CDKN2BAS is associated with periodontitis in different European populations is activated by bacterial infection


Published in:
Journal of Medical Genetics

DOI:
10.1136/jmg.2010.078998

Citation for published version (APA):
CDKN2BAS is associated with periodontitis in different European populations and is activated by bacterial infection

Arne S Schaefer,1 Gesa M Richter,1 Henrik Dommisch,2 Markus Reinartz,2 Michael Nothnagel,3 Barbara Noack,4 Marja L Laine,5 Mathias Folwaczny,6 Birte Grossner-Schreiber,7 Bruno G Loos,5 Søren Jepsen,2 Stefan Schreiber1

ABSTRACT
Epidemiological studies have indicated a relationship between coronary heart disease (CHD) and periodontitis. Recently, CDKN2BAS was reported as a shared genetic risk factor of CHD and aggressive periodontitis (AgP), but the causative variant has remained unknown. To identify and validate risk variants in different European populations, we first explored 150 kb of the genetic region of CDKN2BAS including the adjacent genes CDKN2A and CDKN2B, covering 51 tagging single nucleotide polymorphisms (tagSNPs) in AgP and chronic periodontitis (CP) in individuals of Dutch origin (n=313). In a second step, we tested the significant SNP associations in an independent AgP and CP population of German origin (n=1264). For the tagSNPs rs1360590, rs3217992, and rs518394, we could validate the associations with AgP before and after adjustment for the covariates smoking, gender and diabetes, with SNP rs3217992 being the most significant (OR 1.48, 95% CI 1.19 to 1.85; p=0.0004). We further showed in vivo gene expression of CDKN2BAS, CDKN2A, CDKN2B, and CDK4 in healthy and inflamed gingival epithelium (GE) and connective tissue (CT), and detected a significantly higher expression of CDKN2BAS in healthy CT compared to GE (p=0.004). After 24 h of stimulation with Porphyromonas gingivalis in Streptococcus gordonii pre-treated gingival fibroblast (HGF) and cultured gingival epithelial cells (GECs), we observed a 25-fold and fourfold increase of CDKN2BAS gene expression in HGFs (p=0.003) and GECs (p=0.004), respectively. Considering the global importance of CDKN2BAS in the disease risk of CHD, this observation supports the theory of inflammatory components in the disease physiology of CHD.

INTRODUCTION
Coronary heart disease (CHD) is the leading cause of death worldwide1 2 and is considered to be a complex multifactorial disease. Epidemiological studies have shown a significant correlation between periodontal health and the occurrence of cardiovascular events.3 4 Periodontitis and CHD are both strongly promoted by very similar environmental and behavioural risk factors, with smoking and diabetes being the most prominent.5–13 Furthermore, the same pathogenic bacterial strains were observed in both inflamed gingival tissue and atherosclerotic plaques.10 14 15 It has also been shown that periodontal treatment results in improvement of endothelial function, a marker for risk prediction of cardiovascular events.16 Recently, a major genetic susceptibility locus for CHD was identified by various genome wide association studies (GWAS).17–20 This locus is located within the chromosomal region 9p21.3, mapping to the large non-coding (nc) antisense RNA transcript CDKN2BAS, formerly called ANRIL. This association was verified by a subsequent meta-analysis9 and by a large scale replication study,21 making this genetic region the best replicated CHD associated risk locus to date. In addition, variants within this region were independently found to be associated with type 2 diabetes,22–24 abdominal aortic and intracranial aneurysms,25 ischaemic stroke,26 Alzheimer’s disease and vascular dementia,27 and high grade gloma susceptibility.28 Recently, we demonstrated the association of a highly increased risk for aggressive periodontitis (AgP) with specific variants of CDKN2BAS.29 However, despite extensive fine mapping and functional studies, the causative variant and the functional role of CDKNBAS has remained unknown.9 30 In recent years, long non-coding RNAs like CDKN2BAS have been recognised for their role in regulating gene expression by contributing to the recruitment of protein complexes to target genes in trans, and to provide an architectural matrix to retain the proteins at the repression site of the target gene. Unprecedented, a role in cis regulation of CDKN2A expression was very recently described for a new transcript of CDKN2BAS that initiates upstream of the previously reported start site,31 indicating a regulatory role for CDKN2BAS in the context of cellular proliferation.

In the present study, we aimed to identify genetic risk variants of CDKN2BAS that are shared by different European case–control populations of aggressive and chronic periodontitis. To this end, we covered >150 kb with 51 tagging single nucleotide polymorphisms (tagSNPs) mapping to CDKN2BAS and the adjacent cell cycle inhibitor genes CDKN2A and CDKN2B. We explored the SNP associations in two populations of AgP and chronic periodontitis (CP) of Dutch origin (n=313), and replicated the significant associations in two populations of AgP and CP of German origin (n=1264).

Original article
muscle cells, fibroblasts, and macrophages, has been demonstrated. To study the tissue specific expression in the gingiva, we quantified the mRNA transcription pattern of CDKN2BAS, CDKN2A and CDKN2B in healthy and inflamed human gingival tissue samples. Additionally, we studied the gingival expression of CDK4, a cell cycle regulating kinase that is directly inhibited by CDKN2A and CDKN2B. To explore the possibility that both periodontitis and CHD share an inflammatory pathophysiology, we assessed the potential role of pathogenic bacteria in the transcriptional regulation of these genes in different gingival tissues.

