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A B S T R A C T

Multi-person 3D pose estimation with absolute depths for a fisheye camera is a challenging task but with
valuable applications in daily life, especially for video surveillance. However, to the best of our knowledge,
such problem has not been explored so far, leaving a gap in practical applications. In this work, we first
propose a method for multi-person 3D pose estimation from a single image taken by a fisheye camera. Our
method consists of two branches to estimate absolute 3D human poses: (1) a 2D-to-3D lifting module to predict
root-relative 3D human poses (HPoseNet); (2) a root regression module to estimate absolute root locations in
the camera coordinate (HRootNet). Finally, we propose a fisheye re-projection module without using ground-
truth camera parameters to connect two branches, alleviating the impact of image distortions on 3D pose
estimation and further regularizing prediction absolute 3D poses. Experimental results demonstrate that our
method achieves the state-of-the-art performance on two public multi-person 3D pose datasets with synthetic
fisheye images and our newly collected dataset with real fisheye images. The code and new dataset will be
made publicly available.
. Introduction

Due to the wide angle, fisheye cameras have been widely used
n various practical scenarios such as video surveillance (Kim et al.,
016), virtual reality (Rhodin et al., 2016) and automotive applica-
ions (Hughes et al., 2009). Particularly, fisheye cameras will have
arger field of view with larger distortion parameters. Many of these
pplications require the inference of multi-person 3D poses from fisheye
mages. However, this task has not been studied, and most existing
ethods focus on 3D pose estimation from images captured by a
erspective camera (Moon et al., 2019a; Rogez et al., 2019; Guo et al.,
021; Cheng et al., 2021).

To this end, we aim to compute multi-person 3D poses from a
ingle image taken by a fisheye camera. This is the first approach,
o the best of our knowledge, to perform this task. To achieve this,
here are three major challenges: 𝒊) humans at different distances from
he center of images exhibit varying scales and distortions, due to
mage distortions. Although different methods (Kanazawa et al., 2018;
abibie et al., 2019; Ci et al., 2019; Kolotouros et al., 2019) use a re-
rojection method to establish a relationship between 2D and 3D poses
ith predicted scale and translation parameters, the aim is to estimate

oot-relative 3D human poses, ignoring absolute location information.
elvises are usually defined as root joints. However, humans at different
ositions suffer from varying distortion strengths in this task. Therefore,

∗ Corresponding author.
E-mail address: y.zhang5@uva.nl (Y. Zhang).

such kind of methods are expected to fail to solve this challenge.
𝒊𝒊) This task is complicated that the distance between humans and
cameras is not fixed. Recent methods (Tome et al., 2019; Tome et al.,
2020; Xu et al., 2019; Wang et al., 2021) predict the egocentric 3D
pose from images captured by a fisheye camera installed on a human
head/baseball cap. In their settings, the head/neck joints are seen as
the root located at the same position on the image. Therefore, the
negative impact of image distortions can be avoided by relative joint
locations to the root in a learning based manner with one level of
image distortions. 𝒊𝒊𝒊) We intend to predict 3D human joint locations
with absolute depths, which is more challenging than root-relative 3D
pose estimation because of the inherent depth and scale ambiguity.
Recently, some researchers (Li et al., 2020; Lin and Lee, 2020; Moon
et al., 2019a; Zhen et al., 2020) focus on the estimation of absolute joint
locations from a single image taken by a perspective camera. However,
we argue that it is a strong prior to use ground-truth camera parameters
for evaluation.

In this paper, we propose a novel top-down approach to multi-
person 3D pose estimation from a single image captured by a fish-
eye camera. The proposed framework consists of two branches, i.e.,
HPoseNet and HRootNet, to estimate root-relative 3D poses and ab-
solute depths of root joints, respectively. To alleviate the impact of
human scales changes caused by unknown distortions, a re-projection
https://doi.org/10.1016/j.cviu.2022.103505
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Fig. 1. 3D pose predictions using our approach. * indicates our method without full components: (1) re-projection module and (2) global and local feature fusion. Given a fisheye
image shown in background, our method with full components generates more reasonable 3D poses.
module is proposed to connect the two branches to enforce projected
absolute 3D poses consistent with 2D ground truths under image dis-
tortions. In this way, our approach takes image distortions into account
to estimate multi-person 3D poses and predicted absolute depths are
further regularized. Particularly, we adopt a learning based approach to
estimate camera parameters circumventing the requirement of ground-
truth camera parameters. Fig. 1 shows the predictions generated by our
method.

