Measurement of the ZZ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

ATLAS Collaboration; Aaboud, M.

DOI
10.1103/PhysRevLett.116.101801

Publication date
2016

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Measurement of the ZZ Production Cross Section in \(pp \) Collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 17 December 2015; published 10 March 2016)

The ZZ production cross section in proton-proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb\(^{-1}\) of data recorded with the ATLAS detector at the Large Hadron Collider. The considered Z boson candidates decay to an electron or muon pair of mass 66–116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for Z bosons in the same mass range and of all decay modes, giving 16.7^{+2.0}_{-1.7} (stat) ^{+0.9}_{-0.7} (syst) ^{+1.5}_{-0.5} (lumi) pb. The results agree with standard model predictions.

DOI: 10.1103/PhysRevLett.116.101801

Studying the production of pairs of Z bosons in proton-proton (\(pp \)) interactions at the Large Hadron Collider (LHC) tests the electroweak sector of the standard model (SM) at the highest available energies. In \(pp \) collisions at a center-of-mass energy of \(\sqrt{s} = 13 \) TeV, ZZ production is dominated by quark-antiquark (\(q\bar{q} \)) interactions, with an \(O(10\%) \) contribution from loop-induced gluon-gluon (\(gg \)) interactions [1,2]. The SM ZZ production can proceed via a Higgs boson propagator, although this contribution is suppressed in the region where both Z bosons are produced on-shell. As such, non-Higgs ZZ production is an important background in studies of the Higgs boson [3–5]. It is also a background in searches for new physics producing pairs of Z bosons at high invariant mass [6,7] and sensitive to triple neutral-gauge-boson couplings, which are not allowed in the SM [8].

This Letter presents the first measurement of the ZZ production cross section in \(pp \) interactions at \(\sqrt{s} = 13 \) TeV. Throughout it, “Z boson” refers to the superposition of a Z boson and virtual photon with mass in the range 66–116 GeV. The analyzed data correspond to an integrated luminosity of 3.2 ± 0.2 fb\(^{-1}\), collected with the ATLAS detector [9]. The uncertainty of the integrated luminosity is derived, following a methodology similar to that detailed in Ref. [10], from a preliminary calibration of the luminosity scale using a pair of x-y beam-separation scans performed in June 2015. The ZZ production cross section was previously measured at \(\sqrt{s} = 7 \) and 8 TeV by the ATLAS and CMS Collaborations [11–13] and found to be consistent with SM predictions.

Candidate events are reconstructed in the fully leptonic ZZ \(\rightarrow \ell^+\ell^-\ell'^+\ell'^- \) decay channel where \(\ell \) and \(\ell' \) can be an electron or a muon. The cross section \(\sigma^{\text{fid}}_{ZZ\rightarrow\ell^+\ell^-\ell'^+\ell'^-} \) is found by counting candidate events, subtracting the expected contribution from background events, correcting for detector effects, and dividing by the integrated luminosity. It is measured in a fiducial phase space that corresponds closely to the experimental acceptance. In addition, an extrapolation of the cross section to a total phase space for Z bosons, \(\sigma^{\text{tot}}_{ZZ} \), is performed. The presented cross-section measurements are inclusive with respect to additional jets. Small contributions from triboson production with two leptonically decaying Z bosons and a third hadronically decaying weak boson and contributions from double parton scattering are included in the measurement.