PATIENTS AND METHODS

Study population

The patient and control samples of the CP and AgP association studies were recruited across Germany and the Netherlands as previously described. Only individuals of German and Dutch ethnicity were included, judged upon the location of both parental birthplaces. Before the study, the genetic sub-structure of the German and Dutch populations had been assessed, indicating only negligible sub-structures and therefore allowing an analysis of the German and Dutch individuals in a single genetic study without the risk of substantial population stratification. A detailed description of the study population is given in Table 1 and in the supplementary information. Informed written consent was obtained from all subjects recruited into this study. The study was approved by each institute’s own ethical review board (Medical Ethical Committee, Universities of Bonn, Dresden, Kiel and Munich, and Medical Ethical Committee, Academic Medical Center, University of Amsterdam, The Netherlands).

DNA extraction and genotyping

Genomic DNA was extracted from blood (Invisorb Blood Universal Kit,Invitek, Berlin, Germany) or mouthwash samples, and was amplified by whole genome amplification (GenomiPhi, Amersham, Uppsala, Sweden). TagSNPs were selected from the CEU data of the International HapMap project (http://www.hapmap.org, NCBI build 36, 2008-03) using the Tagger feature of Haploview 4.0. TagSNPs were selected from the CEU data of the International HapMap project (http://www.hapmap.org, NCBI build 36, 2008-03) using the Tagger feature of Haploview 4.0. TagSNPs were defined by pair-wise linkage disequilibrium tagging ($r^2 > 0.8$). Genotyping was carried out using the SNPlex and TaqMan Genotyping System (Applied Biosystems, Foster City, California, USA) on an automated platform, using TECAN Freedom EVO and 96-well and 384-well TEMO liquid handling robots (TECAN, Männedorf, Switzerland). Genotypes were generated by automatic calling using the Genemapper 4.0 software (Applied Biosystems) with the following settings: $\xi$ separation > 6, angle separation for two cluster SNPs < 1.2 rad, median cluster intensity > 2.2 logs. Genotypes were further reviewed manually and call rates $\geq 90\%$ in each sample set were required.

Gingival tissue samples and cell culture

For gene expression study, gingival tissue samples were obtained from individuals with healthy gingival conditions and no periodontitis (n=10) as well as from patients with advanced CP (n=10). All biopsies were collected from healthy patients (age 19–58 years) who underwent third-molar extraction or periodontal surgery and from patients with advanced CP. Healthy gingival conditions were defined as follows: no redness, no swelling, no bleeding on probing, and with periodontal pockets $\leq 3$ mm. Patients with advanced CP showed all typical clinical signs of periodontal inflammation (redness, swelling, bleeding on probing) and a periodontal probing depth $\geq 6$ mm. For culture of gingival epithelial cells (GECs) (n=5) and human gingival fibroblasts (HGFs) (n=5), gingival epithelial tissue samples were prepared as previously described. Epithelial cells were cultured in keratinocyte growth medium (KGM) using supplements provided with the medium (PAA, Colbe, Germany) and 1% antibiotics (penicillin, streptomycin, amphotericin; PAA), whereas fibroblasts were cultured using Dulbecco’s modified Eagle’s medium (DMEM; PAA) supplemented with 1% antibiotics (penicillin, streptomycin, amphotericin; PAA) and 10% fetal bovine serum (FBS; PAA). Both GECs and HGFs were cultured at 37°C in a humidified atmosphere (5% carbon dioxide).

Bacterial cell culture and stimulation experiments

Wild-type Porphyromonas gingivalis strain ATCC 35277 was cultured under anaerobic conditions, whereas Streptococcus gordontii was grown under aerobic conditions as previously described. Bacterial numbers were determined by absorbance measurement using a spectrophotometer (Biochrom AG, Berlin, Germany). To mimic early stages of inflammation and to test

Table 1 Characteristics of the study populations

<table>
<thead>
<tr>
<th>Subject characteristic</th>
<th>Dutch Aggressive periodontitis</th>
<th>Chronic periodontitis</th>
<th>Controls</th>
<th>German Aggressive periodontitis</th>
<th>Chronic periodontitis</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals, N (%)</td>
<td>159</td>
<td>154</td>
<td>421</td>
<td>301</td>
<td>740</td>
<td>962</td>
</tr>
<tr>
<td>Men</td>
<td>41 (25.8)</td>
<td>56 (36.4)</td>
<td>185 (43.9)</td>
<td>112 (37.2)</td>
<td>302 (40.8)</td>
<td>559 (58.1)</td>
</tr>
<tr>
<td>Women</td>
<td>118 (74.2)</td>
<td>98 (63.6)</td>
<td>231 (54.9)</td>
<td>189 (62.8)</td>
<td>433 (58.5)</td>
<td>402 (41.8)</td>
</tr>
<tr>
<td>Mean age (SD) at first diagnosis</td>
<td>30.4 (4.2)</td>
<td>ns</td>
<td>—</td>
<td>28.5 (4.7)</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>Mean age (SD) at examination</td>
<td>33.8 (4.7)</td>
<td>45.2 (9.5)</td>
<td>32.3 (9.0)</td>
<td>31.4 (8.1)</td>
<td>61.2 (10.3)</td>
<td>56.9 (12.7)</td>
</tr>
<tr>
<td>Study information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected teeth, mean (SD)</td>
<td>5.8 (3.9)</td>
<td>ns</td>
<td>—</td>
<td>8.6 (6.4)</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>Risk factor, N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever smoked</td>
<td>123 (77.4)</td>
<td>128 (83.1)</td>
<td>197 (46.8)</td>
<td>147 (48.8)</td>
<td>487 (65.8)</td>
<td>492 (51.1)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1 (0.6)</td>
<td>1 (0.6)</td>
<td>2 (0.2)</td>
<td>3 (1.0)</td>
<td>37 (5.0)</td>
<td>44 (4.6)</td>
</tr>
<tr>
<td></td>
<td>5 ns</td>
<td>1 ns</td>
<td>354</td>
<td>67 ns</td>
<td>5 ns</td>
<td>3 ns</td>
</tr>
</tbody>
</table>

