Perspectives on an integrated computer learning environment

Heck, A.J.P.

Publication date
2012

Citation for published version (APA):
Contents

1 Introduction
1.1 Educational Context
1.2 R&D at AMSTEL
1.3 Multiformity of ICT Tools
1.4 Aims and Set-Up of the Study
1.5 Structure of the Thesis

2 Classroom Studies
2.1 Introduction
2.2 Student Work with Real Data about Human Growth
2.3 Computer-Based Investigations of Mathematical Shapes of Real Objects
2.3.1 Image Analysis of Bridges and Hanging Chains
2.3.2 Modeling Shapes of Bridges and Hanging Chains
2.4 Video Analysis of Human Locomotion
2.4.1 Gait Analysis in the Classroom
2.4.2 Gait Analysis in a Masterclass
2.5 Video-Based Practical Work at Pre-Vocational Secondary School Level
2.6 Spreadsheet-Based Data Handling
2.6.1 Survival Analysis of Censored Clinical Data by Students
2.6.2 Handling Weather Data
2.7 Computer-Based Modeling in Quantitative Pharmacology
2.8 Video Analysis and Modeling of Bouncing Balls

3 Computer Tools for Cross-Disciplinary Work with Real Data
3.1 Overview of Activity Types
3.1.1 Data Logging
3.1.2 Control
3.1.3 Digital Image and Video Analysis
3.1.4 Modeling and Simulation
3.1.5 Animation
3.2 Digital Image and Video Analysis
3.2.1 Image Analysis of a Hanging Slinky
3.2.2 Perspective Correction Applied in Crime Scene Photography
3.2.3 Using High Speed Video to Study Moving Coins
3.3 Modeling
3.3.1 Modeling Chemical Kinetics Graphically

vii
3.3.2	ICT-Supported Study of Acid-Base Titration Curves	136
3.3.3	Modeling of Tidal Movement	142
3.4	Data Logging, Control, and Video Combined	150
3.4.1	Gait Analysis via Electromyography	151
3.4.2	Exploring Standing Vertical Jumps	153
3.4.3	Measuring the Pupil Light Reflex	160
3.5	Video Analysis and Modeling Combined	161
3.5.1	Modeling the Motion of a Yoyo	162
3.5.2	High Speed Video Analysis of a Falling Shuttlecock	165
3.5.3	Modeling the Decay of Beer Foam in a Glass	169
3.5.4	Understanding the Motion of a Falling Chain	173
3.5.5	Models of Sprinting	178
3.5.6	Modeling Bouncing Gaits	187
3.5.7	Exploring the Giant Circle on the High Bar	194

4 Findings and Conclusions

4.1 Analysis Framework | 203
4.2 Aspects of Scientific Inquiry and Authenticity | 205
4.2.1 Quantitative Mathematical Modeling Competency | 205
4.2.2 Design and Conduct of Experiments, and Basic Data Handling | 211
4.2.3 Graph Sense | 216
4.2.4 Data Sense | 227
4.2.5 Symbol Sense | 232
4.2.6 Representational Fluency | 238
4.2.7 Instructional Design | 241
4.2.8 Authenticity | 247
4.3 Aspects of Tool Design | 250
4.3.1 The Role of ICT in Quantitative Mathematical Modeling | 251
4.3.2 ICT-supported Mathematical Representations | 261
4.3.3 Tables and Graphs | 264
4.3.4 Data Manipulation, Processing, and Analysis | 274
4.3.5 Video Analysis | 281
4.3.6 Graphical System Dynamics-Based Modeling | 288
4.4 Concluding Remarks | 294
4.4.1 Main Outcomes | 294
4.4.2 Answers to the Driving Questions | 303
4.4.3 Reflection on the Presented and Future Work | 307

References | 311

Contents of the CD-ROM | 339
Summary | 345
Samenvatting | 349
Acknowledgments | 353
Curriculum Vitae | 357