The fiducial phase space, which is designed to reflect the acceptance of the ATLAS detector (described below), is defined for simulated events by applying the following criteria to the final-state particle-level objects. Final-state electrons and muons are required to be prompt (i.e., not originate from hadron or \(\tau \) decay) and their kinematics are computed including the contributions from prompt photons with a distance in \(\eta-\phi \) coordinates of \(\Delta R_{\ell\gamma} = \sqrt{(\Delta \eta_{\ell\gamma})^2 + (\Delta \phi_{\ell\gamma})^2} < 0.1 \) between the charged lepton and the photon, as motivated in Ref. [14]. (ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the \(z \) axis along the beam pipe. The \(x \) axis points to the center of the LHC ring, and the \(y \) axis points upward. Cylindrical coordinates \((r, \phi) \) are used in the transverse plane, \(\phi \) being the azimuthal angle around the \(z \) axis. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln(\tan(\theta/2)) \).) The leptons are required to be well separated with \(\Delta R_{\ell\ell'} > 0.2 \) between any two leptons. Each lepton must have a momentum component transverse to the beam direction \(p_T > 20 \) GeV and pseudorapidity \(|\eta| < 2.7 \). Events must have exactly four leptons satisfying the above
criteria forming two pairs of leptons of the same flavor and oppositely charged ($\mu^+\mu^-, e^+e^-$). This gives rise to three signal channels: $4e$, 4μ, and $2e2\mu$. Each lepton pair must have an invariant mass in the range 66–116 GeV. In the $4e$ and 4μ channels, where there are two possible ways to form same-flavor oppositely charged lepton pairs, the combination that minimizes $|m_{\ell\ell,a} - m_Z| + |m_{\ell\ell,b} - m_Z|$ is chosen, where $m_{\ell\ell,a}$ and $m_{\ell\ell,b}$ are the invariant masses of the lepton pairs and m_Z is the mass of the Z boson.

The ATLAS detector is a multipurpose particle detector with a cylindrical geometry. It consists of layers of inner tracking detectors, calorimeters, and muon chambers. The inner detector (ID) covers the pseudorapidity range $|\eta| < 2.5$. The calorimeter covers the pseudorapidity range $|\eta| < 4.9$. Within $|\eta| < 2.47$ the finely segmented electromagnetic calorimeter identifies electromagnetic showers and measures their energy and position, providing electron identification together with the ID. The muon spectrometer (MS) surrounds the calorimeters and provides muon identification and measurement in the region $|\eta| < 2.7$ and triggering in the region $|\eta| < 2.4$.

A muon is reconstructed by matching a track (or track segment) reconstructed in the MS to a track reconstructed in the ID. Its momentum is calculated by combining the information from the two systems and correcting for energy deposited in the calorimeters. In regions of limited coverage of the MS ($|\eta| < 0.1$) or outside the ID acceptance ($2.5 < |\eta| < 2.7$), muons can also be reconstructed by matching calorimeter signals consistent with muons to ID tracks (calorimeter-tagged muons) or standalone in the MS [15], respectively.

An electron is reconstructed from an energy deposit (cluster) in the electromagnetic calorimeter matched to a track in the ID. Its momentum is computed from the cluster energy and the direction of the track. Electrons are distinguished from other particles using several identification criteria that rely on the shapes of electromagnetic showers as well as tracking and track-to-cluster matching quantities. The output of a likelihood function taking these quantities as input, similar to that described in Ref. [16], is used to identify electrons. Electrons sharing an ID track with a selected muon are ignored.

The leptons are required to be isolated from other particles using ID track information, and for muons using calorimeter information also (since standalone muons are outside the ID acceptance). The exact requirements depend on the lepton p_T and η and are designed to give a uniform 99% efficiency.

Leptons are required to originate from the primary vertex, defined as the reconstructed vertex with the largest sum of the p_T^2 of the associated tracks. To this end, the longitudinal impact parameter of each lepton track, calculated with respect to the vertex and multiplied by $\sin\theta$ of the track, is required to be less than 0.5 mm. Furthermore, the significance of the transverse impact parameter calculated with respect to the beam line is required to be less than 3 (5) for muons (electrons). Standalone muons are exempt from both impact parameter requirements, as they do not have an ID track.

Candidate events are preselected by either a single-muon or dielectron trigger. As in the fiducial phase space described above, leptons must have $p_T > 20$ GeV. There are slight differences from the fiducial phase space: electrons must satisfy $|\eta| < 2.47$ due to the limited experimental acceptance, and at least one muon in the 4μ channel must satisfy $|\eta| < 2.4$, corresponding to the acceptance of the muon trigger. The other muons must satisfy $|\eta| < 2.7$. Events are ignored if more than one selected muon is calorimeter tagged or standalone. Apart from the above differences, reconstructed candidate events are selected using exactly the same criteria that define the fiducial phase space. A total of 63 events are observed, of which 15, 30, and 18 are in the $4e$, $2e2\mu$, and 4μ channels, respectively.