Values are given as mean (SD) when appropriate. Affection status was based on reported history. Age was reported by the clinicians. Smoking was estimated by self-report of the individuals. ns, not specified.
the potential transcriptional response of these genes, the commensal oral bacterium *S. gordonii* and the pathogenic oral bacterium *P. gingivalis*, commonly present during severe periodontal infection, were chosen to create an in vitro model to mimic periodontal infection of GECs and HGFs. For stimulation experiments, GECs and HGFs were grown to 80% confluence and then incubated with *P. gingivalis* and *S. gordonii*, respectively, using an amount equivalent to a multiplicity of infection of 100:1, for either 6 h or 24 h. Experimental groups were: (1) unstimulated GECs and HGFs, (2) control cells (GECs and HGFs) treated with blank bacterial medium for *S. gordonii* not containing bacterial cells; (3) control cells (GECs and HGFs) treated with blank bacterial medium for *P. gingivalis* not containing bacterial cells; (4) stimulation of GECs and HGFs with *S. gordonii*; (5) stimulation of GECs and HGFs with *P. gingivalis*; and (6) pre-incubation of GECs and HGFs with *S. gordonii* followed by medium change and stimulation with *P. gingivalis*. Each stimulation experiment was performed in triplicate, using cells from three different donors.

**RNA extraction and PCR conditions**

To extract mRNA from the epithelial and the connective tissue layer separately, biopsies were enzymatically dissected using 5 ml dispase (Cascade Biologies, Paisley, UK) for 6 h on ice. After separation of gingival biopsies, total RNA was extracted from both epithelium and connective tissue (CT) using the RNeasy Protection Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

Subsequent to in vitro stimulation experiments on GECs and HGFs, total RNA was extracted as described above. The reverse transcription reaction with 500 ng of total RNA was performed using iScript (Bio-Rad, Munich, Germany) following the manufacturer’s instructions.

Quantitative analysis of the cDNA was performed using the iCycler (Bio-Rad) and the QuantiFast SYBR Green PCR kit (Qiagen) according to the manufacturer’s instructions. PCR reactions were carried out in 96-well plates in a total volume of 25 μl, including 10 ng of cDNA and 250 nM primers. At the end of each real-time PCR, melting curve analysis was performed to confirm that the amplified product was specific. Gene expression levels in the gingival epithelium and the gingival connective tissue were analysed by normalisation to the gene expression levels in healthy gingival epithelium. All sample values were normalised to the expression of the housekeeping gene glyceraldehyde-3-dehydrogenase (GAPDH, GeneGlobe primer, Qiagen) and relative gene expression was calculated using the delta-delta Ct (threshold cycle) method. PCR controls were performed using water. Primer sequences are given in supplementary table 1.

**Statistical analysis**

Markers were checked for deviation from Hardy–Weinberg equilibrium (HWE) in controls to a significance level of α=0.05 before inclusion into the analysis. We assessed the significance of phenotypic association with single marker alleles and genotypes using χ² and Fisher’s exact tests for 2×2 and 2×3 contingency tables, respectively. Logistic regression analysis allowing for covariate adjustment was performed in the R statistical environment, version 2.8.1.34 Significance was assessed by a likelihood ratio test. Values of p<0.05 were considered nominally significant. Akaike’s information criterion (AIC) was used to choose the model that best explained the underlying associations. Linkage disequilibrium (LD) measures were calculated and plotted using Haplovie. Quantitative real time (qRT-PCR) data were analysed using the Mann–Whitney Test (SPSS, Version 18, Munich, Germany). The significance level was set at p≤0.05.

**RESULTS**

**Association study with aggressive periodontitis**

To analyse potential genetic associations within the entire CDKN2BAS region, we selected 51 tagSNPs covering 150 kb. These SNPs were genotyped in our combined population of 159 Dutch generalised and localised AgP patients and 421 Dutch healthy controls. In our previous study on the association of CDKN2BAS with AgP,29 we demonstrated that the allele frequencies at this genetic locus were very similar between localised and generalised AgP cases, allowing the pooling of both sub-phenotypes to increase the statistical power for detecting associated variants. In a second step, we validated the significant SNPs in an independent panel of our 501 German patients with generalised or localised AgP and 963 German controls.29 In a third step, we subsequently tested the selected tagSNPs in this genetic region for potential associations with chronic periodontitis in a panel of 154 Dutch CF cases, and replicated the significant associations in an independent panel of 740 German CF cases. To increase the statistical power, we used the same panels of Dutch and German controls for the association tests performed with the Dutch and German AgP and CF patients, respectively (table 1).

