the full track reconstruction algorithm [56] only to the pixel detector. The pixel tracking is less efficient than the tracklet method as is justified later in the text, but provides measurements of the particle \(p_T \). The \(dN_{\text{ch}}/d\eta \) distribution measured using pixel tracks provides a cross-check on the primary measurement that is performed using the two-point tracklets.

In the two-point tracklet algorithm, the event vertex and clusters [57] on an inner pixel layer define a search region for clusters in the outer layers. The algorithm uses all clusters, except the clusters which have low energy deposits inconsistent with minimum-ionising particles originating from the primary vertex. The algorithm also rejects duplicate clusters resulting from the overlap of the pixel sensors or arising from a small set of pixels at the centre of the pixel modules that share readout channels [58]. Two clusters in a given layer of the pixel detector are considered as one if they have an angular separation \((\delta\phi)^2 + (\delta\eta)^2 \ll 0.02 \), because they likely result from the passage of a single particle.

The pseudorapidity and azimuthal angle of the cluster in the innermost layer \((\eta, \phi) \) and their differences between the outer and inner layers \((\Delta\eta, \Delta\phi) \) are taken as the parameters of the reconstructed tracklet. The \(\Delta\eta \) of a tracklet is largely determined by the multiple scattering of the incident particles in the material of the beam pipe and detector. This effect
plays a less significant role in the $\Delta \phi$ of a tracklet, which is driven primarily by the bending of charged particles in the magnetic field, and hence one expects $\Delta \phi$ to be larger. The tracklet selection cuts are:

$$|\Delta \eta| < 0.015, \quad |\Delta \phi| < 0.1,$$

$$|\Delta \eta| < |\Delta \phi|.$$ (1)

Keeping tracklets with $|\Delta \phi| < 0.1$ corresponds to accepting particles with $p_T \gtrsim 0.1 \text{ GeV}$. The selection in Eq. (2) accounts for the momentum dependence of charged-particle multiple-scattering.

The Monte Carlo simulation for the $dN_{\text{ch}}/d\eta$ analysis is based on the HIJING event generator, which is described in Sect. 4. The HIJING event generator is known to not accurately reproduce the measured particle p_T distributions. This is addressed by reweighting the HIJING p_T distribution using the ratio of reconstructed spectra measured with the pixel track method in the data and in the MC simulation. The reweighting function is extrapolated below $p_T = 0.1 \text{ GeV}$ and applied to all generated particles and their decay products. This is done in intervals of centrality and pseudorapidity. Generator-level primary particles are defined as particles with a mean lifetime $\tau > 0.3 \times 10^{-10} \text{ s}$ either directly produced in $p + \text{Pb}$ interactions or from subsequent decays of particles with a shorter lifetime. This definition is the same as used in previous measurements of charged-particle production in pp [40] and $\text{Pb} + \text{Pb}$ [59] collisions by ATLAS. All other particles are defined as secondaries. Tracklets are classified as primary or secondary depending on whether the associated generator-level charged particle is primary or secondary. Association between the tracklets and the generator-level particles is based on the GEANT4 simulation about hits produced by these particles. Tracklets that are formed from the random association of hits produced by unrelated particles, or hits in the detector which are not matched to any generated particle are referred to as “fake” tracklets.

The contribution of fake tracklets is relatively difficult to model in the simulation, because of the a priori unknown contributions of multiple sources, such as noisy clusters or very low energy particles. To address this problem, the tracklet algorithm is used in two different implementations referred to as “Method 1” and “Method 2”. In Method 1, at most one tracklet is reconstructed for each cluster on the first pixel layer. If multiple clusters on the second pixel layer fall within the search region, the resulting tracklets are merged into a single tracklet. This approach reduces, but does not eliminate, the contribution of fake tracklets that are then accounted for using an MC-based correction. Method 2 reconstructs tracklets for all combinations of clusters in only two pixel layers, the innermost and the next-to-innermost detector layers. To account for the fake tracklets arising from random combinations of clusters, the same analysis is performed after inverting the x and y positions of all clusters on the second layer with respect to the primary vertex $(x - x_{\text{vtx}}, y - y_{\text{vtx}}) \rightarrow (x - x_{\text{vtx}}, -(y - y_{\text{vtx}}))$. The tracklet yield from this “flipped” analysis, N_{fl}^ev, is then subtracted from the original tracklet yield, N_{tr}^ev to obtain an estimated yield of true tracklets N_{tr}.

$$N_{\text{tr}}(\eta) = N_{\text{tr}}^\text{ev}(\eta) - N_{\text{fl}}^\text{ev}(\eta).$$ (3)

Distributions of $\Delta \eta$ and $\Delta \phi$ of reconstructed tracklets using Method 1 for data and simulated events are shown in Fig. 4 for the barrel (upper plots) and endcap (lower plots) parts of the pixel detector. The simulation results show the three contributions from primary, secondary and fake tracklets. The selection criteria specified by Eq. (1) are shown in Fig. 4 as vertical lines and applied in $\Delta \phi$ for $\Delta \eta$ plots and vice versa. Outside those lines, the contributions from secondary and fake tracklets are more difficult to take into account, especially in the endcap region. These contributions partially arise from low-p_T particles on spiral trajectories and their description in the MC simulation is therefore very sensitive to the amount of detector material. The ratio between simulation and data is also shown for each plot. These ratios are closer to unity in the barrel region than in the endcap region, where they deviate by up to 5 % except at very low $|\Delta \phi|$. At low $|\Delta \phi|$ corresponding to high p_T, the MC deviates from the data even after reweighing procedure based on pixel tracks. This is due to low resolution of pixel track at high p_T, however, the contribution of high-p_T particles to $dN_{\text{ch}}/d\eta$ is negligible.

The top left panel of Fig. 5 shows the pseudorapidity distribution of tracklets reconstructed with Method 2 and satisfying the criteria of Eqs. (1) and (2) in the $0 – 10 \%$ centrality interval for data (markers) and for the simulation (lines). The results of flipped reconstruction are also shown in the plot. The direct and flipped distributions are each similar between data and MC simulation but not identical, reflecting the fact that HIJING does not reproduce the data in detail. However, the lower panel of Fig. 5 shows that the ratios of the distribution of the number of tracklets in the flipped and direct events are very similar between the data and the MC simulation. A breakdown of the MC simulation distribution into primary, secondary and fake tracklets contributions is shown in the top right panel of Fig. 5. The distribution of $N_{\text{tr}}^\beta(\eta)$, plotted with open markers, closely follows the histogram of fake tracklets. The lower panel of the plot shows the ratio of fake tracklet distribution to the flipped distribution. This ratio is consistent with unity to within 5 % in the entire range of measured η. This agreement justifies the subtraction of the fake tracklet contribution according to Eq. (3) for Method 2.