We evaluate the proposed approach on two public datasets includ-
ing CMU Panoptic (Joo et al., 2015) and Shelf (Belagiannis et al., 2014)
datasets. Particularly, we synthetically add different levels of image
distortions to public datasets. To test the performance on real fisheye
images, we collected a dataset — 3DhUman recorded by two fisheye
cameras with 3 persons performing three commonly activities: posing,
talking and walking. As ceiling cameras (e.g., video surveillance) are
commonly used, we focus on this scenario, i.e., the top-down viewpoint.
Our approach outperforms existing methods on both synthesized and
real-world datasets.

In summary, the contributions of this work are:

• We propose a top-down method for multi-person 3D pose estima-
tion from a single image taken by a fisheye camera. To the best
of our knowledge, this is the first approach to perform this task.

• A re-projection module is proposed to alleviate the effect of
image distortion on multi-person 3D pose estimation. Particularly,
camera parameters are predicted by our framework instead of
using the ground truth.

• Our method significantly outperforms existing state-of-the-art
methods on public datasets with synthetic fisheye images and our
proposed dataset with real fisheye images.

2. Related work

Multi-person 2D pose estimation. Existing work for multi-person
2D pose estimation can be divided into bottom-up and top-down ap-
proaches. Bottom-up approaches (Cao et al., 2017; Hidalgo et al., 2019;
Jin et al., 2019; Kocabas et al., 2018; Newell et al., 2017; Nie et al.,
2019) simultaneously detect all human joints and then collect them
for each person. Top-down approaches (Chen et al., 2018; Fang et al.,
2017; Moon et al., 2019b; Papandreou et al., 2017; Sun et al., 2019;
Xiao et al., 2018) first employ a detector to predict bounding boxes of
humans and then estimate a single 2D human pose from the cropped
images.

Multi-person 3D pose estimation. There are many methods (Dabral
et al., 2019; Mehta et al., 2018; Rogez et al., 2017, 2019; Zanfir
et al., 2018a,b) for multi-person 3D pose estimation. However, most
of them require a post-processing step, i.e., an optimization strategy by
minimizing the error between projected 3D poses and 2D poses (Dabral
et al., 2019; Rogez et al., 2017, 2019) or correspondences between
semantic representations (Zanfir et al., 2018a) to obtain absolute joint
locations in real spaces. Recently, some methods (Li et al., 2020; Lin
and Lee, 2020; Moon et al., 2019a; Zhen et al., 2020) adopt the learning
2

based manner to obtain absolute depths of root joints. Moon et al.
(2019a) introduce a novel depth measure combined with a correction
factor to obtain the real depth. They rely on the area of the bounding
box of humans in image and real spaces. Lin and Lee (2020) consider
the depth regression problem as a classification problem to perform
depth estimation and localization of root joints. These methods follow
the top-down pipeline in which pose estimation is performed from
cropped images, and hence ignoring the global information.

Note that recent methods (Li et al., 2020; Lin and Lee, 2020;
Moon et al., 2019a; Zhen et al., 2020; Guo et al., 2021; Chen et al.,
2022) compute 3D poses according to 2D poses in pixel coordinates
and depths in camera coordinates. They assume that intrinsic camera
parameters are known both in training and testing procedures. On the
other hand, existing methods mainly focus on pose estimation from a
perspective camera or multi-view perspective images (Wu et al., 2021;
Dong et al., 2021; Lin and Lee, 2021). No research exists on multi-
person 3D pose estimation from a single image captured by a fisheye
camera.

3D pose estimation from a fisheye camera. There are few works
on 3D human pose estimation under fisheye cameras placed on the
chest (Jiang and Grauman, 2017; Hwang et al., 2020) or head (Rhodin
et al., 2016; Tome et al., 2019; Xu et al., 2019). Recently, Xu et al.
(2019) take original and auxiliary images that focus on the lower
body as inputs to improve the performance of egocentric pose estima-
tion. Tome et al. (2019) and Tome et al. (2020) propose a method
that includes two branches for 2D and 3D pose regression to es-
timate egocentric 3D poses. Further, Cho et al. (2021) propose an
optimization-based method for 3D human pose estimation from a third-
person viewpoint to deal with the image distortion problem without
camera calibration. However, these methods are based on the root-
relative single-person 3D pose estimation where the camera is placed
fixedly on the human head for egocentric 3D pose estimation.

