
https://doi.org/10.1016/j.fsidi.2023.301587
https://dare.uva.nl/personal/pure/en/publications/assessing-data-remnants-in-modern-smartphones-after-factory-reset(f0894f7c-e166-4c9c-b7cf-ac36fead5a79).html
https://doi.org/10.1016/j.fsidi.2023.301587

ble at ScienceDirect

Forensic Science International: Digital Investigation 46 (2023) 301587
Contents lists availa
Forensic Science International: Digital Investigation

journal homepage: www.e lsev ier .com/ locate/ fs id i
Assessing data remnants in modern smartphones after factory reset

Mattheüs B. Blankesteijn a, *, Aya Fukami a, b, Zeno.J.M.H. Geradtsa, b

a University of Amsterdam, Science Park 904, Amsterdam, 1098, XH, the Netherlands
b Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague, 2497, GB, the Netherlands
a r t i c l e i n f o

Article history:
Received 17 August 2022
Received in revised form
2 June 2023
Accepted 4 June 2023
Available online 10 July 2023

Keywords:
Android
Mobile forensics
Factory reset
Google Pixel
Xiaomi Redmi
File based encryption
Metadata encryption
Flash drive image
* Corresponding author.
E-mail addresses: mblankesteijn@os3.nl (M.B. B

(A. Fukami), geradts@uva.nl (Zeno.J.M.H. Geradts).

https://doi.org/10.1016/j.fsidi.2023.301587
2666-2817/ © 2023 The Authors. Published by Elsevier
a b s t r a c t

It is commonly believed by end-users that factory reset on an electronic device restores the state of the
device back to when it was shipped from the factory. Nevertheless, user data has reportedly been
recovered after a factory reset by applying forensic data recovery techniques. In order to protect end-
users’ privacy, smartphone manufacturers started implementing security countermeasures such as
encryption. Speci � cally for Android smartphones, the encryption scheme advanced as the Android
version became higher. Meanwhile, the effectiveness of a factory reset on a modern Android device has
not been publicly explored. In this paper, the effectiveness of factory reset on modern devices running
Android 11 or 12 is investigated. This is done by looking at low level differences on data extractions
before and after creating data and after resetting a device. Results show that some parts of the encrypted
data are still accessible in their binary form as not all data is reset to factory state. Furthermore, different
partitions do not wipe data that was created during device usage, from which information about the use
of a device may be deduced.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Factory reset is a function in electronic devices that should
restore a device to its initial factory state. However, previous
research on factory reset in smartphones has shown that using
forensic acquisition tools data is still accessible (Khramova and
Martinez, 2018). Nowadays, modern smartphones encrypt user
data to provide privacy and security. The impact of this on digital
forensics has not yet been publicly explored. This research in-
vestigates the effectiveness of a factory reset in modern Android
smartphones with respect to digital forensics.

As smartphones become more relevant in people's lives, the
extend to which secure erasure of data on these devices is possible
also becomes more important. Nowadays, a large portion of the
world population is accompanied by a smartphone (Zinkus et al.,
2021) and although the motives for executing a factory reset can
vary from person to person, the desired outcome of what is ex-
pected from a factory reset device is similar.

As modern Android smartphones encrypt their user data, from a
forensic perspective, that kind of user data is not useable without
lankesteijn), a.fukami@uva.nl

Ltd. This is an open access article
the decryption keys. However, according to Farmer and Venema
(2004) , forensic relevant data can be found in all kinds of (un-
usual) places in computers. Unencrypted system data could still be
readable and provide valuable information about what actions
happened, or did not happen, on a phone at a certain point in time.
Therefore, this research aims to investigate to what extent foren-
sically relevant data on a modern Android device is still accessible
after a factory reset.

To answer this question, data is generated on different smart-
phones running recent Android versions. Drive images are captured
from these devices before and after creating data, and after factory
resetting the devices. Comparison of these images then shows that
data on an Android device is not always securely erased. Instead, it
is left in encrypted or sometimes even unencrypted form.

In short, the contributions made by this research are as follows:

C Provide an overview of Android encryption, imaging and
resetting, and its implications for forensics.

C Provide an analysis on what data remains after resetting a
modern Android device.

The remainder of this paper is organised as follows. First of all,
an overview of encryption, imaging and resetting in modern
Android phones is given in Section 2. Secondly, other research
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by/4.0/
mailto:mblankesteijn@os3.nl
mailto:a.fukami@uva.nl
mailto:geradts@uva.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301587&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301587
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.fsidi.2023.301587

M.B. Blankesteijn, A. Fukami and Zeno.J.M.H. Geradts Forensic Science International: Digital Investigation 46 (2023) 301587
closely related to this work is discussed in Section 3. After that,
Section 4 details the approach followed to examine smartphone
data remnants. In Section 5 the outcomes of this approach are lis-
ted. Section 6 then continues by interpreting and discussing these
results, which is followed by a conclusion in Section 7.