Although the fake rate is largest in Method 2, the flipped method is used to estimate the rate directly from the data. In
Fig. 4 Stacked histograms for the differences between the hits of the tracklet in outer and inner detector layers in pseudorapidity $\Delta \eta$ (left) and in azimuth $\Delta \phi$ (right) for the tracklets reconstructed with Method 1 measured in the data (points) and simulation (histograms) in $p + Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV for barrel (top) and endcaps (bottom). Contributions from primary, secondary, and fake tracklets in the simulation are shown separately. The lower panels show the ratio of the simulation to the data.

6.2 Extraction of the charged-particle distribution

The data analysis and corresponding corrections are performed in eight intervals of detector occupancy (O) parameterised using the number of reconstructed clusters in the first pixel layer and chosen to correspond to the eight $p + Pb$ centrality intervals, and in seven intervals of z_{vtx}, each 50 mm wide. For each analysis method, a set of multiplicative correction factors is obtained from MC simulations according to

$$C(O, z_{vtx}, \eta) \equiv \frac{N_{pr}(O, z_{vtx}, \eta)}{N_{rec}(O, z_{vtx}, \eta)}. \quad (4)$$

Here, N_{pr} and N_{rec} represent the number of primary charged particles at the generator level and the number of tracks or tracklets at the reconstruction level, respectively. These correction factors account for several effects: inactive areas in the detector and reconstruction efficiency, contributions of...
residual fake and secondary particles, and losses due to track or tracklet selection cuts including particles with \(p_T \) below 0.1 GeV. They are evaluated as a function of \(\eta \), \(\Delta \eta \), and \(\Delta z \) both for the fiducial region, \(p_T > 0.1 \) GeV, and for full acceptance, \(p_T > 0 \) GeV. The results are presented in \(\eta \)-intervals of 0.1 unit width. Due to the excellent \(\eta \)-resolution of the tracklets, as seen from Fig. 4, migration of tracklets between neighbouring bins is negligible.

The fully corrected, per-event charged-particle pseudorapidity distributions are calculated according to

\[
\frac{dN_{ch}}{d\eta} = \frac{1}{\Delta \eta} \sum \Delta N_{tr}(O, z_{vtx}, \eta) C(O, z_{vtx}, \eta) \sum N_{ev}(z_{vtx}),
\]

where \(\Delta N_{tr} \) indicates either the number of reconstructed pixel tracks or two-point tracklets, \(N_{ev}(z_{vtx}) \) is the number of analysed events in the intervals of the primary vertex along the \(z \) direction, and the sum in Eq. (5) runs over primary vertex intervals. The number of primary vertex intervals varies from seven for \(|\eta| < 2.2 \) for two-point tracklets and \(|\eta| < 2 \) for pixel tracks to two at the edges of the measured pseudorapidity range of \(|\eta| < 2.7 \) for two-point tracklets and \(|\eta| < 2.5 \) for pixel tracks respectively. The primary vertex intervals used in the analysis are chosen such that \(C(O, z_{vtx}, \eta) \) changes by less than 20% between any pair of adjacent \(z_{vtx} \) intervals.

Figure 6 shows the effect of the applied correction for all three methods. The left panels shows the MC simulation results based on HIJING. The distribution of generated primary charged particles is shown by a solid line and the distributions of reconstructed tracks and tracklets are indicated by markers in the upper left panel. The lower left panel shows the ratio of reconstructed distributions to the generated distribution. Among the three methods, the corrections for Method 1 are the smallest, while the pixel track method requires the largest corrections. The structure of the measured distribution for the pixel track method around \(\eta = \pm 2 \) is related to the transition between the barrel and endcap regions of the detector. The open markers in the right panel of Fig. 6 show the reconstructed distribution from the data and the filled markers are the corresponding distribution for the three methods after applying corrections derived from the simulation. The lower panel shows the ratio of the results obtained from Method 2 and the pixel track method to that obtained using Method 1. The three methods agree within 2% in the barrel region of the detector and within 3% in the endcap region. This agreement demonstrates that the rejection of fake track or tracklets and the correction procedure are well understood. For this paper, Method 1 is chosen as the default result for \(dN_{ch}/d\eta \), Method 2 is used when evaluating systematic uncertainties, and the pixel track method is used primarily as a consistency test, as discussed in detail below.

7 Systematic uncertainties

The systematic uncertainties on the \(dN_{ch}/d\eta \) measurement arise from three main sources: inaccuracies in the simulated detector geometry, sensitivity to selection criteria used in the analysis including the residual contributions of fake tracklets.
Fig. 6 Left top distribution from the MC simulation for the generated number of primary charged particles per event ($dN_{ch}/d\eta$) shown with line, reconstructed number per event ($1/N_{evtd}dN_{tr}/d\eta$) of tracklets from Method 1 shown with circles, tracklets from Method 2 after flipped event subtraction shown with squares, and pixel tracks shown with diamonds. Left bottom the ratio of reconstructed to generated tracklets and pixel tracks. Right top: open markers represent the same $1/N_{evtd}dN_{tr}/d\eta$ distributions as in the left panel, reconstructed in the data. Filled markers of the same shape represent corrected distributions corresponding to $dN_{ch}/d\eta$. Right bottom the ratio of corrected distributions of Method 2 and pixel tracks to Method 1.

Table 1 Summary of the various sources of systematic uncertainty and their estimated impact on the $dN_{ch}/d\eta$ measurement in central (0–1 %) and peripheral (60–90 %) $p + Pb$ collisions.

<table>
<thead>
<tr>
<th>Source</th>
<th>60–90 % centrality</th>
<th>0–1 % centrality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barrel (%)</td>
<td>Endcap (%)</td>
</tr>
<tr>
<td>Inactive modules</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Extra material</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Tracklet selection</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>p_T reweighting</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Particles with $p_T \leq 0.1$ GeV</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Particle composition</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Contribution of fake tracklets</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Event selection efficiency</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Total</td>
<td>5.7</td>
<td>7.9</td>
</tr>
</tbody>
</table>

The amount of inactive detector material in the tracking system is known with a precision of 5 % in the central region and up to 15 % in the forward region. In order to study the effect on the tracking efficiency, samples generated with increased material budget are used. The net effect on the final result is found to be 0.5–3 % independent of centrality.

Uncertainties due to tracklet selection cuts are evaluated by independently varying the cuts on $|\Delta \eta|$ and $|\Delta \phi|$ up and down by 40 %. The effect of these variations is less than 1 %, except at large values of $|\eta|$ where it is 1.5 %, and has only a weak centrality dependence.

The systematic uncertainty due to applying the p_T reweighting procedure to the generated particles is taken from the difference in $dN_{ch}/d\eta$ between applying and not applying the reweighting procedure. The uncertainty is less than 1 % and secondary particles, and differences between the generated particles used in the simulation and the data. To determine the systematic uncertainties, the analysis is repeated in full for different variations of parameters or methods and the results are compared to the standard Method 1 results. A summary of the results are presented in Table 1.