Out of the 51 tagSNPs, eight were found to have a minor allele frequency (MAF) below 0.01 in the Dutch populations. These were excluded from the analysis due to their limited expected statistical power. Five further SNPs were excluded due to deviations from HWE in the Dutch controls (p<0.05). One SNP, rs5643998, had poor genotyping quality (call rate <0.9) and was excluded from further analyses. In the explorative association study of the Dutch AgP case–control population, four SNPs were nominally significantly associated with AgP before adjustment for the common risk factors of gender, smoking, and diabetes (supplementary table 2). Upon covariate adjustment, seven SNPs were nominally significantly associated (table 2, for genotype and allele frequencies see table 3), with SNP rs3217992 being the most significant (OR 2.53, 95% CI 1.29 to 5.13; p=0.007). Two SNPs, rs1360590 and rs11790231, showed associations before and after covariate adjustment (supplementary tables 2 and 3).

These seven nominally significantly associated SNPs were then tested for their association in the German AgP population. One SNP, rs10965224, showed significant deviations from HWE in the German controls (p<0.05) and was excluded from further analyses. Before the covariate adjustment, three of the associations remained significant (rs3217992, rs518394, rs1360590), with SNP rs1560590 being most significantly associated with p=0.0005 (multiplicative genetic model) and an OR of 1.41 (CI 95% 1.16 to 1.72) (supplementary table 4). Upon covariate adjustment, these three SNPs remained significantly associated, with rs3217992 being most significant with p=0.0004 (table 2, supplementary table 5) and an OR of 1.48 (95% CI 1.19 to 1.85). After Bonferroni correction for multiple testing, these three SNPs span a chromosomal region of 38 kb (NCBI build 36.3) and are located within (rs3217992) or downstream of CDKN2B, but were only in moderate LD to each other in our control population (figure 1). Interestingly, none of the SNPs which tagged the large LD region at the 5’ end of CDKN2BAS, and which was most significantly associated with CHD9,17–19,20 as well as with AgP.
Table 2  Minor allele frequencies (MAFs) and single nucleotide polymorphism (SNP) associations of the significant SNPs in the different populations upon adjustment for covariates

<table>
<thead>
<tr>
<th>SNP (alleles)</th>
<th>Dutch controls MAF</th>
<th>German controls MAF</th>
<th>p value</th>
<th>Dutch AgP MAF (CI 95%)</th>
<th>p value</th>
<th>German AgP MAF (CI 95%)</th>
<th>p value</th>
<th>Dutch CP MAF (CI 95%)</th>
<th>p value</th>
<th>German CP MAF (CI 95%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs317992</td>
<td>37.1</td>
<td>35.0</td>
<td>7.2x10⁻³—3</td>
<td>2.53</td>
<td>(1.3 to 5.1)</td>
<td>34.0</td>
<td>4.4x10⁻⁴—4</td>
<td>1.48</td>
<td>(1.2 to 1.9)</td>
<td>43.3</td>
<td>0.060</td>
</tr>
<tr>
<td>(G,A)</td>
<td></td>
</tr>
<tr>
<td>rs518394</td>
<td>44.5</td>
<td>46.1</td>
<td>0.045</td>
<td>2.32</td>
<td>(1.1 to 4.9)</td>
<td>50.3</td>
<td>7.8x10⁻³—7</td>
<td>1.41</td>
<td>(1.1 to 1.8)</td>
<td>59.3</td>
<td>0.114</td>
</tr>
<tr>
<td>(G,C)</td>
<td></td>
</tr>
<tr>
<td>rs1360590</td>
<td>47.5</td>
<td>44.2</td>
<td>0.012</td>
<td>2.6</td>
<td>(1.3 to 5.2)</td>
<td>42.8</td>
<td>2.0x10⁻³—6</td>
<td>1.14</td>
<td>(0.6 to 0.9)</td>
<td>52.9</td>
<td>0.029</td>
</tr>
<tr>
<td>(A,G)</td>
<td></td>
</tr>
<tr>
<td>rs11790231</td>
<td>11.4</td>
<td>9.0</td>
<td>0.039</td>
<td>NA</td>
<td>(0.1 to 0.9)</td>
<td>9.1</td>
<td>0.085</td>
<td>1.35</td>
<td>(1.0 to 1.8)</td>
<td>10.7</td>
<td>0.504</td>
</tr>
<tr>
<td>(G,A)</td>
<td></td>
</tr>
<tr>
<td>rs10965238</td>
<td>28.5</td>
<td>24.2</td>
<td>0.024</td>
<td>0.30</td>
<td>(0.1 to 0.9)</td>
<td>24.8</td>
<td>0.367</td>
<td>1.12</td>
<td>(0.9 to 1.4)</td>
<td>25.4</td>
<td>0.048</td>
</tr>
<tr>
<td>(G,A)</td>
<td></td>
</tr>
<tr>
<td>rs10811658</td>
<td>33.8</td>
<td>30.8</td>
<td>0.047</td>
<td>0.40</td>
<td>(0.16 to 0.99)</td>
<td>29.7</td>
<td>0.055</td>
<td>1.2</td>
<td>(1.0 to 1.5)</td>
<td>34.0</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Given are the MAFs, the p values, and the ORs with the 95% CIs for their association with the phenotype. The p values were obtained from a likelihood ratio test and correspond to the genetic model with the lowest AIC value each. Values are given upon adjustment for the covariates smoking, diabetes, and gender for the aggressive periodontitis (AgP) analyses and additionally for age for the chronic periodontitis (CP) analyses, in a logistic regression model.

in our German cases was significantly associated with the Dutch AgP patients in this study. The lead SNPs of this region were associated with CHD and the German AgP cases with a 10% increase of the rare allele in the homozygotes (eg for SNP rs1333048) and showed similar allele frequencies for the heterozygotes between cases and controls. In contrast, for the Dutch AgP cases we observed an enrichment of 10% in the heterozygotes but a decrease of 6% of the rare allele in the homozygotes (supplementary table 6).