2. Background

In this section, an overview is provided on the state-of-the-art in
Android encryption, in extracting data from an Android device, and
in resetting an Android device. The focus will be on consumer
Android devices, leaving out details speci � c for company managed
devices and working pro � les.

Regarding the target audience for the coming (sub)sections;
throughout this paper, we provide practical information on the
Android data structure and the factory reset, and how the actual
data change can be monitored before and after the factory reset.
The authors believe the presented information can help both � eld
of� cers, forensic practitioners, and researchers understand the
actual low-level data change on factory-reset Android devices.

2.1. Android encryption

This section describes the general process and setup of
encryption using Android. Nevertheless, individual device encryp-
tion differences may exist, as vendors can make their own design
choices.

User data on Android devices can be encrypted using symmetric
key encryption (Android Developers, 2022b). From Android 4.4
until Android 7.0, the only built-in encryption option was full disk
encryption (FDE). Using dm-crypt (The kernel development
community, 2022a), user data on disk is encrypted and decrypted
by writing to a device mapper (dm) partition. The blocks on the
physical disk to which this partition maps are encrypted with the
same disk encryption key but with a different initialisation vector
for each block (Loftus and Baumann, 2017). This key resets when
doing a factory reset and is wrapped using a key encryption key
based on salted user authentication (Loftus and Baumann, 2017). In
that way, the end-user can change her authentication, such as a pin
code, without the device needing to be encrypted with a new key
(Android Developers, 2022d ; Loftus and Baumann, 2017). Since
Android 7.0 the userdata partition can be encrypted using � le-
based encryption (FBE). Devices that launch with an Android
version higher than 10 are required to use this form of encryption
(Android Developers, 2022b). With FBE, each� le can use a separate
key, and thus a separation can be made between � les that can be
unlocked by the device, and � les that can only be unlocked after
processing user credentials. The usage of only device encrypted
� les is called direct boot mode (Android Developers, 2022b). The
device key used for this is protected by veri � cation of the phone
boot (Android Developers, 2022g). The area of storage that is pro-
tected by user credentials is unlocked on the � rst user unlock of a
phone and only locked again when the phone is shut down
(Android Developers, 2022g ; Galindo et al., 2021).

FBE is split in encrypting the content of � les and the names of
� les (Android Developers, 2022c). For both types a 256-bit variant
of the advanced encryption standard (AES) encryption is used,
optionally in combination with XChaCha12 (Android Developers,
2022c; The kernel development community, 2022b) (adiantum).
For � le contents, the XEX-based tweaked block cipher mode with
ciphertext stealing (XTS) is used, while for � le names, ciphertext
stealing (CTS) or hash encrypt hash (HEH) mode can be used. The
content of a � le or folder is encrypted with an unique key that is
derived by a key derivation function (KDF) from a master key and
number-only-used-once (nonce) (Grob et al., 2019; The kernel
2

development community, 2022b). The � rst version of this KDF, as
implemented in the Linux kernel, generated a key by encrypting
the master key with the nonce and truncating the result to the
required length (The kernel development community, 2022b).
From Android 11.0 on, a more � exible and secure variant of this KDF
is required (The kernel development community, 2022b ; Android
Developers, 2022c).

As with FDE, the 512-bit master keys used for FBE are encrypted
by a 256-bit key encryption key, which is stored in a trusted
execution environment (TEE) (Android Developers, 2022c). Such a
key in the TEE is protected by an authentication token, a stretched
credential, and a secdiscardable hash (Android Developers, 2022c).
The authentication token is generated on user login, if the user has
set any credentials. The stretched credential is the salted and
scrypted variant of the user credential, if it exists. The secdiscard-
able hash is a 512-bit hash of random data discarded when the key
is re-encrypted or deleted (Android Developers, 2022c).

When using FBE, � le metadata such as permissions and modi-
� cation timestamps are still readable. Therefore, from Android 11.0
metadata-encryption has to be used on top of FBE. This form of
encryption is analogous to FDE and is protected by a veri � ed boot
(Galindo et al., 2021 ; Android Developers, 2022e).

2.2. Android imaging

There are different ways to extract data from an Android device.
These ways can be ranked from almost non-invasive to very inva-
sive. Among the least invasive is the built-in backup functionality to
back up data from the device to a � le. However, each application
can decide individually whether or not it wants to be backed up by
this functionality. Therefore, from a forensic perspective this
functionality is less useful.

To get information from applications without their consent, one
needs to increase the number of rights on a phone. In other words,
root access to a device is needed. The way to get this privilege can
differ from device to device (Binary Hick, 2021). For some devices,
manufacturers do not stand in the way if the owner wants to root a
phone, while for other devices, speci � c weaknesses need to be
exploited to gain root privileges.

Among the most invasive ways to read data from an Android
device is to read the raw bits directly from the memory chip. This
can be done through the Android interface with root rights or by
physically connecting to the chip through e.g. a joint test action
group (JTAG) or in-system-programming (ISP) interface (Fukami
et al., 2021). Alternatively, the chip can be physically removed
from the device and read out separately. This process is also known
as performing a chip-off.

