Measurement of Dijet Azimuthal Decorrelations in pp Collisions at √s = 7 TeV

DOI
10.1103/PhysRevLett.106.172002

Publication date
2011

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):
Measurement of Dijet Azimuthal Decorrelations in pp Collisions at $\sqrt{s} = 7$ TeV

G. Aad et al.*
(ATLAS Collaboration)
(Received 14 February 2011; published 29 April 2011)

Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full data set ($\int Ldt = 36$ pb$^{-1}$) acquired by the ATLAS detector during the 2010 $\sqrt{s} = 7$ TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high-energy regime.

DOI: 10.1103/PhysRevLett.106.172002

The production of events containing high transverse-momentum (p_T) jets is a key signature of quantum chromodynamic (QCD) interactions between partons in pp collisions at large center-of-mass energies (\sqrt{s}). The Large Hadron Collider (LHC) opens a window into the dynamics of interactions with high-p_T jets in a new energy regime of $\sqrt{s} = 7$ TeV. QCD predicts the decorrelation in the azimuthal angle between the two most energetic jets, $\Delta \phi$, as a function of the number of partons produced. Events with only two high-p_T jets have small azimuthal decorrelations, $\Delta \phi \sim \pi$, while $\Delta \phi \ll \pi$ is evidence of events with several high-p_T jets. QCD also describes the evolution of the shape of the $\Delta \phi$ distribution, which narrows with increasing leading jet p_T. Distributions in $\Delta \phi$ therefore test perturbative QCD (pQCD) calculations for multiple jet production without requiring the measurement of additional jets. Furthermore, a detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the standard model [1].

In this Letter, we present a measurement of dijet azimuthal decorrelations with jet p_T up to 1.3 TeV as measured by the ATLAS detector, beyond the reach of previous colliders. The differential cross section $(1/\sigma)(d\sigma/d\Delta \phi)$ is based upon an integrated luminosity $\int L dt = (36 \pm 4)$ pb$^{-1}$ [2]. The $\Delta \phi$ distribution is normalized by the inclusive dijet cross section σ, integrated over the same phase space. This construction minimizes experimental and theoretical uncertainties. Previous measurements of $\Delta \phi$ from the D0 [3] and CMS [4] Collaborations are extended here to higher jet p_T values.

Jets are reconstructed using the anti-k_t algorithm [5] (implemented with FASTJET [6]) with radius $R = 0.6$, and the jet four-momenta are constructed from a sum over its constituents, treating each as an (E, \vec{p}) four-vector with zero mass. The anti-k_t algorithm is well motivated since it is infrared safe to all orders, produces geometrically well-defined conelike jets, and is used for pQCD calculations (from partons), event generators (from stable particles), and the detector (from energy clusters [7]). The azimuthal decorrelation $\Delta \phi$ is defined as the absolute value of the difference in azimuthal angle between the jet with the highest p_T in each event, p_T^{max}, and the jet with the second-highest p_T in the event. There are nine analysis regions in p_T^{max}, where the lowest region is bounded by $p_T^{\text{max}} > 110$ GeV and the highest region requires $p_T^{\text{max}} > 800$ GeV [7]. Only jets with $p_T > 100$ GeV and $|y| < 2.8$, where y is the jet rapidity [8], are considered. The two leading jets that define $\Delta \phi$ are required to satisfy $|y| < 0.8$, restricting the measurement to a central y region where the momentum fractions (x) of the interacting partons are roughly equal and the experimental acceptance for multijet production is increased. In this region where $0.02 \leq x \leq 0.14$, the parton distribution function (PDF) uncertainties are typically $\pm 3\%$ (at fixed factorization scale) [9]. The cross sections, measured over the range $\pi/2 \leq \Delta \phi \leq \pi$ and normalized independently for each analysis region, are compared with expectations from a pQCD calculation [10] that is next-to-leading order (NLO) in three-parton production. The perturbative prediction for the cross section is $O(\alpha_s^3)$, where α_s is the strong coupling constant.

The angular decorrelation is sensitive to multijet configurations such as those produced by event generators like SHERPA [11], which matches higher-order tree-level pQCD diagrams with a dipole parton-shower model [12]. Samples for $2 \rightarrow 2 - 6$ jet production are combined using an improved parton matching scheme [13]. Event generators such as PYTHIA [14] and HERWIG [15] use $2 \rightarrow 2$ leading order pQCD matrix elements matched with phenomenological parton-cascade models to simulate higher-order QCD effects. Such models have been successful at reproducing other QCD processes measured by the ATLAS Collaboration [7,16].

