Measurement of the $Z \rightarrow \tau \tau$ cross section with the ATLAS detector

DOI
10.1103/PhysRevD.84.112006

Publication date
2011

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Measurement of the $Z \rightarrow \tau \tau$ cross section with the ATLAS detector

G. Aad et al. (*)
(ATLAS Collaboration)

(Received 9 August 2011; published 14 December 2011)

The $Z \rightarrow \tau \tau$ cross section is measured with the ATLAS experiment at the LHC in four different final states determined by the decay modes of the τ leptons: muon-hadron, electron-hadron, electron-muon, and muon-muon. The analysis is based on a data sample corresponding to an integrated luminosity of 36 pb^{-1}, at a proton-proton center-of-mass energy of $\sqrt{s} = 7 \text{ TeV}$. Cross sections are measured separately for each final state in fiducial regions of high detector acceptance, as well as in the full phase space, over the mass region 66–116 GeV. The individual cross sections are combined and the product of the total Z production cross section and $Z \rightarrow \tau \tau$ branching fraction is measured to be $0.97 \pm 0.07 \text{(stat)} \pm 0.06 \text{(syst)} \pm 0.03 \text{(lumi)} \text{ nb}$, in agreement with next-to-next-to-leading order calculations.

DOI: 10.1103/PhysRevD.84.112006

PACS numbers: 13.38.Dg, 13.85.Qk

I. INTRODUCTION

Tau leptons play a significant role in the search for new physics phenomena at CERN’s Large Hadron Collider (LHC). Hence decays of standard model gauge bosons to τ leptons, $W \rightarrow \tau \nu$ and $Z \rightarrow \tau \tau$, are important background processes in such searches and their production cross sections need to be measured precisely. Studies of $Z \rightarrow \tau \tau$ processes at the LHC center-of-mass energies are also interesting in their own right, complementing the measurements of the Z boson through the electron and muon decay modes. Finally, measuring the cross section of a well-known standard model process involving τ leptons is highly important for the commissioning and validation of τ identification techniques, which will be crucial for fully exploiting the ATLAS experiment’s potential in searches for new physics involving τ leptons.

This paper describes the measurement of the $Z \rightarrow \tau \tau$ cross section, using four different final states and an integrated luminosity of 36 pb^{-1}, in pp collisions at a center-of-mass energy of $\sqrt{s} = 7 \text{ TeV}$ recorded with the ATLAS detector [1] at the LHC. Two of the considered final states are the semileptonic modes $Z \rightarrow \tau \tau \rightarrow \mu + \text{hadrons} + 3 \nu (\tau_\mu \tau_\mu)$ and $Z \rightarrow \tau \tau \rightarrow e + \text{hadrons} + 3 \nu (\tau_e \tau_e)$ with branching fractions $(22.50 \pm 0.09)\%$ and $(23.13 \pm 0.09)\%$, respectively [2]. The remaining two final states are the leptonic modes $Z \rightarrow \tau \tau \rightarrow e\mu + 4 \nu (\tau_e \tau_\mu)$ and $Z \rightarrow \tau \tau \rightarrow \mu\mu + 4 \nu (\tau_\mu \tau_\mu)$ with branching fractions $(6.20 \pm 0.02)\%$ and $(3.01 \pm 0.01)\%$, respectively [2]. Because of the large expected multijet background contamination, the $\tau_\mu \tau_\mu$ and $\tau_e \tau_e$ final states are not considered in this publication.

The $Z \rightarrow \tau \tau$ cross section has been measured previously in pp collisions at the Tevatron using the semileptonic τ decay modes [3,4]. More recently the cross section, using both the semileptonic and leptonic modes, was measured in pp collisions at the LHC by the CMS Collaboration [5].

After a brief description of the ATLAS detector in Sec. II, the data and Monte Carlo samples are presented in Sec. III. The object and event selections are detailed in Sec. IV. The estimation of the backgrounds is described in Sec. V. The calculation of the cross sections is outlined in Sec. VI, and a discussion of the systematic uncertainties is given in Sec. VII. The results, including the combination of the four channels, are presented in Sec. VIII.

II. THE ATLAS DETECTOR

The ATLAS detector [1] is a multipurpose apparatus operating at the LHC, designed to study a range of physics processes as wide as possible. ATLAS consists of several layers of subdetectors—from the interaction point onwards, the inner detector tracking system, the electromagnetic and hadronic calorimeters, and the muon system.\(^1\)

The inner detector is immersed in a 2 T magnetic field generated by the central solenoid. It is designed to provide high-precision tracking information for charged particles and consists of three subsystems, the Pixel detector, the Semi-Conductor Tracker (SCT), and the Transition Radiation Tracker (TRT). The first two subsystems cover a region of $|\eta| < 2.5$ in pseudorapidity, while the TRT reaches up to $|\eta| = 2.0$. A track in the barrel region

\(^1\)ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$. The distance ΔR in the $\eta - \phi$ space is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
typically produces 11 hits in the Pixel and SCT detectors and 36 hits in the TRT.

The electromagnetic (EM) and hadronic calorimeters cover the range $|\eta| < 4.9$, with the η region matched to the inner detector having a finer granularity in the EM section, needed for precision measurements of electrons and photons. The EM calorimeter uses lead as an absorber and liquid argon (LAr) as the active material. The hadronic calorimeter uses steel and scintillating tiles in the barrel region, while the end caps use LAr as the active material and copper as the absorber. The forward calorimeter also uses LAr as the active medium with copper and tungsten absorbers.

The muon spectrometer relies on the deflection of muons as they pass through the magnetic field of the large superconducting air-core toroid magnets. The precision measurement of muon track coordinates in the bending direction of the magnetic field is provided, over most of the η range, by Monitored Drift Tubes (MDT). Cathode Strip Chambers (CSC) are used in the innermost plane for $2.0 < |\eta| < 2.7$ due to the high particle rate in that region. The muon trigger, as well as the coordinate in the direction orthogonal to the bending plane, are provided by Resistive Plate Chambers (RPC) in the barrel and Thin Gap Chambers (TGC) in the end caps.

The ATLAS detector has a three-level trigger system consisting of Level-1 (L1), Level-2 (L2), and the Event Filter (EF).

At design luminosity the L1 trigger rate is approximately 75 kHz. The L2 and EF triggers reduce the event rate to approximately 200 Hz before data transfer to mass storage.

III. DATA AND MONTE CARLO SAMPLES

The data sample used in this analysis corresponds to a total integrated luminosity of about 36 pb$^{-1}$, recorded with stable beam conditions and a fully operational detector in 2010.

Events are selected using either single-muon or single-electron triggers with thresholds based on the transverse momentum (p_T) or transverse energy (E_T) of the muon or electron candidate, respectively. For the $\tau_\mu \tau_h$ and $\tau_\mu \tau_\mu$ final states, single-muon triggers requiring $p_T > 10$–13 GeV, depending on the run period, are used. For the $\tau_e \tau_h$ and $\tau_e \tau_\mu$ final states, a single-electron trigger requiring $E_T > 15$ GeV is used. In the τ, τ_μ final state the choice was made to use a single-electron trigger rather than a single-muon trigger because it is more efficient, as well as allowing a low offline p_T cut on the muon.

The efficiency for the muon trigger is determined from data using the so-called “tag-and-probe method”, applied to $Z \rightarrow \mu \mu$ events. It is found to be close to 95% in the end cap region and around 80% in the barrel region (as expected from the geometrical coverage of the RPC).