The uncertainty due to the simulated detector geometry arises primarily from the details of the pixel detector acceptance and efficiency. The locations of the inactive pixel modules are matched between the data and simulation. Areas smaller than a single module that are found to have intermittent inefficiencies are estimated to contribute less than 1.7 % uncertainty to the final result. This uncertainty has no centrality dependence, and is approximately independent of pseudorapidity.

and secondary particles, and differences between the generated particles used in the simulation and the data. To determine the systematic uncertainties, the analysis is repeated in full for different variations of parameters or methods and the results are compared to the standard Method 1 results. A summary of the results are presented in Table 1.

The uncertainty due to the simulated detector geometry arises primarily from the details of the pixel detector acceptance and efficiency. The locations of the inactive pixel modules are matched between the data and simulation. Areas smaller than a single module that are found to have intermittent inefficiencies are estimated to contribute less than 1.7 % uncertainty to the final result. This uncertainty has no centrality dependence, and is approximately independent of pseudorapidity.

The amount of inactive detector material in the tracking system is known with a precision of 5 % in the central region and up to 15 % in the forward region. In order to study the effect on the tracking efficiency, samples generated with increased material budget are used. The net effect on the final result is found to be 0.5–3 % independent of centrality.

Uncertainties due to tracklet selection cuts are evaluated by independently varying the cuts on $|\Delta \eta|$ and $|\Delta \phi|$ up and down by 40 %. The effect of these variations is less than 1 %, except at large values of $|\eta|$ where it is 1.5 %, and has only a weak centrality dependence.

The systematic uncertainty due to applying the p_T reweighting procedure to the generated particles is taken from the difference in $dN_{ch}/d\eta$ between applying and not applying the reweighting procedure. The uncertainty is less than 1 % and secondary particles, and differences between the generated particles used in the simulation and the data. To determine the systematic uncertainties, the analysis is repeated in full for different variations of parameters or methods and the results are compared to the standard Method 1 results. A summary of the results are presented in Table 1.

The uncertainty due to the simulated detector geometry arises primarily from the details of the pixel detector acceptance and efficiency. The locations of the inactive pixel modules are matched between the data and simulation. Areas smaller than a single module that are found to have intermittent inefficiencies are estimated to contribute less than 1.7 % uncertainty to the final result. This uncertainty has no centrality dependence, and is approximately independent of pseudorapidity.

The amount of inactive detector material in the tracking system is known with a precision of 5 % in the central region and up to 15 % in the forward region. In order to study the effect on the tracking efficiency, samples generated with increased material budget are used. The net effect on the final result is found to be 0.5–3 % independent of centrality.

Uncertainties due to tracklet selection cuts are evaluated by independently varying the cuts on $|\Delta \eta|$ and $|\Delta \phi|$ up and down by 40 %. The effect of these variations is less than 1 %, except at large values of $|\eta|$ where it is 1.5 %, and has only a weak centrality dependence.

The systematic uncertainty due to applying the p_T reweighting procedure to the generated particles is taken from the difference in $dN_{ch}/d\eta$ between applying and not applying the reweighting procedure. The uncertainty is less than 1 % and secondary particles, and differences between the generated particles used in the simulation and the data. To determine the systematic uncertainties, the analysis is repeated in full for different variations of parameters or methods and the results are compared to the standard Method 1 results. A summary of the results are presented in Table 1.

The uncertainty due to the simulated detector geometry arises primarily from the details of the pixel detector acceptance and efficiency. The locations of the inactive pixel modules are matched between the data and simulation. Areas smaller than a single module that are found to have intermittent inefficiencies are estimated to contribute less than 1.7 % uncertainty to the final result. This uncertainty has no centrality dependence, and is approximately independent of pseudorapidity.

The amount of inactive detector material in the tracking system is known with a precision of 5 % in the central region and up to 15 % in the forward region. In order to study the effect on the tracking efficiency, samples generated with increased material budget are used. The net effect on the final result is found to be 0.5–3 % independent of centrality.

Uncertainties due to tracklet selection cuts are evaluated by independently varying the cuts on $|\Delta \eta|$ and $|\Delta \phi|$ up and down by 40 %. The effect of these variations is less than 1 %, except at large values of $|\eta|$ where it is 1.5 %, and has only a weak centrality dependence.

The systematic uncertainty due to applying the p_T reweighting procedure to the generated particles is taken from the difference in $dN_{ch}/d\eta$ between applying and not applying the reweighting procedure. The uncertainty is less than 1 % and secondary particles, and differences between the generated particles used in the simulation and the data. To determine the systematic uncertainties, the analysis is repeated in full for different variations of parameters or methods and the results are compared to the standard Method 1 results. A summary of the results are presented in Table 1.

The uncertainty due to the simulated detector geometry arises primarily from the details of the pixel detector acceptance and efficiency. The locations of the inactive pixel modules are matched between the data and simulation. Areas smaller than a single module that are found to have intermittent inefficiencies are estimated to contribute less than 1.7 % uncertainty to the final result. This uncertainty has no centrality dependence, and is approximately independent of pseudorapidity.

The amount of inactive detector material in the tracking system is known with a precision of 5 % in the central region and up to 15 % in the forward region. In order to study the effect on the tracking efficiency, samples generated with increased material budget are used. The net effect on the final result is found to be 0.5–3 % independent of centrality.

Uncertainties due to tracklet selection cuts are evaluated by independently varying the cuts on $|\Delta \eta|$ and $|\Delta \phi|$ up and down by 40 %. The effect of these variations is less than 1 %, except at large values of $|\eta|$ where it is 1.5 %, and has only a weak centrality dependence.

The systematic uncertainty due to applying the p_T reweighting procedure to the generated particles is taken from the difference in $dN_{ch}/d\eta$ between applying and not applying the reweighting procedure. The uncertainty is less than 1 % and secondary particles, and differences between the generated particles used in the simulation and the data. To determine the systematic uncertainties, the analysis is repeated in full for different variations of parameters or methods and the results are compared to the standard Method 1 results. A summary of the results are presented in Table 1.

The uncertainty due to the simulated detector geometry arises primarily from the details of the pixel detector acceptance and efficiency. The locations of the inactive pixel modules are matched between the data and simulation. Areas smaller than a single module that are found to have intermittent inefficiencies are estimated to contribute less than 1.7 % uncertainty to the final result. This uncertainty has no centrality dependence, and is approximately independent of pseudorapidity.
than 0.5 % for $|\eta| < 1.5$ and grows to 3.0 % towards the edges of the η acceptance. The uncertainty has a centrality dependence because the p_T distributions in central and peripheral collisions are different.

Tracklets are reconstructed using Method 1 for particles with $p_T > 0.1$ GeV. The unmeasured region of the spectrum contributes approximately 6 % to the final $dN_{ch}/d\eta$ distribution. The systematic uncertainty on the number of particles with $p_T \leq 0.1$ GeV is partially included in the variation of the tracklet $\Delta \phi$ selection criteria. An additional uncertainty is evaluated by varying the shape of the spectra below 0.1 GeV. This uncertainty is estimated to be as much as 2.5 % at large values of $|\eta|$ and has a weak centrality dependence.