Monte Carlo (MC)-simulated event samples are used to obtain corrections for detector effects and to estimate background contributions. The principal signal sample is generated with the POWHEG method and framework [17–19], with a diboson event generator [20,21] used to simulate the ZZ production process at next-to-leading order (NLO). (Throughout this Letter, orders of calculations refer to perturbative expansions in the strong coupling constant α_S unless stated otherwise). The simulation of parton showering, of the underlying event, and of hadronization is performed with PYTHIA8 [22,23] using the AZNLO set of tuned parameters (tune) [24]. SHERPA [25–31] is used to generate a sample with the qq-initiated process simulated at NLO for ZZ plus zero or one additional jet and at leading order (LO) for two or three additional jets, as well as a sample with the loop-induced gg-initiated process simulated at LO with zero or one additional jet. These are used to include the loop-induced gg-initiated production, which is not included in the POWHEG+PYTHIA8 sample, as well as to estimate, by comparison of the various samples, a systematic uncertainty due to the choice of event generator. The CT10 NLO [32] parton distribution functions (PDFs) are used in the event generation for all samples above. Additional samples are generated to estimate the contribution from background events. Triboson events are simulated with SHERPA, using CT10 PDFs, and $t\bar{t}Z$ events are generated with MADGRAPH [33] interfaced with PYTHIA8 using the NNPDF 2.3 LO PDFs [34] and the A14 tune [35].

In all MC samples, additional pp interactions occurring in the same bunch crossing as the ZZ production, or in nearby ones, are simulated with PYTHIA8 with MSTW 2008 LO PDFs [36] and the A2 tune [37]. The samples are then passed through a simulation of the ATLAS detector [38] based on GEANT4 [39]. Scale factors are applied to the simulated events to correct for the small differences from data in the trigger, reconstruction, identification, isolation,
and impact parameter efficiencies for electrons and muons [15,16]. Furthermore, the lepton momentum scales and resolutions are adjusted to match the data.

Background events from processes with at least four prompt leptons in the final state are estimated with the MC samples described above, including uncertainties from the cross-section values, luminosity, and reconstruction effects. Contributions of 0.07 ± 0.02 events from ZZ processes where at least one Z boson decays to τ leptons, 0.17 ± 0.05 events from nonhadronic triboson processes, and 0.30 ± 0.09 events from all-leptonic $t\bar{t}Z$ processes are predicted. Events from processes with two or three prompt leptons, e.g., Z, WW, WZ, $t\bar{t}$, and ZZ events where one Z boson decays hadronically, where associated jets or photons contain or fake a nonprompt lepton, can pass the event selection. This background contribution is estimated to be $0.09^{+0.08}_{-0.04}$ events, using control samples and a data-driven technique described in Ref. [11]. The uncertainty is dominated by the small number of events in the control samples. It can be asymmetric due to truncation, as background contributions cannot be negative. Background from two single Z bosons produced in different pp collisions in the same bunch crossing is estimated to be negligible. The total expected number of background events is $0.20 \pm 0.05 (0.25^{+0.40}_{-0.05}, 0.17^{+0.00}_{-0.04})$ in the $4e$ ($2e\mu$, 4μ) channel, giving a total of $0.62^{+1.08}_{-0.11}$ events.

A factor C_{ZZ} is applied to correct for detector inefficiencies and resolution effects. It relates the background-to-signal ratio to the signal and background expectations, with good accuracy [2] in order to improve the model used to correct the measurement. The C_{ZZ} value and its total uncertainty is determined to be $0.55 \pm 0.02 (0.63 \pm 0.02, 0.81 \pm 0.03)$ in the $4e$ ($2e\mu$, 4μ) channel. The dominant systematic uncertainties come from the uncertainties of the scale factors used to correct lepton reconstruction and identification efficiencies in the simulation and the choice of MC generator. Other smaller uncertainties come from the scale and resolution of the lepton momenta, PDFs, and statistical fluctuations in the MC sample. Table I gives a breakdown of the systematic uncertainties.

Table I shows the invariant mass of the leading-$p_T,\ell\ell$ and the subleading-$p_T,\ell\ell$ lepton pair ($\ell\ell'$), as well as the invariant mass, transverse momentum, and rapidity of the four-lepton system. Distributions from data are compared to the signal and background expectations, with good agreement in general.