3. Multi-person 3D pose estimation from fisheye cameras

The goal of our method is to estimate multi-person 3D joint loca-
tions with absolute depths in camera coordinates from a single image
captured by a fisheye camera. Here, two issues need to be solved: the
negative impact of images distortions and usage of global information.

3.1. Issues on image distortions

Due to the existence of image distortions, persons at different lo-
cations on images may cause varying distortion strengths. Therefore,
even when persons express different 2D poses, they may be originated
from the same 3D pose (please see supplementary material for more
analysis). This makes multi-person 3D human pose estimation more
challenging when camera parameters are not provided (known). In this
paper, we propose a re-projection module based on the fisheye camera
model to alleviate the effect of image distortions on multi-person 3D

pose estimation.
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Fig. 2. The process of 3D-to-2D projection for the fisheye camera model. This figure consists of a 3D human pose represented by a set of joints in camera coordinates 𝑂𝑋𝑌 𝑍, a
fisheye camera, and 2D projections on the image plane 𝑜1𝑢𝑣. The angle of refraction 𝜃 is decreased to 𝜃𝑑 .
3.1.1. Fisheye camera model
Fig. 2 shows the process of 3D-to-2D projection for the fisheye

camera model. Specifically, the 3D human pose is represented by a set
of scatter joints, a 4 by 𝑛 matrix 𝑱 𝑎𝑏𝑠

𝑖 = [𝑋𝑎𝑏𝑠
𝑖 , 𝑌 𝑎𝑏𝑠

𝑖 , 𝑍𝑎𝑏𝑠
𝑖 , 1]𝑇 , in camera

coordinates 𝑂𝑋𝑌 𝑍. After going through the fisheye camera, the angle
of refraction 𝜃 is decreased to 𝜃𝑑 , and the 2D projections 𝒋𝑜 = [𝑥𝑜, 𝑦𝑜, 1]𝑇

are changed to 𝒋 = [𝑥, 𝑦, 1]𝑇 . Particularly, 𝒋𝑜 is the 2D projection based
on the perspective camera, i.e., without image distortions.

3.1.2. 3D pose estimation from a fisheye camera
To reduce the negative impact of image distortions, we first use

a 2D-to-3D lifting module to obtain 3D human joint locations, and
then minimize the error between projected 3D predictions and 2D
ground truths. This enforces estimated 3D poses to be consistent with
corresponding 2D poses under possible distortions. Since the relative
depth of human joints is comparable to the distance from humans to
cameras, we use perspective projection to calculate 2D projections.
Therefore, estimated depths can be regularized.

Let 𝐏3Dabs = [𝑱 1,𝑱 2,… ,𝑱 𝑛] represent human joint locations in
camera coordinates 𝑂𝑋𝑌 𝑍, where 𝑛 indicates the number of human
joints and 𝑱 𝑖 = [𝑋𝑖, 𝑌𝑖, 𝑍𝑖, 1]𝑇 . Particularly, 𝐏3Drel denotes the root-
relative human joint locations. Pelvises are defined as the root joint
in this work. 2D projections 𝐩2D and 𝐩o2D, a 3 by 𝑛 matrix with 𝒋𝑖 =
[𝑥𝑖, 𝑦𝑖, 1]𝑇 and 𝒋𝑜𝑖 = [𝑥𝑜𝑖, 𝑦𝑜𝑖, 1]𝑇 , are based on the perspective and
fisheye camera model, respectively. With intrinsic and extrinsic camera
parameters (𝑲 , 𝑹 and 𝑻 ), 2D projections 𝐩o2D under the perspective
camera are obtained by:

𝑠 ⋅ 𝐩o2D = 𝑲[𝑹|𝑻 ]𝐏3Dabs, (1)

where 𝑠 is a scale factor and is equal to the value of 𝑍 in 𝐏3Dabs. Because
𝐏3Dabs are in the camera coordinate, the extrinsic camera parameters 𝑹
and 𝑻 are the identity matrix.