Similarly, the electron trigger efficiency is measured in data, using $W \rightarrow e\nu$ and $Z \rightarrow ee$ events. It is measured to be $\sim 99\%$ for offline electron candidates with $E_T > 20$ GeV and $\sim 96\%$ for electron candidates with E_T between 16 and 20 GeV [6].

The signal and background Monte Carlo (MC) samples used for this study are generated at $\sqrt{s} = 7$ TeV with the default ATLAS MC10 tune [7] and passed through a full detector simulation based on the GEANT4 program [8]. The inclusive W and γ/Z signal and background samples are generated with PYTHIA 6.421 [9] and are normalized to next-to-next-to-leading order (NNLO) cross sections [10].

For the $t\bar{t}$ background the MC@NLO generator is used [11], while the diboson samples are generated with HERWIG [12].

In all samples the τ decays are modeled with TAUOLA [13]. All generators are interfaced to PHOTOS [14] to simulate the effect of final state QED radiation.

IV. SELECTION OF $Z \rightarrow \tau\tau$ CANDIDATES

The event preselection selects events containing at least one primary vertex with three or more associated tracks, as well as aiming to reject events with jets or τ candidates caused by out-of-time cosmic-rays events or known noise effects in the calorimeters.

In the case of the two semileptonic decay modes, events are characterized by the presence of an isolated lepton2 and a hadronic τ decay.3 The latter produces a highly collimated jet in the detector consisting of an odd number of charged hadrons and additional calorimetric energy deposits from possible π^0 decay products. The two leptonic decay modes are characterized by two isolated leptons of typically lower transverse momentum than those in $Z \rightarrow ee/\mu\mu$ events. Finally, in all four channels missing energy is expected from the neutrinos produced in the τ decays. This analysis depends therefore on many reconstructed objects: electrons, muons, τ candidates, jets, and missing transverse momentum, E_T^{miss}.

A. Reconstructed physics objects

1. **Muons**

Muon candidates are formed by associating muon spectrometer tracks with inner detector tracks after accounting for energy loss in the calorimeter [15]. A combined transverse momentum is determined using a statistical (stat) combination of the two tracks and is required to be greater than 15 GeV for the $\tau_\mu \tau_h$ final states and 10 GeV for the $\tau_e \tau_h$ and $\tau_e \tau_\mu$ final states. Muon candidates are also required to have $|\eta| < 2.4$ and a longitudinal impact

2In the following, the term “lepton”, ℓ, refers to electrons and muons only.

3In the following, reconstructed jets identified as hadronic τ decays are referred to as “τ candidates” or τ_h.

112006-2
Electron candidates are reconstructed from clusters in the EM calorimeter matched to tracks in the inner detector. Candidate electrons are selected if they have a transverse energy $E_T > 16$ GeV and are within the rapidity range $|\eta| < 2.47$, excluding the transition region, $1.37 < |\eta| < 1.52$, between the barrel and end cap calorimeters. For the τ_τ final state, the candidates are required to pass the “medium” identification requirements based on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster as described in [15]. The resulting efficiency is $\sim 89\%$. For the τ_μ final state, the electron candidate is instead required to pass the “tight” identification criteria, with an efficiency of $\sim 73\%$. In addition to the medium criteria, the tight selection places more stringent requirements on the track quality, the matching of the track to the calorimeter cluster, the ratio between the calorimeter energy and the track momentum, and the transition radiation in the TRT [15]. The electron reconstruction and identification efficiencies are measured in data using $W \rightarrow e\nu$ and $Z \rightarrow \mu\mu$ events.

3. Jets

The jets used in this analysis are reconstructed using the anti-k_T algorithm [17], with a distance parameter $R = 0.4$, using three-dimensional topological calorimeter energy clusters as inputs. The energy of the jets is calibrated using p_T and η-dependent correction factors [18] based on simulation and validated by test beam and collision data. Jet candidates are required to have a transverse momentum $p_T > 20$ GeV and a rapidity within $|\eta| < 4.5$.

4. Hadronic τ candidates

The reconstruction of hadronic τ decays is seeded by calorimeter jets. Their energy is determined by applying a MC-based correction to the reconstructed energy in the calorimeters. Tracks with $p_T > 1$ GeV passing minimum quality criteria are associated to calorimeter jets to form τ candidates. Reconstructed τ candidates are selected if they have a transverse momentum $p_T > 20$ GeV and lie within the pseudorapidity range $|\eta| < 2.47$, excluding the calorimeter transition region, $1.37 < |\eta| < 1.52$. Further, a τ candidate is required to pass identification selection criteria, based on three variables describing its energy-weighted transverse width in the electromagnetic calorimeter (R_{EM}), its p_T-weighted track width (R_{track}), and the fraction of the candidate’s transverse momentum carried by the leading track. In order to account for the increasing collimation of the τ candidates with increasing p_T, the selection criteria on the quantities R_{EM} and R_{track} are parametrized as a function of the p_T of the τ candidate. The identification is optimized separately for candidates with one or multiple tracks. Additionally, a dedicated selection to reject fake τ candidates from electrons is applied. This leads to an efficiency of $\sim 40\%$ ($\sim 30\%$) for real 1 prong (3 prong) τ candidates as determined from signal Monte Carlo [19]. For fakes from multijet final states the efficiency is $\sim 6\%$ ($\sim 2\%$) for 1 prong (3 prong) candidates, as measured in data using a dijet selection [20].

5. Missing transverse momentum

The missing transverse momentum (E_{miss}) reconstruction used in all final states relies on energy deposits in the calorimeter and on reconstructed muon tracks. It is defined as the vectorial sum $E_{\text{miss}} = E_{\text{miss}}^\text{calo} + E_{\text{miss}}^\text{muon} - E_T^\text{calo}^\text{muon}$, where $E_{\text{miss}}^\text{calo}$ is calculated from the energy deposits in calorimeter cells inside three-dimensional topological clusters [18], $E_{\text{miss}}^\text{muon}$ is the vector sum of the muon momenta, and $E_{\text{miss}}^\text{muon}$ is a correction term accounting for the energy lost by muons in the calorimeters. There is no direct requirement on $E_{\text{miss}}^\text{muon}$ applied in this analysis but the quantity and its direction is used in several selection criteria described later.

6. Lepton isolation

Leptons from $\gamma^*/Z \rightarrow \tau\tau$ decays are typically isolated from other particles, in contrast to electrons and muons from multijet events (e.g. coming from b-hadron decays). Hence isolation requirements are applied to both the electron and muon candidates used in the four final states considered.

The first isolation variable is based on the total transverse momentum of charged particles in the inner detector in a cone of size $\Delta R = 0.4$ centered around the lepton direction, $I_{\mu\tau}^{0.4}$, divided by the transverse momentum or energy of the muon or electron candidate, respectively. A selection requiring $I_{\mu\tau}^{0.4}/p_T < 0.06$ for the muon candidate and $I_{\mu\tau}^{0.4}/E_T < 0.06$ for the electron candidate is used for all final states except the $\tau_\mu\tau_\mu$ final state where a looser selection, $I_{\mu\tau}^{0.4}/p_T < 0.15$, is applied. Because of the presence of two muon candidates the multijet background is smaller in this final state, and the looser isolation requirement provides a larger signal efficiency.

A second isolation variable is based on the total transverse energy measured in the calorimeters in a cone ΔR around the lepton direction, $I_{\mu\tau}^{\text{EM}}$, divided by the transverse momentum or energy of the muon or electron candidate, respectively. For muon candidates, a cone of size $\Delta R = 0.4$ is used, and the requirement $I_{\mu\tau}^{\text{EM}}/p_T < 0.06$ is applied to all final states but the $\tau_\mu\tau_\mu$ final state where a looser selection, $I_{\mu\tau}^{\text{EM}}/p_T < 0.2$, is applied. For electron candidates, a cone of size $\Delta R = 0.3$ is used and a selection...
respectively. Figure 1 shows the distribution of the transverse momentum or energy, found to be 75%–98% for muons and 60%–95% for electrons, depending on the transverse momentum or energy, respectively. The multijet background is estimated from data according to the method described in Sec. V; all other processes are estimated using MC simulations.

B. Event selection

To select the required event topologies, the following selections are applied for the final states considered in this analysis:

(i) $\tau_\mu \tau_h$: at least one isolated tight electron candidate with $E_T > 16$ GeV and one hadronic τ candidate with $p_T > 20$ GeV,

(ii) $\tau_\mu \tau_h$: at least one isolated tight electron candidate with $E_T > 16$ GeV and one hadronic τ candidate with $p_T > 20$ GeV,

(iii) $\tau_\tau \tau$: exactly one isolated medium electron candidate with $E_T > 16$ GeV and one isolated muon candidate with $p_T > 10$ GeV,

(iv) $\tau_\mu \tau_\mu$: exactly two isolated muon candidates with $p_T > 10$ GeV, at least one of which should have $p_T > 15$ GeV.

These selections are followed by a number of event-level selection criteria optimized to suppress electroweak backgrounds.

1. $\tau_\ell \tau_h$ final states

The multijet background is largely suppressed by the τ identification and lepton isolation requirements previously discussed. Events due to $W \rightarrow \ell \nu$, $W \rightarrow \tau \nu \rightarrow \ell \nu \nu \nu$, and $\gamma^* / Z \rightarrow \ell \ell$ decays can be rejected with additional event-level selection criteria.

Any event with more than one muon or electron candidate is vetoed, which strongly suppresses background from $\gamma^* / Z \rightarrow \ell \ell +$ jets events. To increase the background rejection, the selection criteria for the second lepton are relaxed with respect to those described in Sec. IVA: the inner detector track quality requirements are dropped for the electrons, while the electrons need only pass the medium selection and have $E_T > 15$ GeV.

In order to suppress the $W +$ jets background, two additional selection criteria are applied. For signal events the E_T^{miss} vector is expected to fall in the azimuthal range spanned by the decay products, while in $W \rightarrow \ell \nu +$ jets events it will tend to point outside of the angle between the jet faking the τ decay products and the lepton. Hence the discriminating variable $\sum \cos \Delta \phi$ is defined as

$$\sum \cos \Delta \phi = \cos(\phi(\ell) - \phi(E_T^{\text{miss}})) + \cos(\phi(\tau_h) - \phi(E_T^{\text{miss}})).$$

The variable $\sum \cos \Delta \phi$ is positive when the E_T^{miss} vector points towards the direction bisecting the decay products and is negative when it points away. The distributions of $\sum \cos \Delta \phi$ are shown in Fig. 2(a) and 2(b) for the $\tau_\mu \tau_h$ and $\tau_\tau \tau_h$ final states, respectively. The peak at zero corresponds to $\gamma^* / Z \rightarrow \tau \tau$ events where the decay products are back-to-back in the transverse plane. The $W +$ jets backgrounds accumulate at negative $\sum \cos \Delta \phi$ whereas the $\gamma^* / Z \rightarrow \tau \tau$ distribution has an asymmetric tail extending into positive $\sum \cos \Delta \phi$ values, corresponding to events where the Z boson has higher p_T. Events are therefore selected by requiring $\sum \cos \Delta \phi > -0.15$. Even though the resolution of the $\phi(E_T^{\text{miss}})$ direction is degraded for low values of E_T^{miss}, this has no adverse effect on the impact of this
selection, as such events correspond to $\sum \cos \Delta \phi \sim 0$ and hence pass the selection.

To further suppress the $W + \text{jets}$ background, the transverse mass, defined as

$$m_T = \sqrt{2 p_T(\ell) \cdot E_T^{\text{miss}} \cdot (1 - \cos \Delta \phi(\ell, E_T^{\text{miss}}))},$$

is required to be $m_T < 50$ GeV. Figures 2(c) and 2(d) show the distribution of m_T for the $\tau_\mu \tau_h$ and $\tau_\tau \tau_h$ final states, respectively.

The visible mass m_{vis} is defined as the invariant mass of the visible decay products of the two τ leptons. Selected events are required to have a visible mass in the range $35 < m_{\text{vis}} < 75$ GeV. This window is chosen to include the bulk of the signal, while avoiding background contamination from $Z \to \ell\ell$ decays. For $Z \to \mu\mu$ events the peak is at slightly lower values than for $Z \to ee$ events, for two reasons: muons misidentified as τ candidates leave less energy in the calorimeter compared to misidentified electrons, and the proportion of events where the τ candidate arises from a misidentified jet, as opposed to a misidentified lepton, is higher in $Z \to \mu\mu$ events.

Furthermore, the chosen τ candidate is required to have exactly 1 or 3 associated tracks and a reconstructed charge of unit magnitude, characteristic of hadronic τ decays. The charge is determined as the sum of the charges of the associated tracks. Finally, the chosen τ candidate and the chosen lepton are required to have opposite charges as expected from $Z \to \tau\tau$ decays.

The distribution of the visible mass after the full selection except the visible mass window requirement is shown in Fig. 3. The distributions of the lepton and τ candidate p_T, for events passing all signal selection criteria, are shown in Fig. 4. The τ candidate track distribution after the full selection except the requirements on the number of associated tracks and on the magnitude of the τ charge is shown in Fig. 5.
FIG. 3 (color online). The distributions of the visible mass of the combination of the τ candidate and the lepton are shown for the (a) $\tau_\mu \tau_h$ and (b) $\tau_e \tau_h$ final states. These distributions are shown after the full event selection, except for the visible mass window requirement.

FIG. 4 (color online). Distributions of the p_T of the τ candidate and of the muon and E_T of the electron, for events passing all signal selections for the $\tau_\mu \tau_h$ and $\tau_e \tau_h$ final states.
The events are characterized by the presence of two oppositely charged and isolated leptons in the final state. Thus exactly one electron and one muon candidate of opposite electric charge, which pass the selections described in Sec. IVA, are required. For events that contain two leptons of different flavors, the contributions from $\gamma^*/Z \to ee$ and $\gamma^*/Z \to \mu\mu$ processes are small. The remaining background is therefore due to W and Z leptonic decays, where an additional real or fake lepton comes from jet fragmentation.

To reduce the $W \to e\nu$, $W \to \mu\nu$, and $t\bar{t}$ backgrounds, the requirement $\sum \cos \Delta \phi > -0.15$ is applied as in the semileptonic final states. Figure 6 shows the distribution of $\sum \cos \Delta \phi$ after the previous selection criteria.

A further requirement is made to reduce the $t\bar{t}$ background. Unlike for the signal, the topology of $t\bar{t}$ events is characterized by the presence of high-p_T jets and leptons, as well as large E_T^{miss}.

Hence the variable

$$\sum E_T + E_T^{\text{miss}} = E_T(e) + p_T(\mu) + \sum_{\text{jets}} p_T + E_T^{\text{miss}} \quad (3)$$

is defined, where the electron and muon candidates, the jets, and E_T^{miss} pass the selections described in Sec. IVA. The distribution of this variable for data and Monte Carlo after the $\sum \cos \Delta \phi$ requirement is shown in Fig. 6. Requiring $\sum E_T + E_T^{\text{miss}} < 150$ GeV rejects most of the $t\bar{t}$ background.

Finally, since $\gamma^*/Z \to \ell\ell$ events are a small background in this final state, the dilepton invariant mass is required to be within a wider range than in the semileptonic case: $25 < m_{\ell\ell} < 80$ GeV. Figure 7(a) shows the distribution of the visible mass. Figure 8 shows the p_T distributions of both leptons for events passing the full signal selection.

FIG. 5 (color online). Distribution of the number of tracks associated to τ candidates after the full selection, including the opposite-charge requirement for the τ candidate and the lepton, except the requirement on the number of tracks and on the magnitude of the τ charge.

2. $\tau\tau$ final state

The $\tau\tau$ events are characterized by the presence of two oppositely charged and isolated leptons in the final state. Thus exactly one electron and one muon candidate of opposite electric charge, which pass the selections described in Sec. IVA, are required. For events that contain two leptons of different flavors, the contributions from $\gamma^*/Z \to ee$ and $\gamma^*/Z \to \mu\mu$ processes are small. The remaining background is therefore due to W and Z leptonic decays, where an additional real or fake lepton comes from jet fragmentation.

To reduce the $W \to e\nu$, $W \to \mu\nu$, and $t\bar{t}$ backgrounds, the requirement $\sum \cos \Delta \phi > -0.15$ is applied as in the semileptonic final states. Figure 6 shows the distribution of $\sum \cos \Delta \phi$ after the previous selection criteria.

A further requirement is made to reduce the $t\bar{t}$ background. Unlike for the signal, the topology of $t\bar{t}$ events is characterized by the presence of high-p_T jets and leptons, as well as large E_T^{miss}.

Hence the variable

$$\sum E_T + E_T^{\text{miss}} = E_T(e) + p_T(\mu) + \sum_{\text{jets}} p_T + E_T^{\text{miss}} \quad (3)$$

is defined, where the electron and muon candidates, the jets, and E_T^{miss} pass the selections described in Sec. IVA. The distribution of this variable for data and Monte Carlo after the $\sum \cos \Delta \phi$ requirement is shown in Fig. 6. Requiring $\sum E_T + E_T^{\text{miss}} < 150$ GeV rejects most of the $t\bar{t}$ background.

Finally, since $\gamma^*/Z \to \ell\ell$ events are a small background in this final state, the dilepton invariant mass is required to be within a wider range than in the semileptonic case: $25 < m_{\ell\ell} < 80$ GeV. Figure 7(a) shows the distribution of the visible mass. Figure 8 shows the p_T distributions of both leptons for events passing the full signal selection.

FIG. 6 (color online). Distributions of the variables (a) $\sum \cos \Delta \phi$, after the lepton isolation selection and (b) $\sum E_T + E_T^{\text{miss}}$ after the $\sum \cos \Delta \phi$ selection, for the $\tau\tau$ final state. The multijet background is estimated from data according to the method described in Sec. V; all other processes are estimated using MC simulations.
The final state is characterized by two oppositely charged muons. Therefore only events that contain exactly two muon candidates with opposite charge that pass the selection criteria described in Sec. IVA are considered, with the additional requirement that the leading muon has a transverse momentum greater than 15 GeV. The signal region for this final state is defined by the two muon candidates having an invariant mass of $25 < m_{\mu\mu} < 65$ GeV.

A boosted decision tree (BDT) [21] is used to maximize the final signal efficiency and the discrimination power against the background. The BDT is trained using Z Monte Carlo samples as signal and $\gamma^*/Z \rightarrow \mu\mu$ Monte Carlo samples as background. No other backgrounds are introduced in the training, in order to achieve the maximum separation between the signal and the main ($\gamma^*/Z \rightarrow \mu\mu$) background. The BDT is trained after the selection of two oppositely charged muon candidates whose invariant mass fall within the signal region. To maximize the available Monte Carlo statistics for training and testing, no isolation requirements are applied to the muon candidates.

The following input variables to the BDT training are used: the difference in azimuthal angle between the two muon candidates ($\Delta \phi(\mu_1, \mu_2)$), the difference in azimuthal angle between the leading muon candidate and the E_T^{miss} vector ($\Delta \phi(\mu_1, E_T^{\text{miss}})$), the difference in the p_T of the two muon candidates ($p_T(\mu_1) - p_T(\mu_2)$), the transverse momentum of the leading muon candidate ($p_T(\mu_1)$), and the sum of the absolute transverse impact parameters of the two muon candidates ($|d_0(\mu_1)| + |d_0(\mu_2)|$). Distributions of these variables for the events that are passed to the BDT are shown in Fig. 9. Differences between data and Monte Carlo are consistent with the estimated systematic uncertainties, and the agreement is best in the regions most
relevant for the signal and background separation. The sum of the muon transverse impact parameters has the highest discriminating power between the signal and the background. Figure 10 shows the distribution of the BDT output. Good agreement between data and MC is observed. Events are selected by requiring a BDT output greater than 0.07. Cutting on this value gives the best signal significance and has an efficiency of 0.38 ± 0.02. The visible mass distribution after the full selection except the mass window requirement can be seen in Fig. 7(b) and compared to the data. Figure 11 shows the distributions of the p_T of the two muon candidates passing the full $\tau_\mu \tau_\mu$ selection.

V. BACKGROUND ESTIMATION

In order to determine the purity of the selected $Z \rightarrow \tau\tau$ events and the $Z \rightarrow \tau\tau$ production cross section, the number of background events passing the selection criteria must be estimated. The contributions from the $\gamma^* / Z \rightarrow \ell\ell$, $\tau\tau$ and diboson backgrounds are taken from Monte Carlo simulations, while all other backgrounds are estimated using partially or fully data-driven methods.

A. $W + jets$ background

In the two dileptonic final states, the $W \rightarrow \ell\nu$ and $W \rightarrow \tau\nu$ backgrounds are found to be small, and their contribution is similarly obtained from simulations. In
the two semileptonic final states, where these backgrounds are important, they are instead constrained with data by obtaining their normalization from a W boson-enriched control region. This normalization corrects the Monte Carlo for an overestimate of the probability for quark and gluon jets produced in association with the W to be misidentified as hadronic τ decays. The control region is defined to contain events passing all selection criteria except those $m_T, \sum \cos \Delta \phi$ rejecting the W background. This provides a high-purity W sample. The multijet background contamination in this region is expected to be negligible, while the Monte Carlo estimate of the small $\gamma^*/Z \rightarrow \ell \ell$ and $t\bar{t}$ contribution is subtracted before calculating the normalization factor. The obtained normalization factor is $0.73 \pm 0.06 \text{ (stat)}$ for the $\tau_\mu \tau_\mu$ final state and $0.63 \pm 0.07 \text{ (stat)}$ for the $\tau_\ell \tau_h$ final state.

B. $\gamma^*/Z \rightarrow \mu \mu$ background

The most important electroweak background to the $\tau_\mu \tau_\mu$ final state comes from $\gamma^*/Z \rightarrow \mu \mu$ events. The normalization of the Monte Carlo simulation is cross-checked after the dimuon selection, for events with invariant masses between 25 GeV and 65 GeV. In this region, the $\gamma^*/Z \rightarrow \mu \mu$ process is dominant and is expected to contribute to over 94% of the selected events. The expected backgrounds arising from other electroweak processes are subtracted and the multijet contribution estimated using a data-driven method described later in this section. The number of $\gamma^*/Z \rightarrow \mu \mu$ events in the selected mass window is consistent between Monte Carlo and data within the uncertainties of ~8% (to be compared with a 7% difference in rate). Therefore no correction factor is applied to the $\gamma^*/Z \rightarrow \mu \mu$ Monte Carlo prediction.

C. Multijets

The multijet background estimation is made by employing data-driven methods in all final states. In the $\tau_\ell \tau_\mu$, $\tau_\mu \tau_\ell$ and $\tau_\ell \tau_\ell$ final states, a multijet enriched control region is constructed by requiring the two candidate τ decay products to have the same sign. The ratios of events where the decay products have the opposite sign to those where they have the same sign $R_{\text{OS/SS}}$ is then measured in a separate pair of control regions where the lepton isolation requirement is inverted. Electroweak backgrounds in all three control regions are subtracted using Monte Carlo simulations. For the same-sign control regions of the semileptonic final states, the W normalization factor is recomputed using a new W control region identical to that described above, except for having the same-sign requirement applied. The reason is that the sign requirement changes the relative fraction of quark- and gluon-induced jets leading to different τ misidentification probabilities. The following values of $R_{\text{OS/SS}}$ are obtained:

$$1.07 \pm 0.04 \text{(stat)} \pm 0.04 \text{(syst)} \, \tau_\mu \tau_\ell \text{ final state}$$
$$1.07 \pm 0.07 \text{(stat)} \pm 0.07 \text{(syst)} \, \tau_\ell \tau_\ell \text{ final state}$$
$$1.55 \pm 0.04 \text{(stat)} \pm 0.20 \text{(syst)} \, \tau_\ell \tau_\mu \text{ final state}.$$

The $R_{\text{OS/SS}}$ ratios measured in nonisolated events are applied to the same-sign isolated events in order to estimate the multijet contribution to the signal region. The multijet background is estimated after the full selection in the two semileptonic final states, and after the dilepton selection in the $\tau_\ell \tau_\mu$ final state, due to limited statistics. The efficiency of the remaining selection criteria is obtained from the same-sign nonisolated control region.

This method assumes that the $R_{\text{OS/SS}}$ ratio is the same for nonisolated and isolated leptons. The measured variation of this ratio as a function of the isolation requirements is taken as a systematic uncertainty.

The multijet background to the $\tau_\mu \tau_\mu$ final state is estimated in a control region defined as applying the full selection but requiring the subleading muon candidate to fail the isolation selection criteria. A scaling factor is then calculated in a separate pair of control regions, obtained by requiring that the leading muon candidate fails the isolation selection and that the subleading muon candidate
Table I. Expected number of events per process and number of events observed in data for an integrated luminosity of 36 pb$^{-1}$, after the full selection. The background estimates have been obtained as described in Sec. V. The quoted uncertainties are statistical only.

<table>
<thead>
<tr>
<th>Process</th>
<th>$\gamma^* / Z \rightarrow \ell \ell$</th>
<th>$W \rightarrow \ell \nu$</th>
<th>$W \rightarrow \tau \nu$</th>
<th>Diboson</th>
<th>Multijet</th>
<th>$\gamma^* / Z \rightarrow \tau \tau$</th>
<th>Total expected events</th>
<th>N_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_\mu \tau_h$ final state:</td>
<td>$\tau_\tau \tau_h$</td>
<td>$\tau_\tau \tau_\mu$</td>
<td>$\tau_\mu \tau_h$</td>
<td>Electron</td>
<td>Tau</td>
<td>Event</td>
<td>Electron</td>
<td>Tau</td>
</tr>
<tr>
<td>Muon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_T > 16 \text{ GeV}$, $</td>
<td>\eta</td>
<td>< 2.47$, excluding $1.37 <</td>
<td>\eta</td>
<td>< 1.52$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T > 20 \text{ GeV}$, $</td>
<td>\eta</td>
<td>< 2.47$, excluding $1.37 <</td>
<td>\eta</td>
<td>< 1.52$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>$\Sigma \cos \Delta \phi > -0.15$, $m_{\text{vis}} < 50 \text{ GeV}$, m_{vis} within [35, 75] GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tau_\tau \tau_h$ final state:</td>
<td>$\tau_\tau \tau_\mu$</td>
<td>$\tau_\mu \tau_\mu$</td>
<td></td>
<td>Electron</td>
<td>Electro</td>
<td>Muon</td>
<td>Muon</td>
<td></td>
</tr>
<tr>
<td>$E_T > 16 \text{ GeV}$, $</td>
<td>\eta</td>
<td>< 2.47$, excluding $1.37 <</td>
<td>\eta</td>
<td>< 1.52$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T > 10 \text{ GeV}$, $</td>
<td>\eta</td>
<td>< 2.4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>m_{vis} within [25, 65] GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The C_Z factor is determined as the ratio between the number of events passing the entire analysis selection after full detector simulation and the number of events in the fiducial region at generator level. The four-momenta of electrons and muons are calculated including photons radiated within a cone of size $\Delta R = 0.1$. The four-momenta of the τ candidates are defined by including photons radiated by both the τ leptons and their decay products within a cone of size $\Delta R = 0.4$. By construction C_Z accounts for migrations from outside of the acceptance. The correction by the C_Z factor provides the cross section within the fiducial region of each measurement

$$\sigma^{\text{fid}}(Z \rightarrow \tau \tau) \times B = \frac{N_{\text{obs}} - N_{\text{bkg}}}{C_Z \cdot \mathcal{L}},$$

where N_{obs} is the number of observed events in data, N_{bkg} is the branching fraction for the channel considered, B is the integrated luminosity for the final state of interest, C_Z is the correction factor that accounts for the efficiency of triggering, reconstructing, and identifying the $Z \rightarrow \tau \tau$ events within the fiducial regions, defined as

either fails or passes it. This scaling factor is further corrected for the correlation between the isolation variables for the two muon candidates. The multijet background in the signal region is finally obtained from the number of events in the primary control region scaled by the corrected scaling factor.

D. Summary

Table I shows the estimated number of background events per process for all channels. The full selection described in Sec. IV has been applied. Also shown are the expected number of signal events, as well as the total number of events observed in data in each channel after the full selection.

VI. CROSS SECTION CALCULATION

The measurement of the cross sections is obtained using the formula

$$\sigma(Z \rightarrow \tau \tau) \times B = \frac{N_{\text{obs}} - N_{\text{bkg}}}{A_Z \cdot C_Z \cdot \mathcal{L}},$$

where N_{obs} is the number of observed events in data, N_{bkg} is the branching fraction for the channel considered, B is the integrated luminosity for the final state of interest, C_Z is the correction factor that accounts for the efficiency of triggering, reconstructing, and identifying the $Z \rightarrow \tau \tau$ events within the fiducial regions, defined as

$$\tau_\mu \tau_h \text{ final state:}$$

Muon | Tau | Event |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T > 15 \text{ GeV}$, $</td>
<td>\eta</td>
<td>< 2.4$</td>
</tr>
</tbody>
</table>

VII. SYSTEMATIC UNCERTAINTIES

A. Systematic uncertainty on signal and background predictions

1. Efficiency of lepton trigger, identification, and isolation.—As described in Secs. III and IV, the efficiency
of the lepton trigger, reconstruction, identification, and isolation requirements are each measured separately in data, and the corresponding Monte Carlo efficiency for each step is corrected to agree with the measured values. These corrections are applied to all relevant Monte Carlo samples used for this study. Uncertainties on the corrections arise both from statistical and systematic uncertainties on the efficiency measurements.

For the electrons, when estimating the effect of these uncertainties on the signal yield and on the background predictions for each final state, the uncertainties of the individual measurements are conservatively treated as uncorrelated to each other and added in quadrature. The largest contribution to the electron efficiency uncertainty comes from the identification efficiency for low-\(E_T \) electrons, where the statistical uncertainty on the measurement is very large. The total electron uncertainty is estimated to be between 5\%–9\% relative to the efficiency, depending on the selection.

For muons, the uncertainty is determined in the same way as for electrons and is estimated to be 2\%–4\% relative to the efficiency.

b. Efficiency of hadronic \(\tau \) identification.—The uncertainties on the hadronic \(\tau \) reconstruction and identification efficiencies are evaluated by varying simulation conditions, such as the underlying event model, the amount of detector material, the hadronic shower model, and the noise thresholds of the calorimeter cells in the cluster reconstruction. These contributions are added in quadrature to obtain the final systematic uncertainty in bins of \(p_T \) of the \(\tau \) candidate and independently for the one track and three track \(\tau \) candidates and for low (\(\leq 2 \)) and high multiplicity of primary vertices in the event. The latter categorization is necessary due to the effects of pileup (additional soft interactions in the same bunch crossing as the interaction that triggered the readout). In events with a large number of additional interactions the \(\tau \) identification performance worsens, since the discriminating variables are diluted due to the increased activity in the tracker and calorimeters. The systematic uncertainties are estimated to be around 10\% relative to the efficiency for most cases, varying between 9\% and 12\% with the \(\tau \) candidate \(p_T \), number of tracks, and number of vertices in the event [19].

c. Electron and jet misidentification as \(\tau \) candidates.—
The probability for an electron or a QCD jet to be misidentified as a hadronic \(\tau \) is measured in data. The misidentification probability for electrons is determined using an identified \(Z \rightarrow ee \) sample where \(\tau \) identification is applied to one of the electrons. Correction factors are derived for the Monte Carlo misidentification probability for electrons, binned in \(\eta \). These corrections are applied to \(\tau \) candidates matched in simulation to a generator-level electron, with the uncertainty on the correction factor taken as the systematic uncertainty. The QCD jet misidentification probability is measured in \(Z \rightarrow \ell\ell + \text{jet} \) events. The difference to the Monte Carlo prediction for the same selection, added in quadrature with the statistical and systematic uncertainties of the measurement, is taken as the systematic uncertainty. These corrections are applied to \(\tau \) candidates not matched to a generator-level electron. The \(\tau \) candidate misidentification systematic uncertainties are not applied to the \(W \) Monte Carlo samples, as these have been normalized to data to account for the QCD jet misidentification probability. Instead the uncertainty on the normalization is applied, as described later in this section.

d. Energy scale.—The \(\tau \) energy scale uncertainty is estimated by varying the detector geometry, hadronic showering model, underlying event model as well as the noise thresholds of the calorimeter cells in the cluster reconstruction in the simulation and comparing to the nominal results [19]. The electron energy scale is determined from data by constraining the reconstructed electron invariant mass to the well-known \(Z \rightarrow ee \) line shape. For the central region the linearity and resolution are in addition controlled using \(J/\psi \rightarrow ee \) events.

The jet energy scale uncertainty is evaluated from simulations by comparing the nominal results to Monte Carlo simulations using alternative detector configurations, alternative hadronic shower and physics models, and by comparing the relative response of jets across pseudorapidity between data and simulation [18]. Additionally, the calorimetric component of the \(E_T^{\text{miss}} \) is sensitive to the energy scale, and this uncertainty is evaluated by propagating first the electron energy scale uncertainty into the \(E_T^{\text{miss}} \) calculation and then shifting all topological clusters not associated to electrons according to their uncertainties [18].

The electron, \(\tau \) and jet energy scale uncertainties, as well as the calorimetric component of the \(E_T^{\text{miss}} \), are all correlated. Their effect is therefore evaluated by simultaneously shifting each up and down by 1 standard deviation; the jets are not considered in the semileptonic final states, while the \(\tau \) candidates are not considered for the dilepton and muon final states. The muon energy scale, and the correlated effect on the \(E_T^{\text{miss}} \), is also evaluated but found to be negligible in comparison with other uncertainties.

e. Background estimation.—The uncertainty on the multijet background estimation arises from three separate areas. Electroweak and \(t\bar{t} \) backgrounds are subtracted in the control regions and all sources of systematics on these backgrounds are taken into account. Each source of systematic error is varied up and down by 1 standard deviation and the effect on the final multijet background estimation is evaluated.

The second set of systematic uncertainties is related to the assumptions of the method used for the \(\tau_\ell\tau_b, \tau_\mu\tau_b \), and \(\tau_\ell\tau_\mu \) final state multijet background estimations, that the ratio of opposite-sign to same-sign events in the signal region is independent of the lepton isolation.

These systematic uncertainties are evaluated by studying the dependence of \(R_{\text{OS/SS}} \) on the isolation variables...
selection criteria and, for the $\tau_\epsilon \tau_\mu$ channel, comparing the efficiencies of the subsequent selection criteria in the opposite and same-sign regions. For the estimation of the multijet background in the $\tau_\mu \tau_\mu$ final state, the uncertainties due to the correlation between the isolation of the two muon candidates are evaluated by propagating the systematic uncertainties from the subtracted backgrounds into the calculation of the correlation factor. The third uncertainty on the multijet background estimation arises from the statistical uncertainty on the number of data events in the various control regions.

The uncertainty on the $W + \text{jets}$ background estimation method is dominated by the statistical uncertainty on the calculation of the normalization factor in the control region, as described in Sec. V, and the energy scale uncertainty.

f. Muon d_0 smearing.— In the $\tau_\mu \tau_\mu$ final state, a smearing is applied to the transverse impact parameter of the muons with respect to the primary vertex (d_0) to match the Monte Carlo resolution with the value observed in data. The muon d_0 distribution is compared between data and Monte Carlo using a sample of $Z \rightarrow \mu \mu$ events and it is found to be well-described by a double Gaussian distribution. The 20% difference in width between data and simulation is used to define a smearing function which is applied to the d_0 of each simulated muon. The systematic uncertainty due to the smearing procedure is estimated by varying the widths and the relative weights of the two components of the impact parameter distributions applied to the Monte Carlo, within the estimated uncertainties on their measurement. An additional uncertainty is found for the $Z \rightarrow \tau \tau$ signal sample.

g. Other sources of systematic uncertainty.— The uncertainty on the luminosity is taken to be 3.4%, as determined in [23,24]. A number of other sources, such as the uncertainty due to the object quality requirements on τ candidates and on jets, are also evaluated but have a small impact on the total uncertainty. The Monte Carlo is reweighted so that the distribution of the number of vertices matches that observed in data; the systematic uncertainty from the reweighting procedure amounts to a permille effect. The lepton resolution and charge misidentification are found to only have a subpercent effect on C_Z and the background predictions. Systematic uncertainties due to a few problematic calorimetric regions, affecting electron reconstruction, are also evaluated and found to have a very small effect. The uncertainties on the theoretical cross sections by which the background Monte Carlo samples are scaled are also found to only have a very small impact on the corresponding background prediction, except for the $\tau_\mu \tau_\mu$ final state, which has a large electroweak background contamination.

B. Systematic uncertainty on the acceptance

The theoretical uncertainty on the geometric and kinematic acceptance factor A_Z is dominated by the limited knowledge of the proton PDFs and the modeling of the Z-boson production at the LHC. The uncertainty due to the choice of PDF set is evaluated by considering the maximal deviation between the acceptance obtained using the default sample and the values obtained by reweighting this sample to the CTEQ6.6 and HERAPDF1.0 [25] PDF sets. The uncertainties within the PDF set are determined by using the 44 PDF error eigenvectors available [26] for the CTEQ6.6 next-to-leading-order (NLO) PDF set. The variations are obtained by reweighting the default sample to the relevant CTEQ6.6 error eigenvector. The uncertainties due to the modeling of W and Z production are estimated using MC@NLO interfaced with HERWIG for parton showering, with the CTEQ6.6 PDF set and ATLAS MC10 tune and a lower bound on the invariant mass of 60 GeV. Since HERWIG in association with external generators does not handle τ polarizations correctly [27], the acceptance obtained from the MC@NLO sample is corrected for this effect, which is of order 2% for the $\tau_\mu \tau_\epsilon$ and $\tau_\mu \tau_\mu$ channels, 8% for the $\tau_\epsilon \tau_\mu$ channel, and 3% for the $\tau_\mu \tau_\mu$ channel. The deviation with respect to the A_Z factor obtained using the default sample reweighted to the CTEQ6.6 PDF set central value and with an applied lower bound on the invariant mass of 60 GeV is taken as uncertainty. In the default sample the QED radiation is modeled by PHOTOS which has an accuracy of better than 0.2% and therefore has a negligible uncertainty compared to uncertainties due to PDFs. Summing in quadrature the various contributions, total theoretical uncertainties of 3% are assigned to A_Z for both of the semileptonic and the $\tau_\epsilon \tau_\mu$ final states and of 4% for the $\tau_\mu \tau_\mu$ final state.

C. Summary of systematics

The uncertainty on the experimental acceptance C_Z is given by the effect of the uncertainties described in Sec. VII A on the signal Monte Carlo, after correction factors have been applied. For the total background estimation uncertainties, the correlations between the electroweak and $t\bar{t}$ background uncertainties and the multijet background uncertainty, arising from the subtraction of the former in the control regions used for the latter, are taken into account. The largest uncertainty results from the τ identification and energy scale uncertainties for the $\tau_\mu \tau_\epsilon$ and $\tau_\mu \tau_\mu$ final states. Additionally, in the $\tau_\epsilon \tau_\mu$ final state, the uncertainty on the electron efficiency has a large contribution. This is also the dominant uncertainty in the $\tau_\epsilon \tau_\mu$ final state. In the $\tau_\mu \tau_\mu$ final state, the uncertainty due to the muon efficiency is the dominant source, with the muon d_0 contribution being important in the background estimate contributions for that channel. The correlation between the uncertainty on C_Z and on $(N_{\text{obs}} - N_{\text{bkg}})$ is accounted for in obtaining the final uncertainties on the cross section measurements, which are summarized in Table II.
TABLE II. Relative statistical and systematic uncertainties in % on the total cross section measurement. The electron and muon efficiency terms include the lepton trigger, reconstruction, identification, and isolation uncertainties, as described in the text. The last column indicates whether a given systematic uncertainty is treated as correlated (\(____\) or uncorrelated (X) among the relevant channels when combining the results, as described in Sec. VIII B. For the multijet background estimation method, the uncertainties in the \(\tau_\mu \tau_h\), \(\tau_e \tau_h\), and \(\tau_e \tau_\mu\) channels are treated as correlated while the \(\tau_\mu \tau_\mu\) uncertainty is treated as uncorrelated, since a different method is used, as described in Sec. V.

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>(\tau_\mu \tau_h)</th>
<th>(\tau_e \tau_h)</th>
<th>(\tau_e \tau_\mu)</th>
<th>(\tau_\mu \tau_\mu)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon efficiency</td>
<td>3.8%</td>
<td>(\cdots)</td>
<td>2.2%</td>
<td>8.6%</td>
<td>(____)</td>
</tr>
<tr>
<td>Muon (\Delta p_T) (shape and scale)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>6.2%</td>
<td>(____)</td>
</tr>
<tr>
<td>Muon resolution & energy scale</td>
<td>0.2%</td>
<td>0.1%</td>
<td>1.0%</td>
<td>(_______)</td>
<td></td>
</tr>
<tr>
<td>Electron efficiency, resolution & charge misidentification</td>
<td>(\cdots)</td>
<td>9.6%</td>
<td>5.9%</td>
<td>(_______)</td>
<td></td>
</tr>
<tr>
<td>(\tau_h) identification efficiency</td>
<td>8.6%</td>
<td>8.6%</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(____)</td>
</tr>
<tr>
<td>(\tau_h) misidentification</td>
<td>1.1%</td>
<td>0.7%</td>
<td>(\cdots)</td>
<td>(____)</td>
<td></td>
</tr>
<tr>
<td>Energy scale ((e/\tau/jets/\vec{E}_T^{miss}))</td>
<td>10%</td>
<td>11%</td>
<td>1.7%</td>
<td>0.1%</td>
<td>(_______)</td>
</tr>
<tr>
<td>Multijet estimate method</td>
<td>0.8%</td>
<td>2%</td>
<td>1.0%</td>
<td>1.7%</td>
<td>(____)</td>
</tr>
<tr>
<td>(W) normalization factor</td>
<td>0.1%</td>
<td>0.2%</td>
<td>(\cdots)</td>
<td>(____)</td>
<td></td>
</tr>
<tr>
<td>Object quality selection criteria</td>
<td>1.9%</td>
<td>1.9%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>(_______)</td>
</tr>
<tr>
<td>Pileup description in simulation</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.5%</td>
<td>0.1%</td>
<td>(_______)</td>
</tr>
<tr>
<td>Theoretical cross section</td>
<td>0.2%</td>
<td>0.1%</td>
<td>0.3%</td>
<td>4.3%</td>
<td>(_______)</td>
</tr>
<tr>
<td>(A_Z) systematics</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
<td>(_______)</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>15%</td>
<td>17%</td>
<td>7.3%</td>
<td>14%</td>
<td>(_______)</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>9.8%</td>
<td>12%</td>
<td>13%</td>
<td>23%</td>
<td>X</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>(_______)</td>
</tr>
</tbody>
</table>

VIII. CROSS SECTION MEASUREMENT

A. Results by final state

The determination of the cross sections for each final state is performed by using the numbers from the previous sections, provided for reference in Table III, following the method described in Sec. VI. Table IV shows the cross sections measured individually in each of the four final states. Both the fiducial cross sections and the total cross sections for an invariant mass window of \([66, 116]\) GeV are shown.

B. Combination

The combination of the cross section measurements from the four final states is obtained by using the Best Linear Unbiased Estimate (BLUE) method, described in [28,29]. The BLUE method determines the best estimate of \(\sigma\) that is unbiased and has the smallest possible variance. This is achieved by constructing a covariance matrix from the statistical and systematic uncertainties for each individual cross section measurement, while accounting for correlations between the uncertainties from each channel.

The systematic uncertainties on the individual cross sections due to different sources are assumed to either be fully correlated or fully uncorrelated. All systematic uncertainties pertaining to the efficiency and resolution of the various physics objects used in the four analyses—reconstructed electron, muon, and hadronically decaying tau candidates—are assumed to be fully correlated between final states that make use of these objects. No

TABLE III. The components of the \(Z\rightarrow \tau\tau\) cross section calculations for each final state. For \(N_{obs} - N_{bkg}\) the first uncertainty is statistical and the second systematic. For all other values the total error is given.

<table>
<thead>
<tr>
<th>(N_{obs})</th>
<th>(\tau_\mu \tau_h)</th>
<th>213</th>
<th>151</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{obs} - N_{bkg})</td>
<td>(164 \pm 16 \pm 4)</td>
<td>(114 \pm 14 \pm 3)</td>
<td></td>
</tr>
<tr>
<td>(A_Z)</td>
<td>(0.117 \pm 0.004)</td>
<td>(0.101 \pm 0.003)</td>
<td></td>
</tr>
<tr>
<td>(C_Z)</td>
<td>(0.20 \pm 0.03)</td>
<td>(0.12 \pm 0.02)</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>(0.2250 \pm 0.0009)</td>
<td>(0.2313 \pm 0.0009)</td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>(35.5 \pm 1.2 \text{ pb}^{-1})</td>
<td>(35.7 \pm 1.2 \text{ pb}^{-1})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(N_{obs})</th>
<th>(\tau_e \tau_h)</th>
<th>(\tau_e \tau_\mu)</th>
<th>85</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{obs} - N_{bkg})</td>
<td>(76 \pm 10 \pm 1)</td>
<td>(43 \pm 10 \pm 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_Z)</td>
<td>(0.114 \pm 0.003)</td>
<td>(0.156 \pm 0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_Z)</td>
<td>(0.29 \pm 0.02)</td>
<td>(0.27 \pm 0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>(0.0620 \pm 0.0002)</td>
<td>(0.0301 \pm 0.0001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>(35.5 \pm 1.2 \text{ pb}^{-1})</td>
<td>(35.5 \pm 1.2 \text{ pb}^{-1})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
correlation is assumed to exist between the systematic uncertainties relating to different physics objects. Similarly, the systematic uncertainties relating to the triggers used by the analyses are taken as fully correlated for the final states using the same triggers and fully uncorrelated otherwise. The systematic uncertainty on the energy scale is conservatively taken to be fully correlated.

As the multijet background is estimated using the same method in the $\tau_e\tau_\mu$, $\tau_\mu\tau_h$, and $\tau_e\tau_h$ final states, the systematic uncertainty on the method is conservatively treated as fully correlated.

Finally, the systematic uncertainties on the acceptance are assumed to be completely correlated, as are the uncertainties on the luminosity and those on the theoretical cross sections used for the normalization of the Monte Carlo samples used to estimate the electroweak and $t\bar{t}$ backgrounds.

TABLE V. Individual cross sections and their total uncertainties used in the BLUE combination; the weights for each of the final states in the combined cross section, and their pulls. The pull here is defined as the difference between the individual and combined cross sections divided by the uncertainty on this difference. The uncertainty on the difference between the measured and combined cross section values includes the uncertainties on the cross section both before and after the combination, taking all correlations into account.

<table>
<thead>
<tr>
<th>Final State</th>
<th>Total cross section ([66, 116] GeV) (nb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_\mu\tau_h$</td>
<td>0.86 ± 0.08 ± 0.12 ± 0.03</td>
</tr>
<tr>
<td>$\tau_e\tau_h$</td>
<td>1.14 ± 0.14 ± 0.20 ± 0.04</td>
</tr>
<tr>
<td>$\tau_e\tau_\mu$</td>
<td>1.06 ± 0.14 ± 0.08 ± 0.04</td>
</tr>
<tr>
<td>$\tau_\mu\tau_\mu$</td>
<td>0.96 ± 0.22 ± 0.12 ± 0.03</td>
</tr>
<tr>
<td>$Z \rightarrow \tau\tau$</td>
<td>0.97 ± 0.07 ± 0.06 ± 0.03</td>
</tr>
</tbody>
</table>

This discussion is summarized in Table II where the last column indicates whether a given source of systematic uncertainty has been treated as correlated or uncorrelated amongst the relevant channels when calculating the combined result.

Individual cross sections and their total uncertainties for the BLUE combination, as well as the weights for each of the final states in the combined cross section, together with their pulls, are also shown in Table V.

Under these assumptions, a total combined cross section of

$$\sigma(Z \rightarrow \tau\tau, 66 < m_{\text{inv}} < 116 \text{ GeV}) = 0.97 \pm 0.07(\text{stat}) \pm 0.06(\text{syst}) \pm 0.03(\text{lumi}) \text{ nb}$$

is obtained from the four final states, $\tau_\mu\tau_h$, $\tau_e\tau_h$, $\tau_e\tau_\mu$, and $\tau_\mu\tau_\mu$.

A comparison of the individual cross sections with the combined result is shown in Fig. 12, along with the combined $Z \rightarrow \ell\ell$ cross section measured in the $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ final states by ATLAS [15]. The theoretical expectation of 0.96 ± 0.05 nb for an invariant mass window of [66, 116] GeV is also shown. The obtained result is compatible with the $Z \rightarrow \tau\tau$ cross section in four final states published recently by the CMS Collaboration [5], 1.00 ± 0.05(stat) ± 0.08(syst) ± 0.04(lumi) nb, in a mass window of [60, 120] GeV.

IX. SUMMARY

A measurement of the $Z \rightarrow \tau\tau$ cross section in proton-proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector is presented. Cross sections are measured in four final states, $\tau_\mu\tau_h$, $\tau_e\tau_h$, $\tau_e\tau_\mu$, and $\tau_\mu\tau_\mu$ within the invariant mass window of [66, 116] GeV.
mass range [66, 116] GeV. The combined measurement is also reported. A total combined cross section of \(\sigma = 0.97 \pm 0.07 \text{(stat)} \pm 0.06 \text{(syst)} \pm 0.03 \text{(lumi)} \) nb is measured, which is in good agreement with the theoretical expectation and with other measurements.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COCIENTCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAR, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTDF, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

(ATLAS Collaboration)

1 University at Albany, Albany, New York, USA
2 Department of Physics, University at Albany, Edmonston AB, Canada
3 Department of Physics, Ankara University, Ankara, Turkey
4 Department of Physics, Dumlupinar University, Kayseri, Turkey
5 Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
6 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
7 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
8 Department of Physics, University of Arizona, Tucson, Arizona, USA
9 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
10 Physics Division, University of Athens, Athens, Greece
11 Institut de Física d’Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 Instituto de Física, University of Belgrade, Belgrade, Serbia
13 Vinca Institute of Nuclear Sciences, Belgrade, Serbia
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 Department of Physics, Bogazici University, Istanbul, Turkey
19 IN elementary Physics, University of Bonn, Bonn, Germany
20 Dipartimento di Fisica, University at Bologna, Bologna, Italy
21 Department of Physics, Boston University, Boston, Massachusetts, USA
22 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
23 Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
25 National Institute of Physics and Nuclear Engineering, Bucharest, Romania

MEASUREMENT OF THE Z → ττ CROSS...
MEASUREMENT OF THE $Z \rightarrow \tau\tau$ CROSS . . .

Physical Review D 84, 112006 (2011)