High performance N-body simulation on computational grids

Groen, D.J.

Publication date
2010

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
2.4.4 Single PC with GRAPE .. 24
2.4.5 Grid of PCs with GRAPE and copy algorithm 26
2.4.6 Grid of PCs with GRAPE and ring algorithm 26
2.5 Results of the performance model 27
2.5.1 Future prospects .. 27
2.6 Discussion and conclusions 30

3 Living Simulations: Galaxy Merger using Direct and Tree N-body Integration ... 33
3.1 Introduction .. 33
3.2 Living application .. 34
 3.2.1 Rationale ... 34
 3.2.2 How the living application works 34
 3.2.2.1 Security considerations 36
 3.2.3 Living simulation .. 36
3.3 Simulating galaxy mergers as a living simulation 37
 3.3.1 Motivation .. 37
 3.3.2 Implementation .. 38
 3.3.3 Experiment setup .. 39
 3.3.4 Results .. 41
3.4 Conclusion .. 43

4 Simulating the Universe on an Intercontinental Grid of Supercomputers .. 45
4.1 Introduction .. 45
4.2 The intercontinental grid 46
 4.2.1 Demand on the network 48
4.3 The simulation environment 49
4.4 Simulating the universe .. 50
4.5 Concluding remarks .. 51

5 High Performance Gravitational N-body Simulations on a Planet-wide Distributed Supercomputer 57
5.1 Introduction .. 57
5.2 Overview of SUSHI .. 58
 5.2.1 Parallelization across supercomputers 58
 5.2.1.1 Communication scheme 59
 5.2.1.2 Domain decomposition 59
 5.2.1.3 Implementation of communication routines 60
 5.3 Performance model .. 60
 5.3.1 Single supercomputer 61
 5.3.2 Multiple supercomputers 62
 5.3.3 Scalability across sites 63
5.4 Experiments ... 64
 5.4.1 DAS-3 experiment setup 64
7.2.4 Future perspectives and applications .. 110

Nederlandse Samenvatting ... 111
Acknowledgements ... 115
List of Publications ... 119
Bibliography ... 123