In terms of fisheye cameras, there are distortion parameters to
change the 3D-to-2D projection in Eq. (1). Specifically, Eq. (1) is
modified by adding a distortion matrix 𝑫:

𝑠 ⋅ 𝐩2D = 𝑲𝑫𝑰3×4𝐏3Dabs, (2)

where 𝑰3×4 is a 3 by 4 identity matrix, and 𝑫, in this paper, is defined
as:

𝑫 =
⎡

⎢

⎢

⎣

𝜃𝑑∕𝑙 0 0
0 𝜃𝑑∕𝑙 0
0 0 1

⎤

⎥

⎥

⎦

, (3)

where 𝑙 =
√

𝑋2+𝑌 2

𝑍 . Following previous works (Kannala and Brandt,
2004; Van den Heuvel et al., 2007), the angle of refraction 𝜃𝑑 = 𝜃(1 +
𝑘1𝜃2 + 𝑘2𝜃4 + 𝑘3𝜃6 + ⋯), where 𝜃 = arctan(𝑙), and two of distortion
parameters (𝑘 , 𝑘 ) are used for simplification.
1 2

3

3.1.3. Automatic calibration for a fisheye camera
To avoid the need of ground-truth camera parameters, we adopt a

learning based approach to estimate camera parameters during training
stages. Specifically, five camera parameters are predicted: focal length
(𝑓 ), principal coordinates (𝑐𝑥, 𝑐𝑦) and distortion parameters (𝑘1, 𝑘2). To
optimize the process of automatic calibration, we minimize the absolute
error between absolute 3D joint locations 𝐏3Dabs and 2D ground truths
𝐩GT2D .

argmin
𝑓,𝑐𝑥 ,𝑐𝑦 ,𝑘1 ,𝑘2

‖

‖

‖

𝑲𝑫𝑰3×4𝐏3Dabs − 𝐩GT2D
‖

‖

‖1
. (4)

3.2. Issues on global information

Most existing top-down approaches estimate multi-person 3D poses
from a cropped image around humans, ignoring the global relation of
each person. We propose to aggregate features from cropped images
around humans and the whole image in the latent space to maintain
the global information for the estimation of absolute depths and camera
parameters.

Inspired by Lin and Lee (2020) and Zhao et al. (2019), features
extracted from input images contributes to human pose estimation.
However, these features may also contain background, appearance or
other useless information to our task. To enhance the role of features
contributing to the performance, we employ an attention mechanism
to facilitate the process of human pose estimation.

4. Network and training details

We adopt a top-down pipeline to estimate multi-person 3D poses
with absolute depths as shown in Fig. 3. Our framework consists of
three components including HPoseNet, HRootNet, and a re-projection
module. In this section, we provide details of each component and
training details.

HPoseNet. HPoseNet is to estimate root-relative joint locations for each
person. Following Zhang et al. (2021), the design of HPoseNet is shown
in Fig. 4. HPoseNet takes ResNet50 as backbone followed by three
deconvolutional layers to estimate 2D poses using heatmap representa-
tions. Then, two residual fully connected layers are used to predict root-
relative 3D joint locations. To optimize HPoseNet, we minimize the
mean square error (MSE) between 1) estimated 2D heatmaps 𝐇𝐌 and
ground-truth heatmaps 𝐇𝐌GT, which represents the 2D poses in fisheye
images; 2) estimated root-relative 3D pose 𝐏3Drel and ground-truth 3D
pose 𝐏GT

3Drel:

𝐻𝑀 = 1
𝑛

𝑛
∑

𝑖=1

‖

‖

‖

𝐇𝐌(𝑖) −𝐇𝐌GT
(𝑖)

‖

‖

‖2
,

3𝐷 = 1
𝑛

∑

‖

‖

‖

𝐏3Drel(𝑖) − 𝐏GT
3Drel(𝑖)

‖

‖

‖2
,

(5)
𝑛 𝑖=1
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Fig. 3. Overview of the proposed framework. There are two branches, i.e., HPoseNet and HRootNet, to estimate root-relative 3D poses and absolute depths of root joints. Finally,
e use a re-projection module to connect the two branches, enforcing the estimated 3D human poses to be consistent with the 2D poses under distortions by minimizing the

e-projection error.
4



Fig. 4. The design of our HPoseNet. HPoseNet takes images cropped by human
bounding boxes as inputs to estimate root-relative 3D human poses.

where 𝑖 denotes the joint index and 𝑛 indicates the number of human
oints.

