Primary radiotherapy in progressive optic nerve sheath meningiomas: a long-term follow-up study

Published in:
British journal of ophthalmology

DOI:
10.1136/bjo.2009.166793

Citation for published version (APA):
Primary radiotherapy in progressive optic nerve sheath meningiomas: a long-term follow-up study

Peerooz Saeed, Leo Blank, Dinesh Selva, John G Wolbers, Peter J C M Nowak, Ronald B Geskus, Ezekiel Weis, Maarten P Mourits, Jack Rootman

ABSTRACT
Background/aims To report the outcome of primary radiotherapy in patients with progressive optic nerve sheath meningioma (ONSM).
Methods The clinical records of all patients were reviewed in a retrospective, observational, multicentre study.
Results Thirty-four consecutive patients were included. Twenty-six women and eight men received conventional or stereotactic fractionated radiotherapy, and were followed for a median 58 (range 51–156) months. Fourteen eyes (41%) showed improved visual acuity of at least two lines on the Snellen chart. In 17 (50%) eyes, the vision stabilised, while deterioration was noted in three eyes (9%). The visual outcome was not associated with age at the time of radiotherapy (p=0.83), sex (p=0.43), visual acuity at the time of presentation (p=0.22) or type of radiotherapy (p=0.35). Optic disc swelling was associated with improved visual acuity (p<0.01) and 4/11 patients with optic atrophy also showed improvement. Long-term complications were dry eyes in five patients, cataracts in three, and mild radiation retinopathy in four.
Conclusion Primary radiotherapy for patients with ONSM is associated with long-term improvement of visual acuity and few adverse effects.

INTRODUCTION
Optic nerve sheath meningiomas (ONSM) originate from meningotheial cap cells of arachnoid villi inside the optic nerve. Whilst being slow-growing tumours, they are associated with gradual visual deterioration. Radiotherapy has been reported to prevent further disease progression and even result in improved visual acuity in 25–80% of the irradiated eyes. By contrast, surgical resection leads to significant or complete loss of any remaining vision. However, the majority of studies assessing radiotherapy have reported only short-term results in small numbers of patients.

This multicentre study evaluated the clinical characteristics and especially the visual outcome, in 34 patients undergoing primary radiotherapy to treat ONSM. Patterns of visual change, radiotherapy efficacy, complications and prognostic factors were assessed. This is believed to be the largest reported series to date.

MATERIALS AND METHODS
Patients Thirty-four patients with a diagnosis of ONSM were treated primarily with radiotherapy between 1998 and 2008 at the orbital centres of the University of Amsterdam (n=12), University of British Columbia (n=10), University of Adelaide (n=8), and the Universities of Utrecht/Rotterdam (n=4). Inclusion criteria were a diagnosis of ONSM based on clinical and imaging evidence or histopathology (n=9). Exclusion criteria were any surgical intervention other than biopsy, or no light perception by the involved eye before treatment.

Radiotherapy Radiotherapy was offered as the primary treatment for ONSM in patients with progressive visual deterioration or visual field constriction. In Amsterdam and Vancouver, radiotherapy was offered only when the visual acuity was less than 20/40. In the other two centres eight patients underwent radiotherapy with visual acuities of more than 20/30.

Radiotherapy was mostly conventional (n=22), although stereotactic fractionated conformal radiotherapy (n=12) was used for smaller, well-defined ONSM.

The follow-up was uniform in all clinics at intervals of 6 weeks, 3 months and 6 months, and then annually. All patients underwent annual MRI.

Measurements Retrospective data were collected at presentation, before radiotherapy and at all follow-up examinations, and included visual acuity, colour vision and visual fields, pupil examination, fundoscopy (with a detailed description of the optic disc combined with fundus photographs) and Hertel exophthalmometer measurements. Ocular motility was examined at presentation, before and at least once after radiotherapy. On neuroimaging, the location, configuration, extension and calcification before radiotherapy were documented, with the addition of progression and extension after radiotherapy.

Definitions Dry eyes All patients underwent a Schirmer test with signs of corneal dryness classified as: no corneal changes; corneal stippling limited to the inferior periphery; stippling more extended; ulceration; and clouding.