To test the sensitivity to the particle composition in HIJING, the fraction of pions, kaons and protons in HIJING are varied within a range based on measured differences in particle composition between pp and Pb+Pb collisions [60,61]. The resulting changes in $dN_{ch}/d\eta$ are found to be less than 1 % for all centrality intervals.

Systematic uncertainties due to the fake tracklets are estimated by comparing the results of the two tracklet methods. The differences in the most central collisions are found to vary with pseudorapidity from 1.5 % in the barrel region to about 2.5 % at the ends of the measured pseudorapidity range.

The uncertainty associated with the event selection efficiency for the fiducial class of $p + $Pb events is evaluated by defining new $\sum E_T^{10}$ centrality ranges after accounting for an increase (decrease) in the efficiency by 2 % and repeating the full analysis. This resulting change of the $dN_{ch}/d\eta$ distribution is less than 0.5 % in central collisions; it increases to 6 % in peripheral collisions.

The uncertainties from each source were evaluated separately in each centrality and pseudorapidity to allow for their partial or complete cancellation in the ratios of $dN_{ch}/d\eta$ distributions. The impact in different regions of pseudorapidity and centrality are shown in different columns of Table 1. Uncertainties coming from different sources and listed in the same column are treated as independent. The resulting total systematic uncertainty shown in the lower line of the table is the sum in quadrature of the individual contributions.

8 Results

Figure 7 presents the charged-particle pseudorapidity distribution $dN_{ch}/d\eta$ for $p + $Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in the pseudorapidity interval $|\eta| < 2.7$ for several centrality intervals. The left panel shows the $dN_{ch}/d\eta$ distribution measured in the fiducial acceptance of the ATLAS detector, detecting particles with $p_T > 0.1$ GeV. The results for the $dN_{ch}/d\eta$ distribution with $p_T > 0$ GeV are shown in the right panel of Fig. 7. The charged-particle pseudorapidity distribution increases by typically 5 %, consistent with extrapolation of spectra measured in pp collisions to zero p_T [40]. At the edges of the measured pseudorapidity interval, it increases $dN_{ch}/d\eta$ by 11 %.

In the most peripheral collisions with a centrality of 60–90 %, the $dN_{ch}/d\eta$ distribution has a doubly-peaked shape similar to that seen in pp collisions [40,62]. In collisions that are more central, the shape of $dN_{ch}/d\eta$ becomes progressively more asymmetric, with more particles produced in the Pb-going direction than in the proton-going direction.

![Fig. 7](image-url) Charged-particle pseudorapidity distribution measured in several centrality intervals. Left $dN_{ch}/d\eta$ for charged particles with $p_T > 0.1$ GeV. Right $dN_{ch}/d\eta$ for charged particles with $p_T > 0$ GeV. Statistical uncertainties, shown with vertical bars, are typically smaller than the marker size. Shaded bands indicate systematic uncertainties on the measurements.
To investigate further the centrality evolution, the \(dN_{\text{ch}}/d\eta \) distributions in each centrality interval are divided by the \(dN_{\text{ch}}/d\eta \) distribution for the 60–90 % interval. The results are shown in Fig. 8, where the double-peak structure disappears in the ratios. The ratios are observed to grow nearly linearly with decreasing pseudorapidity, with a slope whose magnitude increases from peripheral to central collisions. In the 0–1 % centrality interval, the ratio changes by almost a factor of two over the measured \(\eta \)-range. The greatest increase in multiplicity between adjacent centrality intervals occurs between the 1–5 and 0–1 % intervals. Averaged over the \(\eta \)-interval of the measurement, the \(dN_{\text{ch}}/d\eta \) distribution increases by more than 25 % between the 1–5 and 0–1 % intervals.

In addition to the results presented in Figs. 7 and 8, the \(dN_{\text{ch}}/d\eta \) measurement is repeated using the alternative definitions of the event centrality variables defined in Sect. 5. Figure 9 demonstrates the sensitivity of the measured \(dN_{\text{ch}}/d\eta \) to the choice of centrality variable by showing the ratios of the \(dN_{\text{ch}}/d\eta \) distributions in the most central and most peripheral intervals under the \(\sum E_T^{\eta<4} \) and \(\sum E_T^{3.6<|\eta|<4.4} \) centrality definitions to those obtained with the nominal \(\sum E_T^{\text{Pb}} \) definition. Using the \(\sum E_T^{\eta<4} \) centrality definition, the \(dN_{\text{ch}}/d\eta \) distributions change in an approximately \(\eta \)-independent fashion by -3 and +3 % for the 0–1 and 60–90 % intervals, respectively. The \(dN_{\text{ch}}/d\eta \) distributions in the other centrality intervals change in a manner that effectively interpolates between these extremes. As a result, the increase in \(dN_{\text{ch}}/d\eta \) between the most peripheral and most central collisions would be reduced by 6 % relative to the nominal measurement. Using the symmetric, \(\sum E_T^{3.6<|\eta|<4.4} \) centrality definition, the \(dN_{\text{ch}}/d\eta \) distribution in each interval changes in an \(\eta \)-dependent way such that the ratio is consistent with a linear function of \(\eta \). The change is at most 6 % at the ends of the \(\eta \) range in the most central and most peripheral centrality intervals, and smaller elsewhere. Thus, for the symmetric centrality selection the ratios in Fig. 8 for the 0–1 % bin would increase by 9 % at \(\eta = 2.7 \), and decrease by 6 % at \(\eta = -2.7 \). Generally, the alternative centrality definitions considered in this analysis yield no qualitative and only modest quantitative changes in the centrality dependence of the \(dN_{\text{ch}}/d\eta \) distributions. These variations should not be considered a systematic uncertainty on the \(dN_{\text{ch}}/d\eta \) measurement but do indicate that the particular centrality method used in the analysis must be accounted for when interpreting the results of the measurement.

Figure 10 shows a comparison, where possible, of the measurements presented in this paper to results from the ALICE experiment [31] using a centrality definition that is based on the detector covering the pseudorapidity region \(-5.1 < \eta < -2.8\), similar to the \(\sum E_T^{\text{Pb}} \)-based selection used in this measurement. The ATLAS results for 0–1 and 1–5 % centrality intervals are combined to match the ALICE experiment result for 0–5 % interval. Similarly, the 20–30 and 30–40 % intervals are combined to match the ALICE experiment result for 20–40 % interval. The results from the two experiments are consistent with each other.