RootNet. We aim to regress absolute root joint locations in camera
oordinates and camera parameters. In this branch, ResNet50 is used
s backbone to extract latent features from input images. Then, we
ombine the features from i) the entire input image and ii) the cropped
mage around the person to estimate the root joint locations. SENet (Hu
t al., 2018) is used to apply the attention mechanism to the extracted
eatures from the cropped images to exploit the meaningful representa-
ions in latent space. In addition, we use linear layers to regress camera
arameters instead of using the ground truth. To train HRootNet, we
ptimize the absolute error between estimated root joint locations 𝐏root ,
nd MSE between the ground truth 𝐏GT

root . The loss function is given by:

𝑟𝑜𝑜𝑡 =
‖

‖

‖

𝐏root − 𝐏GT
root

‖

‖

‖2
. (6)

e-projection module. We propose a re-projection module to connect
he two branches. Combining 𝐏3Drel from HPoseNet and 𝐏root from
RootNet, absolute 3D joint locations are obtained by 𝐏3Dabs = 𝐏3Drel +
root . To alleviate the negative influence of image distortions and
urther regularize predicted 3D poses with absolute depths, we propose
re-projection module to project estimated absolute 3D poses onto 2D
oses using predicted camera parameters. Then, projected absolute 3D
oses 𝐏3Dabs are forced to be consistent with 2D ground truths 𝐩GT2D
nder distortions. In this way, our approach takes image distortions
nto account to estimate multi-person 3D poses, reducing the impact of
uman scales changes caused by unknown distortions. The loss function
s as follows:

𝑟𝑒𝑝 = 1
𝑛

∑

‖

‖

‖

𝑲𝑫𝑰3×4𝐏3Dabs(𝑖) − 𝐩GT2D (𝑖)
‖

‖

‖1
. (7)
𝑛 𝑖=1

4

.1. Training

According to Eq. (5)–(7), the overall loss function is given by:

𝑝𝑜𝑠𝑒 = 𝜆𝐻𝑀 𝐻𝑀 + 3𝐷𝑟𝑒𝑙 + 𝜆𝑟𝑒𝑝𝑟𝑒𝑝 + 𝜆𝑟𝑜𝑜𝑡𝑟𝑜𝑜𝑡, (8)

where 𝜆𝐻𝑀 , 𝜆𝑟𝑒𝑝 and 𝜆𝑟𝑜𝑜𝑡 are loss weights to obtain a trade-off between
each loss.

5. Experiments

5.1. Experimental setup

Current datasets. We use CMU Panoptic (Joo et al., 2015) and Shelf
(Belagiannis et al., 2014) datasets for evaluation. Specifically, two
views in CMU Panoptic dataset are chosen from HD camera 2 and
19, since these two cameras provide top-down viewpoints which are
similar to video surveillance in real world scenarios. For Shelf dataset,
we use all views to train and test our method. Since these datasets
are created for perspective cameras, we synthetically add image dis-
tortions according to Eq. (2). Specifically, distortion parameters 𝑘1
and 𝑘2 are uniformly sampled, where 𝑘1 ∈ [−0.9600,−0.7000], 𝑘2 ∈
[−0.0500,−0.0100] in CMU Panoptic dataset and 𝑘1 ∈ [−1.500,−1.0000],
𝑘2 ∈ [-0.7000, −0.1000] in Shelf dataset.

Proposed dataset. We collected a new multi-person 3D pose dataset
— 3DhUman, captured by two fisheye cameras with grayscale images
in an indoor environment. Specifically, images are captured by two
fisheye cameras with different camera parameters from two top-down
viewpoints. Two lidar cameras are used to capture depth information.
The dataset contains 3 participants (2 males and 1 female) performing 3
activities: posing, talking and walking, as shown in Fig. 5. 2D/3D anno-
tations and camera parameters are given by this dataset. Following Joo
et al. (2015), 15 joints are included in the annotations.