Cataract Cataract was defined according to the Lens Opacity Classification System II (LOCS II) criteria. The classification system consists of four classes: nuclear colour, nuclear opalescence, cortical grading and posterior subcapsular (PSC). A lens was considered clear if the LOCS II classification rated maximal nuclear colour as 0 to 1, nuclear opalescence as 0 to 1,
cortical grading as 0 to 1, and PSC as 0. If higher ratings were registered, cataract was diagnosed. Patients who had undergone cataract surgery were not staged using the LOCS II system but were classified as suffering from cataract.11,12

Possible retinopathy
The definition of possible retinopathy was the presence of at least one haemorrhage or microaneurysm on standardised 50° red-free, black and white retina photographs. We used 50° non-stereo, red-free photography, a technique slightly modified from that described and evaluated by the Eurodiabetes Study.11,12 In patients with a follow-up longer than 3 years, fundus fluorescein angiography was performed.

Visual improvement
Visual improvement was defined as improvement of at least two lines on the Snellen chart.

Statistical analysis
The results of the study were analysed using the SPSS statistical software package (version 14.0.2). Differences in baseline data between groups were compared with independent t tests for numerical data and Fisher’s exact test for categorical data.

Variables with p<0.1 were entered in a multivariate analysis, using logistic regression analysis. R statistical software (version 2.5.1) was used to analyse longitudinal patterns. Prognostic factors for improvement in visual acuity were analysed using a linear random effect model. If bilateral ONSM was present, the data were analysed for the first affected eye.

RESULTS
Sex distribution
There were 26 female and eight male patients. The mean age at onset was 44.9 (range 12–66) years and was 49.45 (range 29–69) years at the beginning of radiotherapy.

Follow-up
The mean total follow-up time was 110.8 (range 58–235, median 84) months. The mean follow-up time after radiotherapy treatment was 58.32 (range 51–156, median 55) months.

Symptoms and signs
All 34 patients presented with visual deterioration, among which 21 cases had a chronic onset (measured in months), 12 had a sub-acute onset (weeks) and only one had an acute onset (days). Transient visual obscurasion was noted in five patients, 18 had evidence of proptosis, and diplopia was present in six patients. Eight patients presented with retrobulbar pain. Optic disc swelling was noted in 20 patients, optic atrophy in 11, optic swelling with segmental atrophy in one, and two patients showed no abnormalities (table 1).

Imaging
In 22 patients, the ONSM involved the full length of the optic nerve; in 11, the tumour had a posterior location; in one, the tumour involved the anterior aspect of the optic nerve. Optic canal extension was encountered in nine patients, with five also having intracranial extension. None had involvement of the optic chiasm.

Histopathology
Histology was available in eight patients: four tumours were meningothelial and four were transitional, of which one also had psammoma bodies.

Table 1 Clinical and demographic characteristics of patients ONSM RT

<table>
<thead>
<tr>
<th>Demographic and clinical parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>8 (24)</td>
</tr>
<tr>
<td>Female</td>
<td>26 (76)</td>
</tr>
<tr>
<td>Age at presentation (years, mean±SD)</td>
<td>44.9±14</td>
</tr>
<tr>
<td>Age at time of RT (months)</td>
<td>49.5</td>
</tr>
<tr>
<td>Bilateral</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Unilateral</td>
<td>31 (91)</td>
</tr>
<tr>
<td>Presenting signs and symptoms</td>
<td></td>
</tr>
<tr>
<td>Visual deterioration</td>
<td>34 (100)</td>
</tr>
<tr>
<td>Proptosis</td>
<td>18 (53)</td>
</tr>
<tr>
<td>Pain/discomfort</td>
<td>6 (18)</td>
</tr>
<tr>
<td>Disc oedema</td>
<td>20 (59)</td>
</tr>
<tr>
<td>Disc atrophy</td>
<td>12 (35)</td>
</tr>
<tr>
<td>Normal disc</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Limitations in ocular motility</td>
<td>4 (12)</td>
</tr>
<tr>
<td>Visual obscuration</td>
<td>5 (15)</td>
</tr>
<tr>
<td>Follow-up (months, mean)</td>
<td>110 (median 84)</td>
</tr>
<tr>
<td>Post RT time (months, mean)</td>
<td>58.32 (median 55)</td>
</tr>
</tbody>
</table>

ONSIM, optic nerve sheath meningioma; RT, radiotherapy. Values are n (%) unless state otherwise.