Table 3  Genotypes and frequencies of the significant single nucleotide polymorphisms (SNPs) in the different populations

<table>
<thead>
<tr>
<th>SNP (alleles)</th>
<th>Dutch controls MAF</th>
<th>German controls MAF</th>
<th>p value</th>
<th>Dutch AgP MAF (CI 95%)</th>
<th>p value</th>
<th>German AgP MAF (CI 95%)</th>
<th>p value</th>
<th>Dutch CP MAF (CI 95%)</th>
<th>p value</th>
<th>German CP MAF (CI 95%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs317992</td>
<td>171</td>
<td>182</td>
<td>0.037</td>
<td>66</td>
<td>0.085</td>
<td>96</td>
<td>0.119</td>
<td>60</td>
<td>0.267</td>
<td>67</td>
<td>0.267</td>
</tr>
<tr>
<td>(G,A)</td>
<td></td>
</tr>
<tr>
<td>rs518394</td>
<td>132</td>
<td>201</td>
<td>0.012</td>
<td>38</td>
<td>0.025</td>
<td>113</td>
<td>0.019</td>
<td>60</td>
<td>0.267</td>
<td>67</td>
<td>0.267</td>
</tr>
<tr>
<td>(G,A)</td>
<td></td>
</tr>
<tr>
<td>rs1360590</td>
<td>122</td>
<td>198</td>
<td>0.012</td>
<td>38</td>
<td>0.025</td>
<td>113</td>
<td>0.019</td>
<td>60</td>
<td>0.267</td>
<td>67</td>
<td>0.267</td>
</tr>
<tr>
<td>(G,A)</td>
<td></td>
</tr>
<tr>
<td>rs11790231</td>
<td>330</td>
<td>84</td>
<td>0.008</td>
<td>130</td>
<td>0.019</td>
<td>238</td>
<td>0.019</td>
<td>129</td>
<td>0.019</td>
<td>238</td>
<td>0.019</td>
</tr>
<tr>
<td>(G,A)</td>
<td></td>
</tr>
<tr>
<td>rs10965238</td>
<td>202</td>
<td>158</td>
<td>0.012</td>
<td>25</td>
<td>0.039</td>
<td>64</td>
<td>0.019</td>
<td>41</td>
<td>0.019</td>
<td>219</td>
<td>0.019</td>
</tr>
<tr>
<td>(G,A)</td>
<td></td>
</tr>
<tr>
<td>rs10811658</td>
<td>181</td>
<td>193</td>
<td>0.012</td>
<td>77</td>
<td>0.019</td>
<td>130</td>
<td>0.019</td>
<td>84</td>
<td>0.019</td>
<td>374</td>
<td>0.019</td>
</tr>
<tr>
<td>(G,A)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3  Genotypes and frequencies of the significant single nucleotide polymorphisms (SNPs) in the different populations

CDK2BAS, CDKN2A, CDKN2B, and CDK4 mRNA expression in healthy and inflamed gingival tissues

To show in vivo gene expression of CDK2BAS, CDKN2A, CDKN2B, and CDK4, the specific mRNA levels of these genes within the epithelium (EPI) and the connective tissue (CT) of gingival biopsies were analysed. We observed tissue specific expression of all four genes in both EPI and CT. In this explorative study, the expression of CDK2BAS was significantly higher in healthy CT compared to healthy EPI (p=0.004, figure 2A), and this difference remained significant after Bonferroni correction for multiple comparisons. Whereas for CDKN2A no difference in transcript levels was observed between CT and EPI (figure 2B), higher mRNA levels, although not significant in our experiments, were observed for CDKN2B in healthy CT compared to healthy EPI (p=0.019, figure 2C). A trend towards a lower gene expression for CDK4, inhibited by CDKN2A and 2B in vivo, was noticed in CT compared to EPI (figure 2D).

CDK2BAS gene expression upregulated in S gordonii pre-treated and P gingivalis stimulated GECs

We next tested whether the genes were differentially regulated in cultured primary gingival epithelial cells (GECs) when exposed to commensal and/or pathogenic periodontal bacteria. We observed a significant increase of the CDK2BAS gene expression after 24 h of stimulation with pathogenic P gingivalis.
in commensal *S. gordonii* pre-treated GECs with *p*=0.003 (fourfold increase), and this difference remained significant after Bonferroni correction for multiple comparisons (figure 3A). In the same experiments, CDKN2A mRNA levels were significantly reduced after 24 h of stimulation with pathogenic *P. gingivalis* in commensal *S. gordonii* pre-treated GECs with *p*=0.004, if compared to unstimulated GECs (figure 3B). A similar reduction, not significant in our experiments, was observed between 6 h and 24 h of *P. gingivalis* stimulation after *S. gordonii* pre-treatment. For CDKN2B, we observed a trend towards reduced
Figure 2 mRNA levels of CDKN2BAS, CDKN2A, CDKN2B and CDK4 in healthy and inflamed gingival epithelium and connective tissue. (A) CDKN2BAS transcript levels were higher in healthy connective tissue compared to healthy gingival epithelium (p = 0.004). (B–D) CDKN2A, CDKN2B, and CDK4 mRNA showed no statistically significant differences in transcript levels between healthy or inflamed epithelial and connective gingival tissues. Each box plot represents results derived from 10 different subjects. CT, connective tissue; EPI, gingival epithelial tissue; H, healthy; I, inflamed.