The dataset consists of 217 fisheye images. Training and testing
sets are split by whether the images include the specific participant.
Specifically, the images including that participant are taken as the
training set, while the remaining images are used as the testing set.
For training, we used the (cropped) images containing that participant
for root-relative 3D pose estimation, while the entire images are used
for the camera parameters and absolute depth estimation of that par-
ticipant combined with cropped images as inputs. Both training and

testing sets include three activities. Since the 3DhUman dataset consists
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Fig. 5. Example images in 3DhUman dataset. Actions from left to right: posing, talking and walking with 2 persons (first 3 pictures) and 3 persons (last 3 pictures).
Table 1
The MPJPE of root-relative 3D poses and MRPE of absolute root joint locations on modified CMU Panoptic (top) and Shelf
(bottom) datasets.

Methods Haggling Mafia Ultimatum Pizza MPJPE ↓ MRPE ↓

Moon et al. (2019a) (ICCV’19) 100.26a 96.79a 99.88a 125.09a 102.83a 783.42
Lin and Lee (2020) (ECCV’20) 100.26a 96.79a 99.88a 125.09a 102.83a 367.47
Ours 79.98 55.26 79.12 80.26 66.76 182.94

Methods MPJPE ↓ MRPE ↓

Moon et al. 300.18a 696.10
Lin et al. 300.18a 793.11
Ours 132.45 589.19

aAs Moon et al. (2019a) and Lin and Lee (2020) use the same architecture for root-relative 3D human estimation and Lin
and Lee (2020) does not release code for this part, the values of MPJPE are considered to be the same.
f three participants, we employed a 3-fold cross-validation to evaluate
he methods.

etrics. The Mean Per Joint Position Error (MPJPE) is used as the
etric for root-relative 3D human poses, while the mean of the root
osition error (MRPE) (Moon et al., 2019a) is used to evaluate root
oint locations.

mplementation details. We first pre-train HPoseNet on the MPII 2D
ose dataset, and then the whole network is trained on the 3D pose
ataset for 10 epochs with an initial learning rate of 5 × 10−4 with a
ecay over 8 epochs. Adam is used for optimization. The batch size is
et to 32. Loss weights are set to 𝜆𝐻𝑀 = 107, 𝜆𝑟𝑒𝑝 = 1 and 𝜆𝑟𝑜𝑜𝑡 = 0.05.

ethod comparison. To evaluate the proposed method, a comparison
s given between two existing methods (Lin and Lee, 2020; Moon
t al., 2019a). For a fair comparison, we re-train two models on the
odified CMU Panoptic and Shelf datasets following their settings.

ince the code has not been released, we will not compare our approach
ith Tome et al. (2019) and Xu et al. (2019).

Following existing approaches (Dabral et al., 2019; Li et al., 2020;
in and Lee, 2020; Moon et al., 2019a), we first attempt to use Mask
-CNN (He et al., 2017) to detect each person in the input image.
owever, it fails to detect accurate bounding boxes for each person.
o avoid the influence of the person detector, ground-truth bounding
oxes are used for evaluation.

.2. Results and ablations

.2.1. Overall performance

odified CMU Panoptic dataset. We first compare our approach
ith existing state-of-the art methods (Lin and Lee, 2020; Moon et al.,
019a) on the modified CMU Panoptic dataset. Table 1 (top) lists
xperimental results including the MPJPE of four activities and MRPE.
t is shown that our approach achieves the best performance and
btain an improvement of 35.08% than existing methods with MPJPE.
articularly, our approach performs best over all activities. For MRPE,
ur approach significantly outperforms compared methods with an
mprovement of 50.22% than Lin and Lee (2020). Moon et al. (2019a)
stimate absolute root joint locations based on the area of bounding
oxes around humans in image and real spaces under the perspective

amera. However, image distortions in this topic change the scale of

5

Table 2
MPJPE and MRPE on the 3DhUman dataset.

Methods Posing Talking Walking MPJPE ↓ MRPE ↓

Moon et al. 79.44∗ 61.57∗ 70.63∗ 73.29∗ 1536.24
Lin et al. 79.44∗ 61.57∗ 70.63∗ 73.29∗ 1661.02
Ours 67.87 53.56 56.95 62.14 177.95

each person on the image plane. Therefore, it is expected that Moon
et al. (2019a) fail to achieve desirable performance.