The ATLAS detector [17,18] consists of an inner tracking system surrounded by a thin superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer based on...
large superconducting toroids. Jet measurements depend most heavily on the calorimeters. The electromagnetic calorimeter is a lead liquid-argon (LAr) detector with an accordion geometry. Hadron calorimetry is based on two different detector technologies, with scintillator tiles or LAr as the active medium, and with either steel, copper, or tungsten as the absorber material. The pseudorapidity (η) [8] and ϕ segmentations of the calorimeters are sufficiently fine to ensure that angular resolution uncertainties are negligible compared to other sources of systematic uncertainty.

A hardware-based calorimeter jet trigger identified events of interest; the decision was further refined in software [17,18]. Events with at least one jet that satisfied a minimum transverse energy (E_T) requirement were recorded for further analysis. The events in each p_T^{max} range are selected by a single trigger with a given E_T threshold, and the lower end of the range is chosen above the jet p_T at which trigger is $\approx 100\%$ efficient. Three sets of triggered events with different integrated luminosity are considered: 2.3 pb$^{-1}$ for $110 < p_T^{\text{max}} \leq 160$ GeV, 9.6 pb$^{-1}$ for $160 < p_T^{\text{max}} \leq 260$ GeV, and 36 pb$^{-1}$ for $p_T^{\text{max}} > 260$ GeV [2]. Events are also required to have a reconstructed primary vertex within 15 cm in z of the center of the detector; each vertex had ≥ 5 associated tracks. The inputs to the anti-k_t jet algorithm are clusters of calorimeter cells seeded by cells with energy that is significantly above the measured noise [7]. Jets reconstructed in the detector, whether in data or the GEANT4-based simulation [19,20], are corrected for the effects of hadronic shower response and detector-material distributions using a p_T- and η-dependent calibration [7] based on the detector simulation and validated with extensive test beam [18] and collision data [21] studies. Jets likely to have arisen from detector noise or cosmic rays are rejected [22].

The resulting $\Delta \phi$ distribution is shown in Fig. 1 for jets with $p_T > 100$ GeV. There are 146 788 events in the data sample, 85 of which have at least five jets with $p_T > 100$ GeV. Also shown is the PYTHIA sample with MRST 2007 LO* PDF [23] and ATLAS MC09 underlying event tune [24], processed through the full detector simulation and normalized to the number of events in the data sample. Two- and three-jet production primarily populates the region $2\pi/3 < \Delta \phi < \pi$ while smaller values of $\Delta \phi$ require additional activity such as soft radiation or more jets in an event. Figure 1 illustrates that the decorrelation increases when a third high-p_T jet is also required. Events with additional high-p_T jets widen the overall distribution.

The measured differential $\Delta \phi$ distributions in data are corrected in a single step with a bin-by-bin unfolding method [7] to compensate for trigger and detector inefficiencies and the effects of finite experimental resolutions. These correction factors, evaluated using the PYTHIA sample, lie within $\pm 9\%$ of unity. The leading sources of systematic uncertainty on the normalized cross section are the jet energy scale calibration (2%–17%) [7], the bin-by-bin unfolding method (1%–19%), and the jet energy and position resolutions (0.5%–5%). The ranges in parentheses represent the magnitude of the uncertainties near π and $\pi/2$, respectively, and correspond to the analysis region with the smallest statistical uncertainty ($160 < p_T^{\text{max}} \leq 210$ GeV). Multiple pp interactions in the same beam crossing that can increase the measured jet energy are included in the evaluation of the jet energy scale uncertainties (<0.8% on the cross section for all analysis regions).

The normalized differential cross section is shown for each of the nine p_T^{max} analysis regions as a function of $\Delta \phi$ in Fig. 2. As p_T^{max} increases, and the probability for the emission of a hard third jet is reduced, the fraction of events near π becomes larger. Overlaid on the data are the results from a NLO pQCD ($O(a_s^3)$) calculation [10] with FASTNLO [25] and using the MSTW 2008 PDF [9]. The factorization and renormalization scales are set to p_T^{max} and are varied independently up and down by a factor of 2 to determine the scale uncertainties. The scale uncertainties are larger between $\pi/2 < \Delta \phi < 2\pi/3$ where the pQCD calculation is effectively leading order in four-parton production. The PDF uncertainties are treated as the envelope of the 68% C.L. uncertainties from MSTW 2008 [9], NNPDF 2.0 [26], and CTEQ 10 [27], and are combined with the uncertainties resulting from an a_s variation of ± 0.004; the a_s contributions dominate. The calculation is corrected for nonperturbative effects due to hadronization and the underlying event [28]; the correction is smaller than 3%. The fixed-order calculation fails near $\Delta \phi \rightarrow \pi$ where soft processes dominate and contributions from logarithmic terms are enhanced. Figure 3 displays the ratio of the cross section
with respect to the NLO calculation. In most regions, the theory is consistent with the data. However, the prediction in the range $110 < p_T^{\text{max}} < 160$ GeV is relatively low in the central region of $\Delta \phi$ where the scale uncertainties are small.