When taking the device apart physically is not an option, one
needs to use the tools available on the phone itself, or, in case of an
unlocked bootloader, boot a program that is able to read the data
and communicate with the examiner's device. For this last option,
recovery programs such as TWRP (Team Win L.L.C., 2021) can be
used. A built-in way to communicate with an Android device is
through the Android device bridge (adb) (Android Developers,
2022a). With this program, commands can be run on a device. On
most Android phones, basic Linux tools such as dd (Rubin et al.,
2022) and tar (Free Software Foundation, Inc., 2022) are already
available. To copy the content of block devices, dd can be run as an
adb shell command, and its output can be written to (external)
storage on the phone, to a networking program such as netcat
(Hobbit, 2022) or simply written to the standard output of the
examiner's device, from where it can be sent to a � le. A logical
extraction can by acquired by running the tar command on the
directories of interest. From a forensic perspective, however, using
tools available on the devices means one has to trust what these

M.B. Blankesteijn, A. Fukami and Zeno.J.M.H. Geradts Forensic Science International: Digital Investigation 46 (2023) 301587
tools do. Therefore, it is not uncommon for forensic research to use
commercial off-the-shelf (COTS) tools for investigation. One
example of this is the universal forensic extraction device (UFED)
(Cellebrite, 2022). This tool is designed to make both physical and
logical extractions from all kind of devices while functioning mostly
as a black box to researchers. For modern android devices, this tool
also requires to modify the subject of extraction by turning on
developer mode with USB-debugging. Another commercial tool
designed for devices using a MediaTek (MTK) system on a chip
(SoC) is called Chinese Miracle-2 (CM2) (In� nity-Box, 2022). This
tool works before booting the Android operating system (OS) and
can dump all partitions on the device without the device being
rooted or its bootloader unlocked. Nevertheless, how the tool
achieves this is not publicly known, although it likely exploits some
weakness in MTK chips. Furthermore, Mobile Relevator (Kerler,
2022) is a partly open source and non-commercial tool that can
be used to extract data from Android devices. For example, when it
comes to partition extraction, it just executes adb shell commands
and pipes the output to netcat, as discussed before. Next to these
tools, there are other commercial tools available, including, but not
limited to, XRY (MSAB, 2021) Oxygen Forensic Detective (Oxygen
Forensics, Inc., 2021) and GrayKey (Grayshift, LLC., 2022).

Until recently, data could be extracted from a device in a
forensically sound way by doing a chip-off and reading the bits on
the lowest possible level. However, nowadays Android phones use
encryption, which is why it is now more common to extract data
from a running OS. For devices using FDE, one can copy the bits of
the dm device corresponding to the data that one is interested in,
usually the userdata partition. For FBE, � les are decrypted on-the-
� y which means all � les need to be accessed individually or the
master keys need to be extracted from the device, after which it
should be possible to mount the device of � ine. The former can be
achieved through the user system, for example by running the tar
command, while the latter can be achieved by examining the
random access memory (RAM) of the device (Grob et al., 2021).

2.3. Android reset

In this section, the process of an Android reset is described.
When references are made to the Android source, this entails the
code released for the latest Android 12.1 version. Nevertheless,
most statements also apply to somewhat older versions.

Although there are multiple ways to reset an Android device,
usually one uses the reset options provided in the settings menu.
Among these options are usually functions to reset “Wi-Fi, mobile
& bluetooth ”, “app preferences”, “downloaded SIMs ”, “external
storage” and “all data (factory reset) ” . This last option claims to
erase “all data from your phone's internal storage ”. This is the
functionality explored in this research.

When resetting an Android phone, there are � rst some safe-
guards to make sure it is the user that requests the reset and that it
is done intentionally. This is implemented by requesting user cre-
dentials and having multiple views where the user needs to click a
button to con � rm the wipe (Android Developers, 2021a). The
Android intent that is launched on con � rming the wipe then sends
a request to the RecoverySystem to wipe the device through the
rebootWipeUserData function (Android Developers, 2021b). The
comment explaining the function however already notes that fac-
tory reset is “something of a misnomer because the system parti-
tion is not restored to its factory state ”. Nevertheless, the function
calls a boot command with as arguments to wipe data, the default
locale, a reason with an optional timestamp, and whether the
system should shutdown afterwards (Android Developers, 2022f).
When booting into recovery the arguments for this command are
written to the bootloader control block (BCB), to restart the process
3

in case of failure (Android Developers, 2020b). Then it is checked
whether there is a reason for the wiping of data. If the reason is
valid, WipeData is called (Android Developers, 2020a). Looking at
the recovery function to wipe data, there are three volumes that get
erased:/data,/cache and/metadata (Android Developers, 2021c).
When the cache is wiped, the logs are � rst written to memory so
they can be restored (Android Developers, 2021c). To wipe data, the
function format_volume is used. In this function, any key location
corresponding to the volume gets its � rst 4096 bytes overwritten
with zeroes (Android Developers, 2020c). Furthermore, the volume
with which the function is called is formatted by mke2fs or
make_f2fs, depending on whether it is ext4 or F2FS formatted
respectively. After formatting, the BCB is cleared again, so normal
boot can occur (Android Developers, 2020a). In short, this means
encryption keys are securely erased, and the/data,/cache and/
metadata partitions are reformatted.