The fiducial cross section is determined using a maximum-likelihood fit to the event counts in the three signal channels. A Poisson probability function is used to parametrize the number of expected events, multiplied by Gaussian distributions that model the nuisance parameters representing systematic uncertainties. This procedure can lead to asymmetric uncertainties as Poisson-distributed variables cannot be negative.

The cross section measured in the fiducial phase space is also extrapolated to the total phase space, which includes a correction for QED final-state radiation effects. The extrapolation factor is obtained from the same combination of MC samples as used in the C_{ZZ} determination. The ratio of the fiducial to full phase-space cross section is 0.39 ± 0.02, in all three channels. It is corrected for the ~3% increase bias introduced by the pairing algorithm in the $4e$ and 4μ channels. The dominant systematic uncertainty comes from the difference between the nominal value and that obtained using the SHERPA samples. Smaller uncertainties are derived from PDF variations in the CT10 error set, differences between using PYTHIA8 and HERWIG++ [40] for simulating the rest of the event, and varying the QCD renormalization and factorization scales independently by a factor of 2. In order to extrapolate to the total cross section, the fiducial cross sections are divided by the ratio 0.39 ± 0.02 and corrected for the leptonic branching fraction (3.3658 ± 0.02^2) [41] (this value excludes γ^* contributions; including these, the branching fraction $ZZ \rightarrow e^+e^-\ell^+\ell^-$ is about 1.01–1.02 times larger).

The measured fiducial cross sections are shown in Table II and Fig. 2(a) along with a comparison to $O(\alpha_s^2)$ calculations [1]. Table II also shows the total combined cross section. The CT10 next-to-next-to-leading order PDFs [45] and a dynamic scale equal to the mass of the four-lepton system are used in the calculation. The loop-induced gg-initiated process is included, and contributes 7.0% (5.8%) of the cross section in the fiducial (total) phase space. The predicted cross sections in the fiducial phase space are corrected for QED final-state radiation effects, which amount to a 4% reduction. The measurements agree with the SM predictions.

The theoretical predictions do not include the following effects. The loop-induced gg-initiated process calculated at $O(\alpha_s^2)$ could receive large corrections at $O(\alpha_s)$ of 70% [2], which would increase the prediction by 4%–5%. Electroweak corrections at next-to-leading order [46,47]
are expected to reduce the cross section by 7%–8% [47]. Furthermore, the contribution from double parton scattering is not accounted for, but is expected to be an effect of less than 1% [48].

The measured total cross section is compared to measurements at lower center-of-mass energies and to a prediction from MCFM [49] with the CT14 NLO PDFs [50], which is calculated at $\mathcal{O}(\alpha_s^2)$ accuracy for the $q\bar{q}$-initiated process and at $\mathcal{O}(\alpha_s^3)$ accuracy for the loop-induced gg-initiated process and is shown vs center-of-mass energy in Fig. 2(b). The cross section increases by a factor of more than 2 with a center-of-mass energy increase from 8 TeV to 13 TeV.

In summary, ATLAS has measured the ZZ production cross section in 3.2 fb$^{-1}$ of 13 TeV pp collisions at the LHC using the fully leptonic decay channel $ZZ \rightarrow \ell^+\ell^-\ell^+\ell^-$. Fiducial cross sections as well as a total cross section for Z bosons with mass 66–116 GeV have been measured and agree well with $\mathcal{O}(\alpha_s^3)$ SM predictions.