transcript levels after 24 h incubation with P. gingivalis in S. gordonii pre-treated GECs (figure 3C). CDK4 expression was significantly reduced after 24 h of stimulation with pathogenic P. gingivalis in commensal S. gordonii pre-treated GECs compared to unstimulated GECs (p = 0.004, figure 3D). A similar reduction, not significant in our experiments, was observed between 6 h and 24 h P. gingivalis stimulation after S. gordonii pre-treatment.

**CDKN2BAS gene expression upregulated in P. gingivalis stimulated HGFs**

In the second gingival cell population of gingival fibroblasts (HGFs), 24 h stimulation with P. gingivalis alone and after pre-treatment with S. gordonii led to significant CDKN2BAS mRNA upregulation after 24 h with p = 0.004 and p = 0.003 (25-fold), respectively, and remained significant after Bonferroni correction for multiple comparisons (figure 4A). CDKN2A mRNA levels were significantly reduced (p = 0.001) after 24 h stimulation with P. gingivalis after pre-treatment with S. gordonii (figure 4B). No clear trend in transcript levels could be observed for CDKN2B and CDK4 in any experimental condition (figure 4C,D).

**DISCUSSION**

The aim of this study was to identify genetic risk alleles within the genetic region of CDKN2BAS, CDKN2A and CDKN2B, which are shared by different European populations of the periodontal disease phenotypes AgP and CP. We showed three SNPs to be significantly associated with two AgP populations of different ancestry (rs5217992, rs518394, and rs1360590), and confirmed these associations to be independent of the traditional risk factors of smoking, diabetes and gender. These SNPs were located within or closely downstream of the coding region of CDKN2B, but no SNP could be identified as a lead SNP that fully explained the associations with periodontitis.

Interestingly, we could not replicate our previous finding of a statistically significant association of the large CHD associated LD region at the 5’ end of CDKN2BAS with the Dutch AgP patients. As described earlier,29 in the German AgP cases the frequency of the rare allele of the lead SNP from this study, rs1333048, was 10% higher compared to the controls and the frequencies for the heterozygotes was similar to the controls. This observation was similarly reported by association studies on CHD.3 Interestingly, in the present study, the Dutch AgP cases showed an enrichment of 10% in the heterozygotes for this SNP, but the homozygotes of the risk allele were decreased. We ruled out potential genotyping errors of this assay by verifying the genotypes of SNP rs1333048 with two independent technologies, which gave identical results. Increased heterozygotes in the Dutch AgP cases were similarly observed for the significantly associated SNPs rs1360590, rs5217992, and rs518394. In contrast to the observation in the Dutch AgP patients, the Dutch CP cases, and to a lesser extent the German CP cases, showed a tendency towards an increased frequency of homozygosity for the risk allele, with a frequency of heterozygotes similar to the controls. A possible speculative explanation for the observed increase of heterozygous Dutch AgP patients at this particular locus could be the presence of duplicated structural variations of this element in these cases, which were not present in the Dutch controls and CP cases.

The discovered associations, which were shared between different populations, did not follow a particular model of inheritance (genotypic, dominant, recessive or multiplicative). However, this observation is rather typical for association studies of our sample sizes, where it is practically impossible to assess confidently which model fits the data best, and where the specific models might reflect noise rather than a specific fit to a model. A future meta-analysis with data across many different datasets will improve this situation and might help to identify the best-fit model.44 The genetic effects that were estimated for the associated SNPs also partly differed between the populations. Corresponding to the variations in the genetic best-fit models, the genetic effects are statistical estimates which are liable to estimation errors, which are mostly attributed to effects of individual random samples which constitute
Although this broad validation study of the previously reported association of CDKN2BAS with periodontitis adds further evidence that variants at this locus increase the risk of periodontitis in individuals of Northern European origin, it is evident from the number and distribution of the significant SNP associations—which were observed in our current and our previous study, and similarly in other larger studies on CHD9—that the causative variant(s) and the related disease mechanisms remain to be identified. Additionally, we observed nominally significant SNP associations in the CP populations. Considering that individuals who experienced early development of periodontitis are likely to have inherited a major genetic disease variant, it is conceivable that in larger populations of the rather moderate phenotype chronic periodontitis, these SNPs may show their significance for CP as well as they did for the more severe AgP phenotype. To clarify this, replication experiments in further large populations of CP would be desirable.