3. Related work

Schwamm and Rowe (2014) inspected multiple smartphones
using Cellebrite software. On Android phones, quite often images,
audio and text � les were still available after factory reset. Data
about contacts, IP connections and location could not often be
recovered, however. Nevertheless, the investigated Android ver-
sions are between 1.5 and 4.2, and the effects of encryption are not
investigated. Similarly, Simon and Anderson (2015) found user data
after factory reset on Android versions between 2.2 and 4.3. They
recommend the use of FDE to mitigate risks.

More recently, Khramova and Martinez (2018) investigated
phones running Android versions between 2.3 and 7.0. They found
it dif � cult to predict what might be found on a phone beforehand,
as even supposedly identical phones may use different variants of
memory chips responsible for carrying out erasure commands.
Nevertheless, the quality of factory resets tends to improve with
newer Android versions; for Android 6 and 7 the factory reset was
reported to have “succeeded”. Also closely related is a recent blog
post on detecting factory resets in Android (Binary Hick, 2021).
Although this post also focuses on more recent Android devices,
this research differs in focusing on data remnants instead of
detecting resets.

With regard to the phone memory itself, Skorobogatov (2018)
found that under some conditions non-volatile � ash memory
may not be erased properly. Moreover, Schneider et al. (2021)
brought to attention that even new � ash drives may already
contain data, due to not being properly recycled in the factory.

In short, to the best knowledge of the authors, no literature has
practically investigated the data after factory reset on modern
Android devices. Therefore, the current literature may lead to
speculation that data can still be recoverable after Android factory
reset. In this research, we aim to reproduce former studies on
Android factory reset on modern smartphones.

4. Methodology

This section describes the approach taken to generate the
experimental results. The generic method � ow is sketched in Fig. 1.
In general, data is generated on clean modern Android phones. For
this, two Google Pixel 3a phones and one Xiaomi Redmi 9 phone are
used. The Redmi phone has a 32 GB embedded multimediacard
(eMMC), runs a MTK SoC, and is updated to Android 11. The Pixel
phones have an eMMC chip of 64 GB, a Qualcomm SoC and run
factory images of Android 11 and 12 respectively. More speci � cally,
the Pixel phones are � ashed with sargo-sp2a.220505.006 (Android
12) and sargo-rq3a.211001.001 (Android 11) (Google Developers,
2022a). After � ashing the factory images, the boot images for

Fig. 1. General � ow for the methodology. First an extraction is made from a device, as described in Section 4.1. Thereafter, data is generated on the device as described in Section 4.2.
Another extraction is followed by a factory reset as described in Section 4.3. This is followed by a � nal after-reset extration. The extractions that are made can than be compared to
see which created data was remnant.

M.B. Blankesteijn, A. Fukami and Zeno.J.M.H. Geradts Forensic Science International: Digital Investigation 46 (2023) 301587
these phones are rooted with Magisk 25.0 (Wu, 2022), which was
installed through adb (Android Developers, 2022a). The rooted
boot images were � ashed with fastboot (Google Developers,
2022b). As user credentials a four number pin code is used on the
Android 12 phone, while no explicit user credentials are set for the
other phones to investigate any differences.
4.1. Extraction

In this section, it will be described in more detail how data is
acquired from Android devices. Firstly, data acquisition from Goo-
gle Pixel phones is described, followed by the method used for
extraction on a Xiaomi Redmi phone.
4.1.1. Google Pixel
As soon as root access is achieved on the phones a baseline

image is extracted from the phone. This is done by executing dd in
the Android device shell and sending the output to the examiners
device. For dd version 0.8.3 and 0.8.4 from the toybox package is
used for Android 11 and 12 respectively, which is installed by
default on the devices. As we use the production builds of the
Android software, it is impossible to run adb in root mode. How-
ever, it is possible to send commands to the shell on the device and
acquire root rights there. Output can then be fed to the standard
output of the examiner's device. Fig. 2 shows an example how data
can be extracted in this way.
4.1.2. Xiaomi Redmi
For the Xiaomi Redmi phone extraction is performed without

rooting or unlocking the bootloader through the low level MTK tool
CM2 2.34 (In� nity-Box, 2022). To make this program work on
recent Android phones, a speci � c algorithm needs to be followed
when connecting the phone to the examiner's device. The phone
should be powered off when connecting the device through USB.
Normally it will start charging as it receives power from the ex-
aminer's workstation. CM2 can then be started and asked to
identify the connected phone, without the need to select the cor-
rect phone � rst. When it asks to reconnect the USB, one should
disconnect the USB, wait until the phone left its charging mode, and
then hold both volume and down buttons when reconnecting the
phone. The program was not found to work without holding these
buttons for phones running a newer version than Android 10. For
the extraction of the partitions, the memory mode of CM2 is used.
Fig. 2. General extraction command. As devices mmcblk0 and all dm- N devices are extracted
directly to a hash calculator, such as sha256sum. Optionally, the output of dd can be piped to gz
size much, however. To create an archive of decrypted � les, the tar command can be used