The data are also compared with predictions [29] from SHERPA, PYTHIA, and HERWIG in Fig. 4. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta \phi \rightarrow \pi$; all three provide a good description of the data in this region. In the region $\pi/2 < \Delta \phi < 5 \pi/6$, where multijet contributions are significant, this observable distinguishes between the three generators. SHERPA, which explicitly includes higher-order tree-level diagrams, performs well in most $\Delta \phi$ and p_T^{max} regions. Having phenomenological parameters that have been adjusted to previous ATLAS measurements, PYTHIA [28] and HERWIG [24] also describe the data.

In summary, we present a measurement of dijet azimuthal decorrelations in events produced in pp collisions at $\sqrt{s} = 7$ TeV. The normalized differential cross sections are based on the full data set ($\int Ldt = 36$ pb$^{-1}$) collected by the ATLAS Collaboration during the 2010 run of the LHC. Expectations from NLO pQCD [$O(\alpha_s^3)$] and those of

![Graph](image-url)
several event generators successfully describe the general characteristics of our measurements, including the increasing slope of the $\Delta \phi$ distribution with p_T^{max} and the shape near $\Delta \phi \sim \pi/2$ where events with multiple jets make a considerable contribution. Our data, which include jets with p_T values that significantly exceed earlier measurements, explore QCD in a new kinematic region.

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SStC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DSNRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMGF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; AARS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is gratefully acknowledged, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (U.S.), and in the Tier-2 facilities worldwide.

[8] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Rapidity is defined as $y = \frac{1}{2} \ln[(E + p_z)/(E - p_z)]$, where E is the energy and p_z is the longitudinal component of the momentum along the beam direction.

(Atlas Collaboration)

1University at Albany, Albany New York, USA
2Department of Physics, University of Alberta, Edmonton AB, Canada
3Department of Physics, Ankara University, Ankara, Turkey
3aDepartment of Physics, Dumlupınar University, Kütahya, Turkey
3bDepartment of Physics, Gazi University, Ankara, Turkey
3dDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
3eTurkish Atomic Energy Authority, Ankara, Turkey
4LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5High Energy Physics Division, Argonne National Laboratory, Argonne Illinois, USA
6Department of Physics, University of Arizona, Tucson Arizona, USA
7Department of Physics, The University of Texas at Arlington, Arlington Texas, USA
8Physics Department, University of Athens, Athens, Greece
9Physics Department, National Technical University of Athens, Zografou, Greece
10Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11Institut de Fisica d’Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12Institute of Physics, University of Belgrade, Belgrade, Serbia
12cVina Institute of Nuclear Sciences, Belgrade, Serbia
13Department for Physics and Technology, University of Bergen, Bergen, Norway
14Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley California, USA
15Department of Physics, Humboldt University, Berlin, Germany
16Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18Department of Physics, Bogazici University, Istanbul, Turkey
18aDivision of Physics, Dogus University, Istanbul, Turkey
18cDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
18dDepartment of Physics, Istanbul Technical University, Istanbul, Turkey
19INFN Sezione di Bologna, Bologna, Italy
19bDipartimento di Fisica, Università di Bologna, Bologna, Italy
19cPhysikalisches Institut, University of Bonn, Bonn, Germany
21Department of Physics, Boston University, Boston Massachusetts, USA
22Department of Physics, Brandeis University, Waltham Massachusetts, USA
23Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
23bInstituto de Física, Universidade de São Paulo, São Paulo, Brazil
24Physics Department, Brookhaven National Laboratory, Upton New York, USA
25National Institute of Physics and Nuclear Engineering, Bucharest, Romania
25bUniversity Politehnica Bucharest, Bucharest, Romania

172002-13
PRL 106, 172002 (2011) PHYSICAL REVIEW LETTERS week ending 29 APRIL 2011