9 Particle multiplicities per participant pair

A common way of representing the centrality dependence of particle yields in A+A and \(p+p \) collisions is by showing the
yield per participant or per participant pair, $\langle N_{\text{part}} \rangle / 2$, which is determined for each centrality interval and each geometrical model as shown in Fig. 3. Figure 11 shows $dN_{\text{ch}}/d\eta$ per participant pair for the most central and most peripheral intervals of centrality measured as a function of η for three different models of the collisions geometry: the standard Glauber model and the GGCF model with $\omega_\sigma = 0.11$ and 0.2 in the top, middle and lower panels, respectively. The results for the most peripheral (60–90 %) centrality interval, shown with circles, are similar between all three panels. This is due to relatively small difference between the calculations of $\langle N_{\text{part}} \rangle$ for Glauber and GGCF models in this centrality interval. The shape of the distribution indicates more abundant particle production in the proton-going direction in comparison to the Pb-going. This can be explained by the higher energy of the proton compared to the energy of a single nucleon in the lead nucleus in the laboratory system. In the most central collisions (0–1 %), shown with diamond markers in all three panels, this trend is reversed. Conversely, the magnitude of $dN_{\text{ch}}/d\eta$ per participant pair strongly depends on the geometric model used to calculate $\langle N_{\text{part}} \rangle$. The point at which the central and peripheral scaled distributions cross each other also depends on the choice of geometric model.

Figure 12 shows the $dN_{\text{ch}}/d\eta$ distribution per participant pair as a function of $\langle N_{\text{part}} \rangle$ for the three different models of the collisions geometry. Since the charged-particle yields have significant pseudorapidity dependence, $dN_{\text{ch}}/d\eta$/($\langle N_{\text{part}} \rangle$/2) is presented in five η intervals including the full pseudorapidity interval, $-2.7 < \eta < 2.7$. In the region $0 < \eta < 1$, the $dN_{\text{ch}}/d\eta$ distribution is consistent with an empirical fit to inelastic pp data that suggest $dN_{\text{ch}}/d\eta$ increases with centre-of-mass energy, \sqrt{s}, as $\propto s^{0.10}$ [16].

The $dN_{\text{ch}}/d\eta$/($\langle N_{\text{part}} \rangle$/2) values from the standard Glauber model are approximately constant up to $\langle N_{\text{part}} \rangle \approx 10$ and then increase for larger $\langle N_{\text{part}} \rangle$. This trend is absent in the GGCF model with $\omega_\sigma = 0.11$, which shows a relatively constant behaviour for the integrated yield divided by the number of participant pairs. The $dN_{\text{ch}}/d\eta$/($\langle N_{\text{part}} \rangle$/2) values from the GGCF model with $\omega_\sigma = 0.2$ show a slight decrease with $\langle N_{\text{part}} \rangle$ in all η intervals.

The presence or absence of $\langle N_{\text{part}} \rangle$ scaling does not suggest a preference for one or another of the geometric models. However, this study emphasises that considering fluctuations of the nucleon–nucleon cross-section in the GGCF model may lead to significant changes in the N_{part} scaling behaviour of the $p + \text{Pb}$ $dN_{\text{ch}}/d\eta$ data and, thus, their interpretations.
The shape of $dN_{\text{ch}}/d\eta$ evolves gradually with centrality from an approximately symmetric shape in the most peripheral collisions to a highly asymmetric distribution in the most central collisions. The ratios of $dN_{\text{ch}}/d\eta$ measured in different centrality intervals to the $dN_{\text{ch}}/d\eta$ distribution in the most peripheral interval are approximately linear in η with a slope that is strongly dependent on centrality. It is noteworthy that the greatest increase in charged-particle multiplicity between successive centrality bins occurs between the 1–5 and 0–1% centrality bins.

The results are also interpreted using models of the underlying collision geometry. The average number of participants in each centrality interval, $\langle N_{\text{part}} \rangle$, is estimated using a standard Glauber model Monte Carlo simulation with a fixed nucleon–nucleon cross-section, as well as with two Glauber–Gribov colour fluctuation models which allow the nucleon–nucleon cross-section to fluctuate event-by-event. The N_{part} dependence of $dN_{\text{ch}}/d\eta/\langle N_{\text{part}} \rangle/2$ is found to be sensitive to the modelling of the $p + \text{Pb}$ collision geometry, especially in the most central collisions: while the standard Glauber modelling leads to a strong increase in the multiplicity per participant pair for collisions in the centrality range (0–30)% the GGCF model produces a much milder centrality dependence.

These results point to the importance of understanding not just the initial state of the nuclear wave function, but also the fluctuating nature of nucleon–nucleon collisions themselves.

Acknowledgments We honour the memory of our colleague Alexey Antonov, who was closely involved in the work described here, and died shortly after its completion. We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CENBG and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COCIENTCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DMSF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GRS, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MINE/FA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, UK. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the
Appendix: Glauber model analysis

The PHOBOS Glauber MC program [53] is used to perform the standard Glauber model calculations used in this analysis. The Pb nucleon density is taken to be a Woods–Saxon distribution with radius and skin depth parameters, \(R = 6.62 \text{ fm} \) and \(a = 0.546 \text{ fm} \) [63], respectively. The nucleon–nucleon inelastic cross-section is taken to be 70 mb. The resulting probability distribution, \(P(N_{\text{part}}) \), of the number of participating nucleons \(N_{\text{part}} \) – nucleons that undergo at least one hadronic scattering during the \(p + \text{Pb} \) collision – is shown in Fig. 13.

The GGCF model is implemented in a modified version of the PHOBOS MC program. Following Ref. [36], the probability distribution to find the nucleons in a configuration having a nucleon–nucleon scattering cross-section, \(\sigma \), is taken to be

\[
P(\sigma) = \rho \left(\frac{\sigma}{\sigma + \sigma_0} \right) \exp \left\{ -\frac{(\sigma/\sigma_0 - 1)^2}{\Omega^2} \right\}.
\]

Here, \(\rho \) is a normalisation constant, \(\Omega \) controls the width of the \(P(\sigma) \) distribution, and \(\sigma_0 \) determines the configuration-averaged total cross-section \(\sigma_{\text{tot}} \equiv \langle \sigma \rangle \). The inelastic cross-section, \(\sigma_{\text{NN}} \), is taken to be a constant fraction, \(\lambda \), of the total cross-section [37] so the probability distribution of \(\sigma_{\text{NN}} \) is given by

\[
P_H(\sigma_{\text{NN}}) = \frac{1}{\lambda} P(\sigma_{\text{NN}}/\lambda).
\]

The values used in this analysis for \(\Omega \), \(\sigma_0 \), \(\sigma_{\text{tot}} \) and \(\lambda \), corresponding to \(\omega_{\text{tr}} = 0.11 \), are shown in Table 2. The first, earlier analysis yielding \(\omega_\alpha = 0.11 \) [36] assumed \(\sigma_{\text{tot}} = 86 \text{ mb} \), consistent with the Donnachie and Landshoff [64] parameterisation of \(\sigma_{\text{tot}} \). The second analysis yielding \(\omega_{\text{tr}} = 0.2 \) used an updated measurement of the \(pp \) total cross-section at the LHC [65] to set \(\sigma_{\text{tot}} = 94.8 \text{ mb} \). However, modifying the parameters for the \(\omega_{\text{tr}} = 0.11 \) case to be consistent with this improved knowledge of \(\sigma_{\text{tot}} \) produces a negligible change in the resulting \(P(\sigma) \) distribution. The values for \(\lambda \) are chosen to produce the above-quoted nucleon–nucleon inelastic cross-section of 70 mb. The GGCF \(P_H(\sigma_{\text{NN}}) \) distributions are shown in the inset of Fig. 13, while the resulting \(P(N_{\text{part}}) \) distributions are shown in the main panel of the figure.

