High performance N-body simulation on computational grids

Groen, D.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

1 Introduction
 1.1 Simulating N-body systems ... 2
 1.1.1 Direct-method integration methods 2
 1.1.2 Alternative N-body integration methods 4
 1.2 High-performance N-body simulations 4
 1.2.1 Parallelization and speedup 5
 1.2.2 Communication in parallel simulations 7
 1.2.3 N-body simulations using special-purpose hardware 7
 1.3 Distributed infrastructures and computational grids 8
 1.4 Thesis overview .. 9
 1.4.1 Chapter 2 .. 10
 1.4.2 Chapter 3 .. 10
 1.4.3 Chapter 4 .. 10
 1.4.4 Chapter 5 .. 11
 1.4.5 Chapter 6 .. 12

2 Distributed Direct N-body Simulations on a Global Grid of GRAPEs 13
 2.1 Introduction ... 13
 2.2 Experiment setup ... 15
 2.3 Results of grid calculations .. 17
 2.3.1 Timing results of N-body calculations 17
 2.3.2 Profiling of the N-body simulations 18
 2.4 Modelling the performance of the grid 19
 2.4.1 Single PC .. 20
 2.4.2 Grid of PCs with copy algorithm 22
 2.4.3 Grid of PCs with ring algorithm 23
5.4.2 DAS-3 results

5.4.3 Gravitational Billion Body Project experiment setup

- **5.4.3.1 Network configuration**

5.4.4 GBBP results

5.5 Scalability of \(N \)-body simulations across supercomputers

- **5.5.1 Speedup and efficiency predictions for TreePM simulations**
- **5.5.2 Speedup and efficiency predictions for tree and direct-method simulations**
 - **5.5.2.1 Performance model for the tree algorithm**
 - **5.5.2.2 Modelling of block time steps**
 - **5.5.2.3 Predictions**
- **5.5.3 Bandwidth analysis for cosmological simulations**

5.6 Conclusion

6 A Light-Weight Communication Library for Distributed Computing

- **6.1 Introduction**
- **6.2 Related work**
- **6.3 Architecture of MPWide**
 - **6.3.1 Design**
 - **6.3.1.1 Data transport in the wide area network**
 - **6.3.1.2 Functionality and programming interface**
 - **6.3.2 Forwarder**
 - **6.3.3 Implementation**
- **6.4 Benchmarking MPWide**
 - **6.4.1 Results**
 - **6.4.1.1 Local tests**
 - **6.4.1.2 National tests**
 - **6.4.1.3 International tests**
- **6.5 Testing performance in a production environment**
 - **6.5.1 Test experiments**
 - **6.5.1.1 Results on DAS-3 Dutch grid**
 - **6.5.1.2 Results on Amsterdam and Helsinki supercomputers**
 - **6.5.1.3 Results on Amsterdam and Tokyo supercomputers**
 - **6.5.2 Production**
- **6.6 Conclusions and future work**

7 Conclusions

- **7.1 Thesis summary**
- **7.2 Conclusions and Recommendations**
 - **7.2.1 Simulations on a planet-wide distributed supercomputer**
 - **7.2.2 Recommendations for planet-wide \(N \)-body simulations**
 - **7.2.3 Creating a planet-wide distributed supercomputer**
 - **7.2.3.1 Configuration of a global supercomputer**
 - **7.2.3.2 Scheduling and running on a global supercomputer**
Future perspectives and applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nederlandse Samenvatting</td>
<td>111</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>115</td>
</tr>
<tr>
<td>List of Publications</td>
<td>119</td>
</tr>
<tr>
<td>Bibliography</td>
<td>123</td>
</tr>
</tbody>
</table>