The risk of periodontitis related to this locus may vary among different ethnic groups, which is suggested by frequency variations of the disease associated rs1553048-C allele from 21% in Yoruba to 51% in European and Japanese in HapMap. To identify the true causative variant(s), that may also be different between various ethnic groups, further genetic exploration of this genetic region in much larger analysis populations, including large analysis populations of various ethnic backgrounds, is necessary. A technical limitation of our study was the failure to genotype 16 of the selected tagSNPs in all populations, including large analysis populations of various ethnic backgrounds, is necessary. A technical limitation of our study was the failure to genotype 16 of the selected tagSNPs in all populations, especially when the moderate LD across most of the genetic region of CDKN2BAS is considered. Here, an LD region harbouring the potential true variant(s) might have been missed. Future studies that will apply deep resequencing of cases carrying the associated variants across CDKN2BAS will obtain the full spectrum of variation in this region, and will be able to identify the causal variant(s) that affect the genetic risk.

In the second part of our study, we analysed the expression patterns of CDKN2BAS, CDKN2A, CDKN2B, and CDK4 in gingival epithelial cells after stimulation with Streptococcus gordonii and Porphyromonas gingivalis. (A) After 6 h of bacterial infection, CDKN2BAS mRNA expression was significantly increased upon 24 h P gingivalis stimulation of S gordonii pre-treated gingival epithelial cells (GECs) compared to 6 h of stimulation (p=0.003). (B) CDKN2A gene expression was significantly reduced in response to 24 h of P gingivalis stimulation after S gordonii pre-treatment compared to unstimulated GECs (p=0.004). A similar reduction, not significant in our experiments, was observed between 6 h and 24 h of P gingivalis stimulation after S gordonii pre-treatment. (C) For CDKN2B, no significant differences in mRNA transcript levels were observed in GECs upon bacterial stimulation. (D) CDK4 mRNA levels were significantly reduced after S gordonii pre-treatment, followed by 24 h of stimulation with P gingivalis compared to unstimulated GECs (p=0.004). A similar reduction, not significant in our experiments, was observed between 6 h and 24 h of P gingivalis stimulation after S gordonii pre-treatment. Each box plot represents values derived from nine independent experiments and cells from three different donors were tested. C, unstimulated cells; GEC, gingival epithelial cells; MPG, blank medium for P gingivalis; MSG, blank medium for S gordonii; PG, P gingivalis; SG, S gordonii; SG-PG, pre-treatment with S gordonii for 1 h followed by P gingivalis stimulation for 6 h and 24 h.
inflammatory status of the gingiva. However, although healthy gingival samples were taken from areas with no clinical signs of inflammation, surfaces of the oral cavity are constantly exposed to both commensal and pathogenic microorganisms. Therefore, it can be speculated that the clinically healthy gingiva is subjected to challenges similar to those of the early stages of infection. Likewise, gingival samples with periodontitis represent a tissue where constant infection and chronic inflammation occurred over years, and short term responses on the transcriptional level are most likely missed in inflamed gingival tissue samples. Here, an experimental setting that precisely controls for pathogenic infection might be a better way to assess specific transcriptional responses.

Because the functional variant(s) are as yet unknown for both periodontitis as well as for CHD, we did not aim to study the putative biological effects of the associated variants. Thus, we did not distinguish between the allelic background in our cell cultures, but studied the transcription pattern of the selected genes in response to bacterial infection. We observed that after 24 h of stimulation of healthy HGFs and GECs with the pathogenic bacterium *P. gingivalis*, CDKN2BAS was significantly upregulated compared to the unstimulated controls. This real-time response of CDKN2BAS gene activity to a specific pathogenic inflammatory trigger indicates that CDKN2BAS is subjected to pathogen sensitive transcriptional regulation. Furthermore, the clear response after 24 h of stimulation, but the absence of elevated transcript levels after 6 h of stimulation, suggests that CDKN2BAS may be located at a downstream position of a putative pathogen sensitive signalling cascade. We further observed a minor but significant downregulation of CDKN2A after 24 h of bacterial stimulation in both gingival epidermal tissue and gingival fibroblasts. These large quantitative differences in CDKN2BAS and CDKN2A transcript levels in response to 24 h bacterial stimulation possibly indicate that CDKN2A, unlike CDKN2BAS, is not directly regulated by bacterial infection on the transcriptional level, but at a later stage of this signal transduction cascade.

Our observations were in accordance with a very recent study on CDKN2BAS function which showed that CDKN2BAS transcripts negatively regulate CDKN2A expression.31 This recent study detected that CDKN2BAS transcript initiates in prostate cancer tissues at a start site several hundred bases upstream of the previously reported start site. An antisense construct designed to target this newly identified transcript caused a pronounced increase in the expression of CDKN2A, but had a much less profound effect on CDKN2B.31 In conjunction with various other experiments, the authors concluded that the transcript encoded upstream of the previously reported start site of CDKN2BAS controls CDKN2A silencing by cis recruitment of polycomb group complex proteins, and in addition functions as an architectural matrix to retain these proteins at the target site. Interestingly, a recent study, which performed genome wide expression profiling

![Figure 4](https://example.com/image.png)