4

4.2. Data generation

On all phones, data is generated in similar ways. We loosely
follow the Mobile Device Data Population Setup Guide (National
Institute of Standards and Technology (NIST), 2016), but chose to
follow more on day-to-day use. Thus, more focus is placed on data
generation by different applications than, for example, the sending
of multimedia messaging service (MMS) messages. In detail, � rst of
all, for every phone a new Google account is created, to prevent any
contamination or inconsistencies from historical data. With this
account, the applications WhatsApp, Signal, Telegram, Element, NS
(Dutch railway planner), TikTok, Instagram, Mijn Bijbel (Bible
reader), Flitsmeister, and Schiphol Amsterdam Airport are installed
from the Play Store. All applications present on the phone are
updated to their latest versions (June 2022).

For the same reasons, every phone uses a new SIM card. With the
corresponding phone number, accounts are created for the appli-
cations WhatsApp, Signal and Telegram. The Google account is used
to log in to TikTok and Element. For Instagram, a new account has to
be created, which follows the Instagram and National Geographic
channels. With each of the messaging applications, some messages
with Dutch compound words that should be unique and recognis-
able in plain text data are sent. For TikTok and Instagram, a couple of
images and videos are viewed. On the pre-installed YouTube appli-
cation, the video “The Mandalorian OST - Main Theme ” is watched.
With NS a travel from Den Haag Ypenburg to Bad Bentheim is
planned. Using Mijn Bijbel chapter 7 of Ecclesiastes is viewed. Google
Maps and Flitsmeister are used to navigate various places in the
Netherlands. Different intents in the Schiphol app are viewed.

In addition, some built-in actions are taken on the phone.
Among these are scrolling through menus, news and settings,
taking some pictures, use the browser, receive e-mails, reconnect-
ing a charger, modifying brightness, setting a wallpaper, sending
and receiving SMS messages, making and receiving a call, con-
necting to WiFi networks and toggling airplane, � ashlight and
rotate modes. For the Android 11 phones the NFC Tools application
is also used to read a MIFARE DESFire card, Bluetooth is used to
connect and play an alarm through a headphone and some
screenshots are made.
4.3. Experiments

To examine what data is left on the Android devices after factory
reset, the following experiment is set up. After being able to get an
. For ¡size¿1024 seems to work well. ¡f¿can be any valid � lename. The � le can be piped
ip � rst for compression. For properly encrypted data, this should not decrease the � le
instead of dd.

M.B. Blankesteijn, A. Fukami and Zeno.J.M.H. Geradts Forensic Science International: Digital Investigation 46 (2023) 301587
image from the clean phone, data is generated as described in
Section 4.2. When data is generated, another image is taken from
the phone. For the pixel phones different extractions with UFED
7.54.0.488 (Cellebrite, 2022) are attempted. After the UFED ex-
tractions another image is made in case UFED modi � ed any parti-
tions. Then the phone is factory reset through the settings menu.

After the reset rooted phones are still rooted but the Magisk
application needs to be reinstalled to give the Android shell permis-
sion to actually use root rights. More speci � cally, after a reset the SIM
card isunlocked,some Googlesettings and usercredentials need to be
set, the phone is put in airplane mode to prevent any modi � cation,
developer options with USB debugging are enabled and the Magisk
application is installed through adb. Once installed, Magisk needs the
phone to reboot to get its full functionality to work. After the reboot
Magisk can give the Android shell root access again. Alternatively,
since this process can be viewed as contamination of the forensic
subject, one may use a custom recovery to access root rights. How-
ever, TWRP 3.6.2, the latest version of one of the most popular re-
covery systems, was found to not support FBE on Google Pixel 3a
phones, at least those running Android 12, yet. Nevertheless, to read
� le based encrypted � les the phone needs to be started and unlocked
anyway, unless the master keys can be extracted in some other way.