To connect an experimental measurement of collision centrality such as \(\sum E_T^{\text{Pb}} \) to the results of the Glauber or GGCF Monte Carlo simulation, a model for the \(N_{\text{part}} \) dependence of the \(\sum E_T^{\text{Pb}} \) distribution is required. The usual basis for models previously applied to \(A + A \) and \(p/d + A \) collisions is the WN model [12], which predicts that the average \(\sum E_T^{\text{Pb}} \) increases proportionally to \(N_{\text{part}} \) with the proportionality constant equal to one half the corresponding average FCal \(\sum E_T \) in \(pp \) collisions.

Under the WN model, the \(\sum E_T^{\text{Pb}} \) distribution for fixed \(N_{\text{part}} \) would be obtained from a \(N_{\text{part}} \)-fold convolution of the corresponding distribution in \(pp \) collisions. This convolution is straightforward if the \(\sum E_T \) distribution in \(pp \) collisions is described by a gamma distribution [66]

\[
\gamma \left(\sum E_T ; k, \theta \right) = \frac{1}{\Gamma(k)} \frac{1}{\theta^k} \left(\frac{\sum E_T}{\theta} \right)^{k-1} e^{-\sum E_T/\theta},
\]

Here, \(\rho \) is a normalisation constant, \(\Omega \) controls the width of the \(P(\sigma) \) distribution, and \(\sigma_0 \) determines the configuration-averaged total cross-section \(\sigma_{\text{tot}} \equiv \langle \sigma \rangle \). The inelastic cross-section, \(\sigma_{\text{NN}} \), is taken to be a constant fraction, \(\lambda \), of the total cross-section [37] so the probability distribution of \(\sigma_{\text{NN}} \) is given by

\[
P_H(\sigma_{\text{NN}}) = \frac{1}{\lambda} P(\sigma_{\text{NN}}/\lambda).
\]

The values used in this analysis for \(\Omega \), \(\sigma_0 \), \(\sigma_{\text{tot}} \) and \(\lambda \), corresponding to \(\omega_{\text{tr}} = 0.11 \), are shown in Table 2. The first, earlier analysis yielding \(\omega_\alpha = 0.11 \) [36] assumed \(\sigma_{\text{tot}} = 86 \text{ mb} \), consistent with the Donnachie and Landshoff [64] parameterisation of \(\sigma_{\text{tot}} \). The second analysis yielding \(\omega_{\text{tr}} = 0.2 \) used an updated measurement of the \(pp \) total cross-section at the LHC [65] to set \(\sigma_{\text{tot}} = 94.8 \text{ mb} \). However, modifying the parameters for the \(\omega_{\text{tr}} = 0.11 \) case to be consistent with this improved knowledge of \(\sigma_{\text{tot}} \) produces a negligible change in the resulting \(P(\sigma) \) distribution. The values for \(\lambda \) are chosen to produce the above-quoted nucleon–nucleon inelastic cross-section of 70 mb. The GGCF \(P_H(\sigma_{\text{NN}}) \) distributions are shown in the inset of Fig. 13, while the resulting \(P(N_{\text{part}}) \) distributions are shown in the main panel of the figure.

To connect an experimental measurement of collision centrality such as \(\sum E_T^{\text{Pb}} \) to the results of the Glauber or GGCF Monte Carlo simulation, a model for the \(N_{\text{part}} \) dependence of the \(\sum E_T^{\text{Pb}} \) distribution is required. The usual basis for models previously applied to \(A + A \) and \(p/d + A \) collisions is the WN model [12], which predicts that the average \(\sum E_T^{\text{Pb}} \) increases proportionally to \(N_{\text{part}} \) with the proportionality constant equal to one half the corresponding average FCal \(\sum E_T \) in \(pp \) collisions.

Under the WN model, the \(\sum E_T^{\text{Pb}} \) distribution for fixed \(N_{\text{part}} \) would be obtained from a \(N_{\text{part}} \)-fold convolution of the corresponding distribution in \(pp \) collisions. This convolution is straightforward if the \(\sum E_T \) distribution in \(pp \) collisions is described by a gamma distribution [66]
since gamma distributions have the property that an N-fold convolution of a gamma distribution with parameters k and θ yields another gamma distribution with the same θ and a modified k parameter, $k' = Nk$.

Attempts to fit the measured $\sum E^\text{Pb}_T$ distribution using pure WN-convolved gamma distributions and the Glauber N_{part} distribution yield unphysical results for the nucleon–nucleon parameters, k_0 and θ_0, when those parameters are free parameters of the fit. In particular, k_0 is less than unity, which implies a $\sum E_T$ distribution that increases with decreasing $\sum E_T$ faster than $e^{-\sum E_T/\theta_0}$, and θ_0 is unrealistically large. The resulting nucleon–nucleon $\sum E_T$ distribution is also inconsistent with that measured in pp collisions [67]. The poor behaviour of the WN model is primarily due to the difference in shape between the Glauber N_{part} distribution and the measured $\sum E^\text{Pb}_T$ distribution. To improve the description of the measured $\sum E^\text{Pb}_T$ distribution, a generalisation of the WN model is implemented that parameterises the N_{part} dependence of the k and θ parameters of the gamma distribution as

$$k(N_{\text{part}}) = k_0 + k_1(N_{\text{part}} - 2),$$

$$\theta(N_{\text{part}}) = \theta_0 + \theta_1 \log(N_{\text{part}} - 1).$$

For $k_1 = k_0/2$ and $\theta_1 = 0$, this model reduces to the WN model. The $\log(N_{\text{part}} - 1)$ term allows for a possible variation in the effective acceptance of the FCal due to an N_{part}-dependent backward shift in the $p + \text{Pb}$ centre-of-mass system [68].

To limit the number of free parameters when fitting the $\sum E^\text{Pb}_T$ distribution, k_0 and θ_0 are obtained by fitting the detector-level $\sum E^{\text{det}}_T$ distributions in PYTHIA6 and PYTHIA8 pp simulations. These simulations have been shown to give a reasonable description of the corresponding pp collision data at $\sqrt{s} = 7$ TeV [67] although they both slightly under-predict the average forward transverse energy. The contribution of electronic noise to the simulated distribution was determined by examining the $\sum E^\text{Pb}_T$ distribution in empty beam bunch crossings in data. In the fit, the gamma distributions were convolved with the effects of this noise before comparison with the data. The PYTHIA8 fit results, $k_0 = 1.40$ and $\theta_0 = 3.41$, are used for the default analysis. The PYTHIA6 fit results, $k_0 = 1.23$ and $\theta_0 = 2.68$, are used to evaluate systematic uncertainties.