TABLE II. Cross-section measurement results compared to the $\mathcal{O}(\alpha_s^2)$ standard model predictions. The per-channel and combined fiducial cross sections are shown along with the combined total cross section. For experimental results, the statistical, systematic, and luminosity uncertainties are shown. For theoretical predictions, the PDF and renormalization and factorization scale uncertainties added in quadrature are shown.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>$\mathcal{O}(\alpha_s^2)$ prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma^{\text{fid}}_{ZZ \rightarrow e^+e^-e^+e^-}$</td>
<td>$8.4^{+2.4}{-2.0}$ (stat) $^{+0.4}{-0.2}$ (syst) $^{+0.5}_{-0.3}$ (lumi) fb</td>
</tr>
<tr>
<td>$\sigma^{\text{fid}}_{ZZ \rightarrow e^+e^-\mu^+\mu^-}$</td>
<td>$14.7^{+2.9}{-2.5}$ (stat) $^{+0.4}{-0.3}$ (syst) $^{+0.9}_{-0.6}$ (lumi) fb</td>
</tr>
<tr>
<td>$\sigma^{\text{fid}}_{ZZ \rightarrow \mu^+\mu^-\mu^+\mu^-}$</td>
<td>$6.8^{+1.8}{-1.5}$ (stat) $^{+0.3}{-0.3}$ (syst) $^{+0.4}_{-0.3}$ (lumi) fb</td>
</tr>
<tr>
<td>$\sigma^{\text{fid}}_{ZZ \rightarrow \ell^+\ell^-\ell^+\ell^-}$</td>
<td>$29.7^{+3.9}{-3.6}$ (stat) $^{+1.0}{-0.8}$ (syst) $^{+1.7}_{-1.3}$ (lumi) fb</td>
</tr>
<tr>
<td>$\sigma^{\text{fid}}_{\text{ZZ}}$</td>
<td>$16.7^{+2.2}{-2.0}$ (stat) $^{+0.7}{-0.9}$ (syst) $^{+1.0}_{-0.7}$ (lumi) pb</td>
</tr>
</tbody>
</table>
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STFC, United Kingdom; DOE and NSF, United States of America; INFN, Italy; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DARA, Russia and NRC KI, Russian Federation; JINR; MSTD, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; SNSF and Cantons of Bern and Zurich, Switzerland; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[3] ATLAS Collaboration, Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ Decay Channels at $\sqrt{s} = 8$ TeV with the ATLAS Detector, Phys. Rev. Lett. 115, 091801 (2015).
\[\sqrt{s} = 7 \text{ TeV} \] with the ATLAS detector, New J. Phys. 15, 033038 (2013).

Page dimensions: 612.0x792.0

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
INFN Sezione di Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York, New York, USA
Ohio State University, Columbus, Ohio, USA
Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
INFN Sezione di Favia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
INFN Sezione di Roma, Italy
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
INFN Sezione di Roma Tor Vergata, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Italy
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco
Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
Department of Physics, University of Washington, Seattle, Washington, USA
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinsha University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
SLAC National Accelerator Laboratory, Stanford, California, USA
Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Department of Physics, University of Cape Town, Cape Town, South Africa
Department of Physics, University of Johannesburg, Johannesburg, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Stockholm University, Sweden
The Oskar Klein Centre, Stockholm, Sweden
Department of Physics, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto, Ontario, Canada
TRIUMF, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
ICTP, Trieste, Italy
Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana, Illinois, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, Connecticut, USA
Yerevan Physics Institute, Yerevan, Armenia

1 Deceased.
2 Also at Department of Physics, King’s College London, London, United Kingdom.
3 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
Also at Novosibirsk State University, Novosibirsk, Russia.
Also at TRIUMF, Vancouver British Colombia, Canada.
Also at Department of Physics & Astronomy, University of Louisville, Louisville, Kentucky, USA.
Also at Department of Physics, California State University, Fresno, California, USA.
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
Also at Tomsk State University, Tomsk, Russia.
Also at Universita di Napoli Parthenope, Napoli, Italy.
Also at Institute of Particle Physics (IPP), Canada.
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA.
Also at Louisiana Tech University, Ruston, Louisiana, USA.
Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
Also at Graduate School of Science, Osaka University, Osaka, Japan.
Also at Department of Physics, National Tsing Hua University, Taiwan.
Also at Department of Physics, The University of Texas at Austin, Austin, Texas, USA.
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
Also at CERN, Geneva, Switzerland.
Also at Georgian Technical University (GTU), Tbilisi, Georgia.
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
Also at Manhattan College, New York, New York, USA.
Also at Hellenic Open University, Patras, Greece.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at School of Physics, Shandong University, Shandong, China.
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
Also at Section de Physique, Université de Genève, Geneva, Switzerland.
Also at International School for Advanced Studies (SISSA), Trieste, Italy.
Also at Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina, USA.
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Department of Physics, Stanford University, Stanford, California, USA.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Flensburg University of Applied Sciences, Flensburg, Germany.
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.