Modified Shelf dataset. We then test all approaches on the modified
Shelf dataset. Table 1 (bottom) shows that our method outperforms
existing methods with an improvement of 55.88% for MPJPE. Further,
the proposed method shows best performance on root joint estimation
compared to two existing methods. Since the Shelf dataset includes less
training data than the CMU Panoptic dataset, the performance of all
three methods is degraded.

3DhUman dataset. We conduct experiments on real fisheye images,
i.e., 3DhUman dataset. All methods are first trained on modified CMU
Panoptic dataset with grayscales and then finetuned on 3DhUman
dataset. Table 2 lists experimental results with metrics of MPJPE and
MRPE, and our method achieves the best performance on root-relative
3D human pose and absolute root joint estimation. Particularly, it
seems that Moon et al. and Lin et al. do not generalize well to real
fisheye images for root joint estimation.

5.2.2. Performance on perspective images
We compare our HPoseNet with Moon et al. (2019a) and Lin

and Lee (2020) for 3D human pose estimation on perspective im-
ages. HPoseNet estimates root-relative 3D human poses. Therefore,
Human3.6 m dataset, a large-scale dataset and a commonly used bench-
mark for 3D human pose estimation, is used to evaluate all methods.
Following the same setting as in (Moon et al., 2019a; Lin and Lee,
2020), we select subjects S1, S5, S6, S7, and S8 for training and S9
and S11 for testing. During the training procedure, 𝜆𝑟𝑒𝑝 = 0 and
𝜆𝑟𝑜𝑜𝑡 = 0. Table 3 reports the experimental results for MPJPE. Despite
not using ground-truth camera parameters, our method still achieves
similar performance of root-relative 3D human poses.
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Fig. 6. Analysis of the sensitivity of our method and our method without using
proposed re-projection module (Ours w/o rep) on (a) image level defined by image
distortions and (b) instance level defined by 𝜃𝑑∕𝜃 for each human appeared in images
on the modified CMU Panoptic dataset.

Table 3
MPJPE on the Human3.6 m dataset (Ionescu et al.,
2013).

Methods MPJPE ↓

Moon et al. 53.3∗

Lin et al. 53.3∗

Ours 54.1

5.2.3. Ablation study
We perform an ablative study to validate the effectiveness of pro-

posed contributions: local and global feature fusion and re-projection
module on the modified CMU Panoptic dataset. Therefore, we take our
method combining the 2D heatmap loss (𝐻𝑀 ) and 3D loss (3𝐷𝑟𝑒𝑙 and
𝑟𝑜𝑜𝑡) as the baseline, which is the common setting in single/multi-
person 3D pose estimation (Zhou et al., 2017; Habibie et al., 2019; Lin
and Lee, 2020). The experimental results are listed in Table 4.

From Table 4, our method with full components achieves the best
performance in both metrics of MPJPE and MRPE on modified CMU
Panoptic and 3DhUman datasets. For modified CMU Panoptic dataset,
the performance achieved by our method without re-projection module
drops by 22.86% and 33.98% in the metric of MPJPE and MRPE,
respectively. On the other hand, our full method improves the per-
formance on MPJPE and MRPE by 10.53% and 9.56% compared with
6

Table 4
Ablation study on the modified CMU Panoptic and 3DhUman datasets.

Methods Modified CMU Panoptic 3DhUman

MPJPE ↓ MRPE ↓ MPJPE ↓ MRPE ↓

Baseline (𝐻𝑀 + 3D loss) 84.75 272.23 69.10 230.51
+ Feature Fusion 82.02 245.10 67.61 222.95
+ 𝑟𝑒𝑝 74.62 202.28 63.43 185.29
Ours (full components) 66.76 182.94 62.14 177.95

Table 5
MPJPE and MRPE on the Pizza group from the modified CMU Panoptic dataset with
HD camera 2 and 19, 4, 6, and 13.