After the phone is initialised again, an after-reset image is taken
to compare with the other images. This is done by running The
Sleuth Kit's mmls (Carrier, 2019) tool on the extracted images and
extract the recognised partitions with dd (Landley, 2022). The
partitions are manually inspected by looking at binary differences
and mounting the relevant images. Used tools to do this include xxd
1.10 (Weigert, 1998), diffutils 3.7 (Free Software Foundation, Inc.,
2018) vimdiff 8.1 (Molenaar, 2018), ent (2008) (Walker, 2008) and
Python3 (Van Rossum and Drake, 2009) scripts.For the Android 12
phone, three more experiments where executed. Firstly, since there
was a partition found called ‘bluetooth ’, this partition was extracted
before and after connecting and sending some data over Bluetooth
including Bluetooth tethering to inspect differences. Secondly, the
extracted dd image after the UFED extraction was � ashed back to
the phone to see whether it would accept the restored partitions.
The command used for this is visible in Fig. 3. This command was
executed in a live boot of the TWRP recovery environment. Thirdly,
a tar archive of the � les was taken after � ashing and rooting a clean
image. This was repeated after a factory reset without any data
generation to see what � les would change after a factory reset in
any case. Furthermore speci� c � les related to factory reset were
searched for.

5. Results

This section contains the results of the described experiments.
In general, the resets take little more than a minute for the phone to
execute. For the Pixel phone running Android 11, there were 62
seconds between the start of the erasure process and the booting of
the phone into the OS. This makes it implausible that the whole
storage is reset to factory state.

5.1. Commercial off-the-shelf (COTS)

Auto-detection with UFED can recognise the Google Pixel
phones. However, when manually looking into the list of supported
Fig. 3. Command used for re � ashing the full � ash drive from an extraction after reset. The � r
executed on the mobile device itself through a recovery environment. If the recovery environme
this command.

5

devices the Google Pixel 3a is not there. As a result, on both the
Android 11 and Android 12 phones almost all extractions fail. For
example, when trying to perform a physical extraction UFED
throws an error when trying to reboot. Manual reboot does not help
to solve this problem.

However, some extractions could be performed on the Pixel 3a
by not selecting it as a Pixel 3a, but as Pixel 3a XL. Physical
extraction then still fails on reboot, though an ‘advanced logical ’
extraction becomes possible. Nevertheless, UFED 7.54.0.488 can
still show nondeterministic behaviour by raising different kinds of
warnings/errors when repeating the same process on the same
phone. In addition, a temporary application is run on the phone
showing a warning that it was developed for an older Android
version. Furthermore, through this method the analyser of UFED is
not able to read chats, such as those included in the crypt14 data-
base of WhatsApp. This may be because an ‘advanced logical ’
extraction does not seem to give access to android application
sandboxes, such as the ones containing necessary keys for database
decryption.

A separate method provided by UFED that worked through the
pixel 3a XL interface was to capture chats. This works by actually
opening the application on screen and scrolling through chats. For
Signal the software is capable of clicking through the interface to
make a manual backup. As any user-installed applications are gone
after a factory reset these are also not relevant options for this
research.

While UFED requires manual unlock of a phone and enabling of
USB debugging, CM2 is able to extract data from the phone without
any adjustments to the phone, other than holding the volume up
and down buttons when connecting to the forensic workstation.
Through this method a sparse image of the userdata partition could
be acquired. However, when extracting this image and mounting it
there is not much data visible. Binary analysis of the image does
show that the � le consists of mostly zeroes. Nevertheless, it is also
possible to extract raw partitions, as discussed in Section 5.2. As
expected the � les on this partition are encrypted after extraction.
5.2. Partitions

Table 1 shows an overview of which partitions are modi � ed at
which point in the experiment for the Pixel phones. As visible, the
major part of partitions does not get modi � ed at any point in the
experiment. The partitions that do get modi � ed are discussed
below.

Firstly, on modem_a the bytes 0xd554 are changed to 0x8652,
which is repeated multiple times throughout the � le. As this
partition is related to the global system for mobile communication
(GSM) (mirfatif, 2017) it might indicate some kind of identi � cation
or version number that is rolled back on reset of the phone. On fsc
about half of the bytes is changed on every capture. As the entropy
of this partition is around � ve bits per byte the data may be
encoded, while encryption is less likely. The data itself is said to
contain � lesystem cookies for the modem (mirfatif, 2017). Similarly
for modemst1 and modemst2 almost all bytes are changed on every
capture. For these partitions the entropy is almost eight bits per
byte, indicating random or encrypted data. The remnant bytes for
this partition consist of almost only individual bytes that can be
attributed to chance.
st part of the command is executed on the forensic workstation while the second part is
nt can run adb in root mode, no further privilege escala tion is required to execute

Table 1
Differences between partitions in different states of the experiment on the Google Pixel 3a phones in bytes. The numbering shows the order of partitio ns on disk as indicated by
mmls (Carrier and Contributors, 2019). All sizes are in bytes. Sizes and partitions are the same for Android 11 and 12. The last column shows the bytes that are the same for the
after data and after reset captures, while being different for the empty and after data captures. Thus these are bytes that are created on data creation and end up to be the same
on the same position on disk after reset.