The measured $\sum E^\text{Pb}_T$ distribution is fitted with a distribution produced by summing the N_{part}-dependent gamma distributions, after weighting them by $P(N_{\text{part}})$ and including an additional convolution to account for electronic noise. The model distribution is also re-weighted to properly describe the $\sum E^\text{Pb}_T$-dependent event selection efficiency in the data, which is estimated using the PYTHIA MC samples under the assumption that the $p + \text{Pb}$ inefficiency for a given $\sum E^\text{Pb}_T$ is the same as that in pp collisions. Results are shown in Fig. 14 for the Glauber model and the two GGCF models.

![Fig. 14 Top panel measured $\sum E^\text{Pb}_T$ distribution compared to Glauber (solid), GGCF with $\omega_\sigma = 0.2$ (long dashed), and GGCF with $\omega_\sigma = 0.11$ (short dashed) fits. Lower panels ratios of Glauber and GGCF fit distributions to the data distribution](image-url)

Table 3 Optimal fit parameters and uncertainties obtained from fits to the measured $\sum E^\text{Pb}_T$ distribution. Uncertainties on the fit parameters are shown in parenthesis

<table>
<thead>
<tr>
<th>Glauber model</th>
<th>k_1</th>
<th>k_1/k_0</th>
<th>θ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Glauber</td>
<td>0.425(2)</td>
<td>0.304(1)</td>
<td>$+1.32(1)$</td>
</tr>
<tr>
<td>GGCF $\omega_\sigma = 0.11$</td>
<td>0.901(3)</td>
<td>0.643(2)</td>
<td>$+0.074(4)$</td>
</tr>
<tr>
<td>GGCF $\omega_\sigma = 0.2$</td>
<td>1.139(3)</td>
<td>0.813(2)</td>
<td>$-0.209(2)$</td>
</tr>
</tbody>
</table>

The fits provide a good description of the $\sum E^\text{Pb}_T$ distribution for $\sum E^\text{Pb}_T < 100$ GeV for all three geometric models, although at higher $\sum E^\text{Pb}_T$ the Glauber fit describes the data better. The deviations of the GGCF fits from the data become significant near $\sum E^\text{Pb}_T = 120$ GeV; the fraction of the total $\sum E^\text{Pb}_T$ distribution above this value is approximately 0.1%.

The parameters k_1 and θ_1 are obtained from fixing k_0 and θ_0 and fitting the $\sum E_T$ distribution to the data. They are presented in Table 3 along with the ratios k_1/k_0 for each of the geometric models. Pure WN behaviour would correspond to $k_1/k_0 = 0.5$ and $\theta_1 = 0$. The results indicate substantial deviations from WN behaviour for the Glauber and GGCF $\omega_\sigma = 0.2$ fits, while the GGCF $\omega_\sigma = 0.11$ fit yields both a k_1/k_0 that is close to 0.5 and a small θ_1. The success of the above-described fitting procedure in describing
the measured \(\sum E_{T}^{\text{Pb}} \) distributions using parameterisations of the \(N_{\text{part}} \) dependence of the \(\sum E_{T}^{\text{Pb}} \) response with only two free parameters is due to the similarity of the shapes of the \(P(N_{\text{part}}) \) distribution and the measured \(\sum E_{T}^{\text{Pb}} \) distributions. However, the pronounced knee in the Glauber \(P(N_{\text{part}}) \) distribution requires more non-linearity in the \(N_{\text{part}} \) dependence of the \(\sum E_{T}^{\text{Pb}} \) response. In contrast, the lack of such a feature in the GGCF \(P(N_{\text{part}}) \) distributions allows a simpler description of the measured \(\sum E_{T}^{\text{Pb}} \) distribution.

The results of the fit procedure described above provide a data-driven estimate of the total event selection efficiency. For the default PYTHIA8-based results, the integral of the simulated \(\sum E_{T}^{\text{Pb}} \) distribution is 2 % higher than that in the data. The deficit in the data is concentrated at low \(\sum E_{T}^{\text{Pb}} \) values, consistent with losses due to event selection. However, a detailed analysis of the residual differences between the best fit and measured distributions indicates an excess of very low \(\sum E_{T}^{\text{Pb}} \) events in the data, which varies from \(\sim 0 \) % for the Glauber fit to 1.8 % for the GGCF fit with \(\omega_{\sigma} = 0.2 \). These may arise from residual diffractive or photo-nuclear collisions and are considered background. For the purpose of defining \(\sum E_{T}^{\text{Pb}} \) centrality intervals, this background effectively increases the event-selection efficiency by adding events that are all in the 90–100 % centrality interval. For PYTHIA6, the \(\sum E_{T}^{\text{Pb}} \) fits using the default model yield a total efficiency of 97 % and up to 1 % background. The alternative models for \(k(N_{\text{part}}) \) and \(\theta(N_{\text{part}}) \) yield a similar total efficiency of 98 % and a background rate as high as 2 %, a rate that is compatible with independent estimates of the rate for collisions involving diffractive excitation of the proton to pass the applied event selections. Based on these results, the total effective efficiency including background is then taken to be 98 % and the uncertainty is conservatively estimated to be 2 %.

The \(\langle N_{\text{part}} \rangle \) values are obtained for each of the centrality intervals using the results of the fits to the \(\sum E_{T}^{\text{Pb}} \) distributions. The \(\langle N_{\text{part}} \rangle \) results along with the total systematic uncertainties, which are described below, are shown in Fig. 3 and listed in Table 4.

To obtain systematic errors on \(N_{\text{part}} \) in each centrality interval, the maximum positive and negative fractional variation in \(\langle N_{\text{part}} \rangle \) away from the default results is determined for different classes of variations, detailed below.

To evaluate the impact of the total event selection uncertainty, new centrality intervals are chosen assuming a total efficiency of 100 and 96 % and the complete analysis is repeated. To account for possible inaccuracies in the PYTHIA8-simulated \(dE_{T}/d\eta \) in the region of the FCal acceptance, the analysis is repeated separately under \(\pm 10 \) % rescalings of PYTHIA8 \(\sum E_{T}^{\text{Pb}} \) values commensurate with the scale of the data–PYTHIA8 differences observed in Ref. [67]. Other variations for which the complete analysis is repeated are: (i) using the PYTHIA6 event generator to fix \(k_{0} \) and \(\theta_{0} \), (ii) alternative models for \(k(N_{\text{part}}) \) and \(\theta(N_{\text{part}}) \), (iii) \(\pm 5 \) mb changes in \(\sigma_{\text{NN}} \), and (iv) variations in the parameters of the nuclear density distribution. For the model uncertainty, two alternative parameterisations for \(k(N_{\text{part}}) \) and \(\theta(N_{\text{part}}) \) are used. One of these kept \(\theta \) constant, \(\theta(N_{\text{part}}) = \theta_{0} \) while allowing for a quadratic dependence of \(k \) on \(N_{\text{part}} \). The other included both a quadratic term in \(k(N_{\text{part}}) \) and the logarithmic term in \(\theta(N_{\text{part}}) \) but fixed \(k_{1} = k_{0}/2 \) to reduce the number of free parameters.