Methods Cam2&19 Cam4 Cam6 Cam13 MPJPE ↓ MRPE ↓

Moon et al. 125.09∗ 140.26∗ 145.87∗ 132.29∗ 133.72 809.61
Lin et al. 125.09∗ 140.26∗ 145.87∗ 132.29∗ 133.72 382.50
Ours 80.26 103.43 114.81 98.59 95.47 233.05

our method without feature fusion. The results of our method on the
3DhUman dataset show a similar trend. Experimental results demon-
strate that both components of our method contribute to the overall
improvement.

5.2.4. Sensitivity analysis
We conduct experiments to study the sensitivity of our method

with/without using our re-projection module (Ours w/o rep) in two
dimensions: image and instance level. Experimental results on the
modified CMU Panoptic dataset are shown in Fig. 6.

Image level. We first analyze the sensitivity of our method on each
image for different levels of image distortions shown in Fig. 6(a).
Images in the testing set are divided into three groups based on dis-
tortion parameter 𝑘1: [−0.96, −0.88), [−0.88, −0.79), [−0.79, −0.70].
We then compare the relative change of the values of MPJPE and
MRPE. Specifically, the absolute relative changes of MPJPE and MRPE
are (1) 0.60% and 5.60% for our approach, (2) 1.48% and 7.32%
for our approach without using the proposed re-projection module,
respectively

Instance level. We analyze the sensitivity of our method on each
person with different distortion strengths defined by 𝜃𝑑∕𝜃. 𝜃𝑑∕𝜃 is cat-
egorized into [0.46, 0.8), [0.8, 0.9), [0.9, 1) for all humans appearing
in the testing set. As the number of humans suffering from strong
distortions is small, 𝜃𝑑∕𝜃 is not uniformly grouped. In this setting,
the number of humans in [0.9, 1) is still larger than the number of
humans in the other two ranges. For simplification, we use the value
of 𝜃∕𝜃𝑑 of the root joint locations to represent the value of the full body.
Therefore, the instance still suffers from image distortions even if the
value of 𝜃𝑑∕𝜃 is equal to 1. The results are shown in Fig. 6(b).

It is shown in Fig. 6 that the larger the distortion, the larger the
value of the two metrics in both dimensions. That is expected as large
image distortions cause significant changes of persons on the image
plane. Experimental results demonstrate that our re-projection module
reduces the negative impact of image distortions on multi-person 3D
pose estimation, especially for absolute root joint estimation.

5.3. Discussion

Performance for other fisheye camera settings. In this paper, we
synthesize images captured by HD cameras 2 and 19 from the CMU
panoptic dataset. To validate the effectiveness of our method on images
with different camera settings, images taken by the HD cameras 4, 6,
and 13 are synthesized with different levels of distortion parameters.
Particularly, the focal lengths and principal points are different. For
simplification, we only select images from the Pizza group as the testing
set to evaluate the methods, while the training set is the same as the

setting in Section 5.1. The results are listed in Table 5. It is shown that:
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Table 6
MPJPE results on the 3DhUman dataset: D1 represents the images
captured by the first fisheye camera in the training set, while the testing
set consists of images taken by the second fisheye camera. D2 is the
opposite of D1.

Methods D1 D2

Moon et al. 68.32∗ 71.44∗

Lin et al. 68.32∗ 71.44∗

Ours 61.93 67.72

(1) changing the viewpoints and fisheye camera settings degrade the
performance of all methods; (2) our method outperforms other methods
for the new camera parameters.

Camera settings of the 3DhUman dataset. The 3DhUman dataset
includes two sets of camera parameters. To avoid the potential of over-
fitting on our 3DhUman dataset, we additionally define training and
testing sets by whether the image is taken by the same fisheye camera.
Table 6 shows the results with the MPJPE metric. Our method provides
superior performance in both settings and exhibits the potential to
mitigate the distortion problem on real-world scenes.

6. Conclusion

In this paper, we first presented a novel top-down approach for
multi-person 3D pose estimation from a single image captured by
a fisheye camera. In contrast to existing top-down approaches, our
method maintains the global information to estimate absolute root
depths and camera parameters. We proposed a re-projection module
to enforce projected 3D predictions consistent with 2D ground truths
under image distortions by minimizing the re-projection error. In this
way, the impact of image distortion has been alleviated, and absolute
depths of root joints has been further regularized. Compared with
existing work, our method showed the state-of-the-art performance on
both synthesized and real-world datasets.
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