Partition Size Empty-Reset Data-Reset Empty-Data Remnant

ANDROID 11 ANDROID 12 ANDROID 11 ANDROID 12 ANDROID 11 ANDROID 12 ANDROID 11 ANDROID 12

0 safety_table 512 0 0 0 0 0 0 0 0
1 unallocated 17408 0 0 0 0 0 0 0 0
2 GPT header 512 0 0 0 0 0 0 0 0
3 partition table 9216 0 0 0 0 0 0 0 0
4 cdt 134144 0 0 0 0 0 0 0 0
5 xbl_a 3670016 0 0 0 0 0 0 0 0
6 xbl_b 3670016 0 0 0 0 0 0 0 0
7 xbl_con� g_a 131072 0 0 0 0 0 0 0 0
8 xbl_con � g_b 131072 0 0 0 0 0 0 0 0
9 tz_a 2097152 0 0 0 0 0 0 0 0

10 tz_b 2097152 0 0 0 0 0 0 0 0
11 aop_a 524288 0 0 0 0 0 0 0 0
12 aop_b 524288 0 0 0 0 0 0 0 0
13 hyp_a 524288 0 0 0 0 0 0 0 0
14 hyp_b 524288 0 0 0 0 0 0 0 0
15 fsg 2097152 0 0 0 0 0 0 0 0
16 boot_a 67108864 0 0 0 0 0 0 0 0
17 boot_b 67108864 0 0 0 0 0 0 0 0
18 keymaster_a 524288 0 0 0 0 0 0 0 0
19 keymaster_b 524288 0 0 0 0 0 0 0 0
20 cmnlib_a 524288 0 0 0 0 0 0 0 0
21 cmnlib64_a 524288 0 0 0 0 0 0 0 0
22 cmnlib_b 524288 0 0 0 0 0 0 0 0
23 cmnlib64_b 524288 0 0 0 0 0 0 0 0
24 modem_a 115343360 0 0 0 74 0 74 0 0
25 modem_b 115343360 0 0 0 0 0 0 0 0
26 msadp_a 262144 0 0 0 0 0 0 0 0
27 msadp_b 262144 0 0 0 0 0 0 0 0
28 reserved 64487424 0 0 0 0 0 0 0 0
29 abl_a 2097152 0 0 0 0 0 0 0 0
30 abl_b 2097152 0 0 0 0 0 0 0 0
31 dip 1048576 0 0 0 0 0 0 0 0
32 devinfo 4096 0 0 0 0 0 0 0 0
33 apdp_a 262144 0 0 0 0 0 0 0 0
34 apdp_b 262144 0 0 0 0 0 0 0 0
35 spunvm 8388608 0 0 0 0 0 0 0 0
36 dpo 4096 0 0 0 0 0 0 0 0
37 splash 34226176 0 0 0 0 0 0 0 0
38 limits 4096 0 0 0 0 0 0 0 0
39 toolsfv 1048576 0 0 0 0 0 0 0 0
40 logfs 8388608 0 0 0 0 0 0 0 0
41 ddr 1048576 0 0 0 0 0 0 0 0
42 sec 16384 0 0 0 0 0 0 0 0
43 bluetooth_a 1048576 0 0 0 0 0 0 0 0
44 bluetooth_b 1048576 0 0 0 0 0 0 0 0
45 fsc 131072 64260 64260 64296 64237 64251 64240 203 262
46 ssd 8192 0 0 0 0 0 0 0 0
47 dtbo_a 8417280 0 0 0 0 0 0 0 0
48 dtbo_b 8417280 0 0 0 0 0 0 0 0
49 modemst1 2097152 2088414 2088868 2088390 2088912 2088429 2088949 8221 8149
50 modemst2 2097152 2088455 2088787 2088499 2088940 2088429 2088436 8221 8126
51 persist 41943040 1469362 1150271 634290 244177 1596670 1077829 1186891 970395
52 misc 1048576 0 0 0 0 0 0 0 0
53 keystore 524288 0 0 0 0 0 0 0 0
54 devcfg_a 131072 0 0 0 0 0 0 0 0
55 devcfg_b 131072 0 0 0 0 0 0 0 0
56 qupfw_a 65536 0 0 0 0 0 0 0 0
57 qupfw_b 65536 0 0 0 0 0 0 0 0
58 modemcal 2097152 0 0 0 0 0 0 0 0
59 ue� var 1048576 0 0 0 0 0 0 0 0
60 imagefv 2097152 0 0 0 0 0 0 0 0
61 frp 524288 109 0 95 110 110 110 15 0
62 sti 2097152 0 0 0 0 0 0 0 0
63 storsec_a 131072 0 0 0 0 0 0 0 0
64 storsec_b 131072 0 0 0 0 0 0 0 0
65 rawdump 134217728 0 0 0 0 0 0 0 0
66 vbmeta_a 65536 0 0 0 0 0 0 0 0
67 vbmeta_b 65536 0 0 0 0 0 0 0 0
68 klog 4194304 0 2094753 0 0 0 2094753 0 2094753
69 metadata 16777216 26680 88104 175193 113494 153319 73549 54 13437