Figure 4 mRNA levels of CDKN2BAS, CDKN2A, CDKN2B and CDK4 in human gingival fibroblasts after stimulation with *Streptococcus gordonii* and *Porphyromonas gingivalis*. (A) CDKN2BAS mRNA levels were significantly increased in non-*S gordonii* pre-treated (*p*<0.004) and *S gordonii* pre-treated human gingival fibroblasts (HGFS) (*p*<0.003) after 24 h of stimulation with *P gingivalis*. (B) CDKN2A mRNA levels were significantly reduced in *S gordonii* pre-treated and 24 h *P gingivalis* stimulated HGFS compared to unstimulated HGFS (*p*<0.001). (C, D) No significant differences of mRNA levels were observed for CDKN2B and CDK4 mRNA levels in either condition. Each box plot represents values derived from nine independent experiments and cells from three different donors were tested. C, unstimulated cells; HG, human gingival fibroblasts; MPG, blank medium for *P gingivalis*; MSG, blank medium for *S gordonii*; PG, *P gingivalis*; SG, *S gordonii*; SG-PG, pre-treatment with *S gordonii* for 1 h followed by *P gingivalis* stimulation for 6 h and 24 h.
in healthy individuals who were homozygous for the common and the rare allele of rs1353049, showed that the nature of the genes and pathways linked to CDKN2BAS transcript levels comprised genes which control cellular proliferation.30 These studies did not functionally analyse exons 1–19, but a second antisense construct designed to target exon 5 silenced CDKN2A to a much lesser extent than the antisense construct upstream of exon 1.31 Although the function of this transcript was not studied in detail, it indicates that different CDKN2BAS transcripts may have different functions. Currently, 10 alternative spliced variants were reported in different tissues as diverse as lung, brain, heart, vascular epithelial tissues, testis, and blood.45–46 They may have specific functions in their tissue specific context, additional or alternative to the observed negative control of CDKN2A. Two studies measured the expression of CDKN2BAS spliced transcript NR_003529, spanning exons 17 to 18, and found slightly decreased expression which was associated with the risk allele in healthy individuals.30,32 A study on individuals with clinically suspected CHD revealed that NR_003529 expression was significantly increased in individuals with atherosclerotic plaque burden, and correlated ANRIL transcript levels with severity of atherosclerosis.32 Our primers for the quantification of CDKN2BAS transcript levels were designed to detect NR_003529 transcripts, and we found NR_003529 upregulation by bacterial infection. The correlation of CDKN2BAS expression with bacterial infection and increased CDKN2BAS expression in individuals with atherosclerotic plaque burden add to the theory of inflammatory components in the pathophysiology of CHD. Considering the recent finding on the ability of the 5′ transcript of CDKN2BAS to recruit and retain regulatory proteins, the functions of the proximal and considerably long sequences of CDKN2BAS might well have a similar mechanistic function, but may also be able to act in trans.

Theories concerning the actual disease mechanism that is mediated by the causative risk variants of CDKN2BAS remain speculative, as the exact nature of the causative variants and the target proteins or genes await elucidation. They possibly differ between CHD and periodontitis. Here, we present findings which link the pathogenicity of P. gingivalis and its contribution to rapid periodontal degradation to a biological mechanism that is mediated by CDKN2BAS, that may directly act in cis on the negative regulation of CDKN2A and the downstream lying genes of the CDKN2A regulation cascade; or additionally, may act on other, as yet unknown, trans-acting regulatory proteins with unidentified genetic targets. Taking into consideration the correlation of increased ANRIL transcript levels with the severity of atherosclerosis,52 this link might also join bacterial infection to atherosclerotic plaque burden by a potentially regulatory mechanism that is mediated by ANRIL transcription.

Funding This study was supported by a research grant from the “Research Center for Inflammation Medicine” of the Medical Faculty, Christian-Albrechts-University, University Medical Center Schleswig-Holstein, Campus Kiel, (Arne S Schaefer, Gesa M Richter), by the German Ministry of Education and Research (BMBF) through a National Genome Research Network (NGFN) grant (Michael Nothnagel, 01GS0809), by grants of the German Research Foundation (DFG) (KF2008) (TP3. Arne S Schaefer, Gesa M Richter, Sören Jepsen) (TP2: Henrik Dommisch, Markus Reinartz, Sören Jepsen), by the BMBF through the POpGEN biobank project (01G0468), by a grant from BONFOR of the Medical Faculty, University of Bonn (Sören Jepsen), and by a grant from the ARPA Research Foundation (Birte Grössner-Schreiber, Sören Jepsen), Regensburg, Germany.

Competing interests None.

Patient consent Obtained.

Ethics approval This study was conducted with the approval of the Medical Ethical Committee, Universities of Bonn, Dresden, Kiel and Munich, Germany, and Medical

Ethical Committee, Academic Medical Center, University of Amsterdam, the Netherlands.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

18. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–70.

Original article

J Med Genet 2011;48:38–47. doi:10.1136/jmg.2010.087989

Downloaded from jmg.bmj.com on March 13, 2013 - Published by group.bmj.com
CDKN2BAS is associated with periodontitis in different European populations and is activated by bacterial infection

Arne S Schaefer, Gesa M Richter, Henrik Dommisch, et al.

J Med Genet 2011 48: 38-47 originally published online October 26, 2010
doi: 10.1136/jmg.2010.078998

Updated information and services can be found at:
http://jmg.bmj.com/content/48/1/38.full.html

These include:

Data Supplement
"Web Only Data"
http://jmg.bmj.com/content/suppl/2010/11/01/jmg.2010.078998.DC1.html

References
This article cites 45 articles, 23 of which can be accessed free at:
http://jmg.bmj.com/content/48/1/38.full.html#ref-list-1

Article cited in:
http://jmg.bmj.com/content/48/1/38.full.html#related-urls

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Drugs: infectious diseases (38 articles)
Diabetes (98 articles)
Epidemiology (542 articles)
Ischaemic heart disease (39 articles)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/