75 Department of Physics, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
79 Fysiska institutionen, Lunds universitet, Lund, Sweden
80 Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz, Germany
82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst Massachusetts, USA
85 Department of Physics, McGill University, Montreal QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor Michigan, USA
88 Department of Physics and Astronomy, Michigan State University, East Lansing Michigan, USA
89a INFN Sezione di Milano, Milano, Italy
89b Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge Massachusetts, USA
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P. N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
100 Nagasaki Institute of Applied Science, Nagasaki, Japan
101 Graduate School of Science, Nagoya University, Nagoya, Japan
102a INFN Sezione di Napoli, Napoli, Italy
102b Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
103 Department of Physics and Astronomy, University of New Mexico, Albuquerque New Mexico, USA
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb Illinois, USA
107 Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
108 Department of Physics, New York University, New York New York, USA
109 Ohio State University, Columbus Ohio, USA
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman Oklahoma, USA
112 Department of Physics, Oklahoma State University, Stillwater Oklahoma, USA
113 Palacký University, RCPTM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene Oregon, USA
115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119a INFN Sezione di Pavia, Pavia, Italy
119b Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia Pennsylvania, USA
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122a INFN Sezione di Pisa, Pisa, Italy
122b Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh Pennsylvania, USA
124 Laboratorio de Instrumentación e Física Experimental de Partículas-LIP, Lisboa, Portugal
125 Instituto de Fisica de Corpusculos de Media Energie, Universidade de Granada, Granada, Portugal
126 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
127 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada

172002-15
A list of institutions and departments involved in scientific research is presented, including:

- Ritsumeikan University, Kusatsu, Shiga, Japan
- INFN Sezione di Roma I, Roma, Italy
- Dipartimento di Fisica, Università La Sapienza, Roma, Italy
- INFN Sezione di Roma Tor Vergata, Roma, Italy
- Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- INFN Sezione di Roma Tre, Roma, Italy
- Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
- Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco
- Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000, Morocco
- Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
- Faculté des Sciences, Université Mohammed V, Rabat, Morocco
- DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz California, USA
- Department of Physics, University of Washington, Seattle Washington, USA
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- Department of Physics, Shinshu University, Nagano, Japan
- Fachbereich Physik, Universität Siegen, Siegen, Germany
- Department of Physics, Simon Fraser University, Burnaby BC, Canada
- SLAC National Accelerator Laboratory, Stanford California, USA
- Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
- Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- Department of Physics, University of Johannesburg, Johannesburg, South Africa
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- Department of Physics, Stockholm University, Stockholm, Sweden
- The Oskar Klein Centre, Stockholm, Sweden
- Physics Department, Royal Institute of Technology, Stockholm, Sweden
- Department of Physics and Astronomy, Stony Brook University, Stony Brook New York, USA
- Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- School of Physics, University of Sydney, Sydney, Australia
- Institute of Physics, Academia Sinica, Taipei, Taiwan
- Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- Department of Physics, University of Toronto, Toronto ON, Canada
- TRIUMF, Vancouver BC, Canada
- Department of Physics and Astronomy, York University, Toronto ON, Canada
- Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
- Science and Technology Center, Tufts University, Medford Massachusetts, USA
- Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- Department of Physics and Astronomy, University of California Irvine, Irvine California, USA
- INFN Gruppo Collegato di Udine, Trieste, Italy
- ICTP, Trieste, Italy
- Dipartimento di Fisica, Università di Udine, Udine, Italy
- Department of Physics, University of Illinois, Urbana Illinois, USA
- Dipartimento di Fisica e Astronomia, University of Pavia, Pavia, Italy
- Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- Department of Physics, University of British Columbia, Vancouver BC, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
- Waseda University, Tokyo, Japan
- Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Physics, University of Wisconsin, Madison Wisconsin, USA
- Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- Department of Physics, Yale University, New Haven Connecticut, USA

172002-16
Yerevan Physics Institute, Yerevan, Armenia
Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

a Deceased.

b Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.

c Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.

d Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

e Also at TRIUMF, Vancouver BC, Canada.

f Also at Department of Physics, California State University, Fresno CA, USA.

g Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland.

h Also at Department of Physics, University of Coimbra, Coimbra, Portugal.

i Also at California Institute of Technology, Pasadena CA, USA.

j Also at Institute of Particle Physics (IPP), Canada.

k Also at Università di Napoli Parthenope, Napoli, Italy.

l Also at Louisiana Tech University, Ruston LA, USA.

m Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada.

n Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

o Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

p Also at Manhattan College, New York, NY, USA.

q Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.

r Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

s Also at High Energy Physics Group, Shandong University, Shandong, China.

t Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

u Also at Section de Physique, Université de Genève, Geneva, Switzerland.

v Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.

w Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.

x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

y Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

z Also at Department of Physics, Oxford University, Oxford, United Kingdom.

aa Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

bb Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

cc Also at Department of Physics, Nanjing University, Jiangsu, China.