M.B. Blankesteijn, A. Fukami and Zeno.J.M.H. Geradts Forensic Science International: Digital Investigation 46 (2023) 301587

6

Table 1 (continued)

Partition Size Empty-Reset Data-Reset Empty-Data Remnant

ANDROID 11 ANDROID 12 ANDROID 11 ANDROID 12 ANDROID 11 ANDROID 12 ANDROID 11 ANDROID 12

70 ffufw 4194304 0 0 0 0 0 0 0 0
71 system_a 3267362816 0 0 0 0 0 0 0 0
72 system_b 3267362816 0 0 0 0 0 0 0 0
73 vendor_a 805306368 0 0 0 0 0 0 0 0
74 vendor_b 805306368 0 0 0 0 0 0 0 0
75 userdata 53648801280 1398318766 1316244447 9183599976 8803792556 8401667226 7969135307 107120916 58505895
76 unallocated 16896 0 0 0 0 0 0 0 0

M.B. Blankesteijn, A. Fukami and Zeno.J.M.H. Geradts Forensic Science International: Digital Investigation 46 (2023) 301587
For persist however, there is some data that is more truly
remnant after reset. Interestingly this should be a partition where
data generally persists instead of being modi � ed on use. The
modi � ed data that persists after a reset includes Qualcomm data on
battery status, such as qcom_charge_full and qcom_cycle_-
count_bins, gauge capacity and some binary � les. The forensic
value of this data is limited however, as it is closely tied to the
physical device itself rather than the effect of actions on the device.
One thing that may be deduced is how intensively the phone has
been used based on the reported capacity that is left. Table 2 shows
some details on remnant data on the persist partition for the
Android12 phone.

For frp (factory reset protection) there is a difference between
Android 11 and 12. On Android 12 there are 110 bytes that are
modi � ed during data creation. From these 110 bytes, the � rst 32
bytes contain some data that is restored to the initial state. The
other bytes are changed back to zeroes on reset. With exception to
another 18 bytes, the rest of the partition consists of only zeroes on
all measurements. The purpose of this partition is to store some
settings with regard to developer options (mirfatif, 2017). As set-
tings are restored on reset (i. e. developer mode is disabled again) it
is logical that this partition gets back to default settings. For
Android 11 however, most of the data that is written on reset is
different from the initial state. Some bytes even persist from the
data that was created. Alternatively, these bytes are created when
connecting to the Forensic workstation as the developer option of
USB debugging is enabled for that.

The klog partition shows no modi � cations on Android 11. On
Android 12 however, after extraction with UFED, data is written to
this partition that remains after factory reset. Before the UFED
extraction no data was modi � ed on this partition. The � rst 2048KiB
of this partition has an entropy of almost eight bits per byte which
makes it likely to be encrypted data. However, the next 42KiB
contain some plain text logs. Looking at these logs it seems that an
Table 2
xxd hexadecimal output for some � les on persist that have remnant data. Only output line
indicates created data that was not remnant.

7

UEFI update has been performed. It also notes here that a fastboot
device has been connected and 6 7108 864 bytes are downloaded.
This information is not wiped on factory reset. Table 3 shows some
data on from the klog partition where some parts with high and
low entropy are shown.

For metadata we see that the key � les have changed after the
reset, speci� cally the encrypted_key, keymaster_key_blob and
secdiscardable � les. There are some remnant bytes however,
although manual inspection shows that this all consists of bytes
that were changed to zeroes when creating data. Thus the only
remnant is here is that the phone has been in use, if those bytes
always contain data on a freshly installed phone.

For the userdata partition the contents are encrypted and the
keys thrown away on factory reset. However, as the whole partition
does not get overwritten with zeroes the original data can still
remain, which is visible by the remnant bytes for this partition.
There are relatively more bytes remnant on the Android 11 phone
when compared to the Android 12 phone. Most of the created bytes
are not the same on both phones anymore though.

Table 4 contains an overview of which partitions exist and get
modi � ed on the Xiaomi Redmi phone. The total amount of parti-
tions is smaller when compared to the Pixel phones. This is mostly
due to the A/B system for simple recovery in case of over-the-air
update failure that is used on the Pixel devices.

For the frp partition we see the same behaviour as on
Android 12. On protect1 and protect2 there is a � le NA77_005 that
is modi � ed on writing data and on reset, but also contains some
remnants from data creation. This is a MTK and MIUI related � le
containing some binary � ags associated with � le system operations
(Elenedeath, 2020). On expdb data was created on reset but no data
remains from earlier modi � cations. In fact, the partition was not
modi � ed by creating data.

Interestingly, metadata is not modi � ed. Manual inspection
shows that this partitions is full of zeroes and does not seem to be
s with remnant data are shown. Blue color indicates remnant data, while orange

	Assessing data remnants in modern smartphones after factory reset
	1. Introduction