The resulting maximal variations are then summed in quadrature over the different classes separately for the positive and negative variations to produce the uncertainties listed in Table 4. The uncertainties for most centrality intervals are dominated by comparable contributions from the choice of model parameterisation, differences between the PYTHIA6 and PYTHIA8 \(\sum E_{T} \) fits, and uncertainties in \(\sigma_{\text{NN}} \). For the 40–

Table 4 \(\langle N_{\text{part}} \rangle \) values for centrality intervals used in this analysis together with asymmetric systematic uncertainties shown as absolute as well as relative uncertainties

<table>
<thead>
<tr>
<th>Centrality (%)</th>
<th>Glauber (\omega_{\sigma} = 0.11)</th>
<th>GGCF (\omega_{\sigma} = 0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60–90</td>
<td>(4.0^{+0.2}_{-0.3}) (+5%) (-8%)</td>
<td>(3.6^{+0.2}_{-0.2}) (+5%) (-5%)</td>
</tr>
<tr>
<td>40–60</td>
<td>(7.4^{+0.4}_{-0.6}) (+6%) (-8%)</td>
<td>(6.6^{+0.4}_{-0.3}) (+6%) (-5%)</td>
</tr>
<tr>
<td>30–40</td>
<td>(9.8^{+0.6}_{-0.6}) (+6%) (-6%)</td>
<td>(9.2^{+0.5}_{-0.5}) (+6%) (-6%)</td>
</tr>
<tr>
<td>20–30</td>
<td>(11.4^{+0.6}_{-0.6}) (+6%) (-6%)</td>
<td>(11.2^{+0.6}_{-0.7}) (+6%) (-6%)</td>
</tr>
<tr>
<td>10–20</td>
<td>(13.6^{+0.6}_{-0.6}) (+6%) (-6%)</td>
<td>(13.7^{+0.4}_{-0.4}) (+6%) (-7%)</td>
</tr>
<tr>
<td>5–10</td>
<td>(14.6^{+1.2}_{-0.8}) (+8%) (-6%)</td>
<td>(16.5^{+1.0}_{-1.0}) (+6%) (-6%)</td>
</tr>
<tr>
<td>1–5</td>
<td>(16.1^{+1.7}_{-0.9}) (+11%) (-6%)</td>
<td>(19.5^{+1.3}_{-1.3}) (+7%) (-7%)</td>
</tr>
<tr>
<td>0–1</td>
<td>(18.2^{+2.7}_{-1.0}) (+15%) (-5%)</td>
<td>(24.1^{+1.6}_{-2.0}) (+8%) (-8%)</td>
</tr>
<tr>
<td>0–90</td>
<td>(8.4^{+0.5}_{-0.4}) (+5%) (-5%)</td>
<td>(8.5^{+0.5}_{-0.5}) (+6%) (-5%)</td>
</tr>
</tbody>
</table>
60 and 60–90 % interval the uncertainty in event selection efficiency has a contribution to the N_{part} systematic uncertainty that is similar in magnitude to these other three sources.

References

1. L. Evans, P. Bryant, JINST 3, S08001 (2008)

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, USA
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a)Department of Physics, Ankara University, Ankara, Turkey; (b)Department of Physics, Gazi University, Istanbul, Turkey; (c)Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey; (d)Turkish Atomic Energy Authority, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
7 Department of Physics, University of Arizona, Tucson, AZ, USA
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, USA
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
19 (a)Department of Physics, Bogazici University, Istanbul, Turkey; (b)Department of Physics Engineering, Dogus University, Istanbul, Turkey; (c)Division of Physics, Gaziantep University, Gaziantep, Turkey
20 (a)INFN Sezione di Bologna, Bologna, Italy; (b)Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Brandeis University, Waltham, MA, USA
23 Department of Physics, Brookhaven National Laboratory, Upton, NY, USA
24 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b)Electrical Circuits Department, Federal University of Juiz de Fora (UFJJF), Juiz de Fora, Brazil; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d)Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (b) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (c) University Politehnica Bucharest, Bucharest, Romania; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, UK
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c) Department of Physics, Nanjing University, Jiangsu, China; (d) School of Physics, Shandong University, Shandong, China; (e) Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, NY, USA
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, USA
41 Physics Department, University of Texas at Dallas, Richardson, TX, USA
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, USA
46 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova, Genoa, Italy; (b) Dipartimento di Fisica, Università di Genova, Genoa, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, USA
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington, IN, USA
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City, IA, USA
63 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, UK
72 (a) INFN Sezione di Lecce, Lecce, Italy; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, UK
76 Department of Physics, Royal Holloway University of London, Surrey, UK
77 Department of Physics and Astronomy, University College London, London, UK
78 Louisiana Tech University, Ruston, LA, USA
79 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
80 Fysiska institutionen, Lunds universitet, Lund, Sweden
81 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
82 Institut für Physik, Universität Mainz, Mainz, Germany
83 School of Physics and Astronomy, University of Manchester, Manchester, UK
84 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
85 Department of Physics, University of Massachusetts, Amherst, MA, USA
86 Department of Physics, McGill University, Montreal, QC, Canada
87 School of Physics, University of Melbourne, Melbourne, VIC, Australia
88 Department of Physics, The University of Michigan, Ann Arbor, MI, USA
89 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
90 (a) INFN Sezione di Milano, Milan, Italy; (b) Dipartimento di Fisica, Università di Milano, Milan, Italy
91 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
93 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
94 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
95 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
96 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
97 National Research Nuclear University MEPhI, Moscow, Russia
98 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
99 Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
100 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
101 Nagasaki Institute of Applied Science, Nagasaki, Japan
102 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
103 (a) INFN Sezione di Napoli, Naples, Italy; (b) Dipartimento di Fisica, Università di Napoli, Naples, Italy
104 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
105 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
107 Department of Physics, Northern Illinois University, De Kalb, IL, USA
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York, NY, USA
110 Ohio State University, Columbus, OH, USA
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
113 Department of Physics, Oklahoma State University, Stillwater, OK, USA
114 Palacký University, RCPTM, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, UK
120 (a) INFN Sezione di Pavia, Pavia, Italy; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
121 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
122 National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
123 (a) INFN Sezione di Pisa, Pisa, Italy; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
124 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
125 (a) Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal; (b) Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c) Department of Physics, University of Coimbra, Coimbra, Portugal; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e) Departamento de Física, Universidade do Minho, Braga, Portugal; (f) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g) Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
126 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
129 State Research Center Institute for High Energy Physics, Protvino, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
131 Physics Department, University of Regina, Regina SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
133 (a) INFN Sezione di Roma, Rome, Italy; (b) Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
134 (a) INFN Sezione di Roma Tor Vergata, Rome, Italy; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
135 (a) INFN Sezione di Roma Tre, Rome, Italy; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e) Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
139 Department of Physics, University of Washington, Seattle, WA, USA
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
144 SLAC National Accelerator Laboratory, Stanford, CA, USA
145 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University, Stockholm, Sweden; (b) The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
150 Department of Physics and Astronomy, University of Sussex, Brighton, UK
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan