High performance N-body simulation on computational grids
Groen, D.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction
 1.1 Simulating N-body systems ... 2
 1.1.1 Direct-method integration methods 2
 1.1.2 Alternative N-body integration methods 4
 1.2 High-performance N-body simulations 4
 1.2.1 Parallelization and speedup .. 5
 1.2.2 Communication in parallel simulations 7
 1.2.3 N-body simulations using special-purpose hardware 7
 1.3 Distributed infrastructures and computational grids 8
 1.4 Thesis overview ... 9
 1.4.1 Chapter 2 ... 10
 1.4.2 Chapter 3 ... 10
 1.4.3 Chapter 4 ... 10
 1.4.4 Chapter 5 ... 11
 1.4.5 Chapter 6 ... 12

2 Distributed Direct N-body Simulations on a Global Grid of GRAPEs 13
 2.1 Introduction .. 13
 2.2 Experiment setup .. 15
 2.3 Results of grid calculations .. 17
 2.3.1 Timing results of N-body calculations 17
 2.3.2 Profiling of the N-body simulations 18
 2.4 Modelling the performance of the grid 19
 2.4.1 Single PC ... 20
 2.4.2 Grid of PCs with copy algorithm 22
 2.4.3 Grid of PCs with ring algorithm 23
5.4.2 DAS-3 results 65
5.4.3 Gravitational Billion Body Project experiment setup 68
 5.4.3.1 Network configuration 69
5.4.4 GBBP results 70
5.5 Scalability of \(N \)-body simulations across supercomputers 77
 5.5.1 Speedup and efficiency predictions for TreePM simulations 77
 5.5.2 Speedup and efficiency predictions for tree and direct-method simu-
 tations .. 79
 5.5.2.1 Performance model for the tree algorithm 81
 5.5.2.2 Modelling of block time steps 81
 5.5.2.3 Predictions ... 81
 5.5.3 Bandwidth analysis for cosmological simulations 83
5.6 Conclusion ... 84

6 A Light-Weight Communication Library for Distributed Computing 87
 6.1 Introduction ... 87
 6.2 Related work .. 88
 6.3 Architecture of MPWide 88
 6.3.1 Design .. 88
 6.3.1.1 Data transport in the wide area network 89
 6.3.1.2 Functionality and programming interface 89
 6.3.2 Forwarder .. 91
 6.3.3 Implementation 92
 6.4 Benchmarking MPWide 92
 6.4.1 Results .. 93
 6.4.1.1 Local tests 93
 6.4.1.2 National tests 94
 6.4.1.3 International tests 95
 6.5 Testing performance in a production environment 95
 6.5.1 Test experiments 96
 6.5.1.1 Results on DAS-3 Dutch grid 97
 6.5.1.2 Results on Amsterdam and Helsinki supercomputers 98
 6.5.1.3 Results on Amsterdam and Tokyo supercomputers 98
 6.5.2 Production .. 99
 6.6 Conclusions and future work 99

7 Conclusions ... 103
 7.1 Thesis summary .. 103
 7.2 Conclusions and Recommendations 105
 7.2.1 Simulations on a planet-wide distributed supercomputer 105
 7.2.2 Recommendations for planet-wide \(N \)-body simulations 107
 7.2.3 Creating a planet-wide distributed supercomputer 107
 7.2.3.1 Configuration of a global supercomputer 108
 7.2.3.2 Scheduling and running on a global supercomputer 109