Perspectives on an Integrated Computer Learning Environment

Heck, A.J.P.

Citation for published version (APA):
Contents

1 Introduction
 1.1 Educational Context ... 2
 1.2 R&D at AMSTEL ... 13
 1.3 Multiformity of ICT Tools .. 15
 1.4 Aims and Set-Up of the Study 18
 1.5 Structure of the Thesis 24

2 Classroom Studies
 2.1 Introduction ... 26
 2.2 Student Work with Real Data about Human Growth 30
 2.3 Computer-Based Investigations of Mathematical Shapes of Real Objects
 2.3.1 Image Analysis of Bridges and Hanging Chains 37
 2.3.2 Modeling Shapes of Bridges and Hanging Chains 41
 2.4 Video Analysis of Human Locomotion 44
 2.4.1 Gait Analysis in the Classroom 45
 2.4.2 Gait Analysis in a Masterclass 51
 2.5 Video-Based Practical Work at Pre-Vocational Secondary School Level 56
 2.6 Spreadsheet-Based Data Handling 62
 2.6.1 Survival Analysis of Censored Clinical Data by Students ... 62
 2.6.2 Handling Weather Data 67
 2.7 Computer-Based Modeling in Quantitative Pharmacology 74
 2.8 Video Analysis and Modeling of Bouncing Balls 83

3 Computer Tools for Cross-Disciplinary Work with Real Data 99
 3.1 Overview of Activity Types 100
 3.1.1 Data Logging ... 102
 3.1.2 Control ... 103
 3.1.3 Digital Image and Video Analysis 104
 3.1.4 Modeling and Simulation 108
 3.1.5 Animation .. 111
 3.2 Digital Image and Video Analysis 114
 3.2.1 Image Analysis of a Hanging Slinky 115
 3.2.2 Perspective Correction Applied in Crime Scene Photography 118
 3.2.3 Using High Speed Video to Study Moving Coins 122
 3.3 Modeling .. 127
 3.3.1 Modeling Chemical Kinetics Graphically 127
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td>ICT-Supported Study of Acid-Base Titration Curves</td>
<td>136</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Modeling of Tidal Movement</td>
<td>142</td>
</tr>
<tr>
<td>3.4</td>
<td>Data Logging, Control, and Video Combined</td>
<td>150</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Gait Analysis via Electromyography</td>
<td>151</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Exploring Standing Vertical Jumps</td>
<td>153</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Measuring the Pupil Light Reflex</td>
<td>160</td>
</tr>
<tr>
<td>3.5</td>
<td>Video Analysis and Modeling Combined</td>
<td>161</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Modeling the Motion of a Yoyo</td>
<td>162</td>
</tr>
<tr>
<td>3.5.2</td>
<td>High Speed Video Analysis of a Falling Shuttlecock</td>
<td>165</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Modeling the Decay of Beer Foam in a Glass</td>
<td>169</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Understanding the Motion of a Falling Chain</td>
<td>173</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Models of Sprinting</td>
<td>178</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Modeling Bouncing Gaits</td>
<td>187</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Exploring the Giant Circle on the High Bar</td>
<td>194</td>
</tr>
</tbody>
</table>

4 Findings and Conclusions

4.1 Analysis Framework 203

4.2 Aspects of Scientific Inquiry and Authenticity 205
4.2.1 Quantitative Mathematical Modeling Competency 205
4.2.2 Design and Conduct of Experiments, and Basic Data Handling 211
4.2.3 Graph Sense 216
4.2.4 Data Sense 227
4.2.5 Symbol Sense 232
4.2.6 Representational Fluency 238
4.2.7 Instructional Design 241
4.2.8 Authenticity 247

4.3 Aspects of Tool Design 250
4.3.1 The Role of ICT in Quantitative Mathematical Modeling 251
4.3.2 ICT-supported Mathematical Representations 261
4.3.3 Tables and Graphs 264
4.3.4 Data Manipulation, Processing, and Analysis 274
4.3.5 Video Analysis 281
4.3.6 Graphical System Dynamics-Based Modeling 288

4.4 Concluding Remarks 294
4.4.1 Main Outcomes 294
4.4.2 Answers to the Driving Questions 303
4.4.3 Reflection on the Presented and Future Work 307

References 311

Contents of the CD-ROM 339

Summary 345

Samenvatting 349

Acknowledgments 353

Curriculum Vitae 357