Radiotherapy
Twenty-one patients received 54 Gy in 30 fractions, six received 50.4 Gy in 28 fractions, and 13 received 45 Gy stereotactically in 25 fractions. One patient received simultaneous bilateral radiotherapy for bilateral involvement.

Visual outcome
The visual acuity at the onset of radiotherapy was between 20/20 or 20/30 in eight patients, 20/40 and 20/80 in 14 patients, 20/100 and 200/200 in eight patients, and between 20/200 and hand movement (HM) in four patients (table 2).

The visual deterioration characteristics were compared between follow-up and the period before radiotherapy. Twenty-one patients showed a chronic pattern of visual deterioration, 12 had sub-acute duration, and only one had an acute onset. After radiotherapy, 15 patients showed improved visual acuity of at least two Snellen lines, with 11 of this group improving by more than three lines. Among those with improvement, except one had chronic deterioration of their visual acuity before treatment. In 17 eyes, the vision stabilised, while deterioration was noted in three eyes. We found the following patterns of visual changes during follow-up after radiotherapy:

Early visual improvement
Eleven patients showed significant improvement of their visual acuity (more than three Snellen chart lines) within the first few months after radiotherapy. Visual fields were significantly improved in seven patients and in two patients no information available, while colour vision showed some improvement in five patients.

All of these patients had optic disc swelling at the time of radiotherapy and for months afterwards. All of these patients except one (sub-acute) had chronic onset of visual deterioration. Two patients in this group after an initial improvement in a later stadium showed some deterioration of visual acuity. One, who was a 65-year-old woman with bilateral ONSM and optic atrophy, underwent only right-sided radiotherapy; despite an initial improvement in her vision from 20/30 to 20/30 in 2 months, her visual acuity deteriorated to 20/100 over 3 years. The cause of this secondary deterioration was a PSC cataract and epiretinal membrane. Another patient showed improvement of vision from 20/40 to 20/30 within 3 months after radiotherapy and for months afterwards.
radiotherapy. This visual improvement was maintained for 3 years, but then deteriorated to 20/200, and finally to counting fingers (CF) in 8 years as a result of macular degeneration. In this group, three patients underwent biopsies, with two cases having meningothelial meningiomas and one case a transitional meningioma.

Late visual improvement and stabilisation
Three patients showed delayed improvement of their visual acuity. Two had chronic and one had sub-acute visual deterioration. One patient with a biopsy-proven meningothelial meningioma underwent radiotherapy when his visual acuity was 20/200. His visual acuity in the first 2 years fluctuated between 20/200 and 20/400. In the third year, his visual acuity improved to 20/40 and it then remained stable at that level for 6 years. The visual acuity remained unchanged within the first year in all three patients. Two of these patients had visual acuity of CF at the time of radiotherapy. Their vision improved in the second year to 20/80 and 20/200. The third patient improved from 20/200 to 20/100 in the second year. Neither colour vision nor visual fields were improved in these three patients.

No visual improvement and stabilisation
Seventeen patients showed any change in visual acuity, visual fields and colour vision during the mean follow-up period of 47 months. After this period, one patient had a marginal visual deterioration from 20/60 to 20/80 and it then remained stable at that level for 3 years, but then deteriorated to 20/200, and finally to counting fingers (CF) in 8 years as a result of macular degeneration. In this group, three patients underwent biopsies, with two cases having meningothelial meningiomas and one case a transitional meningioma.

Prognostic factors for visual outcome
There was no significant association between age at presentation or the timing of radiotherapy and visual outcome (p=0.82), nor was sex (p=0.45) or the type of radiotherapy a prognostic factor (p=0.55). Optic disc atrophy and swelling were the only statistically significant prognostic factors found for visual outcome. Although optic disc swelling was associated with a better visual prognosis compared with optic atrophy (p<0.01), four patients with disc atrophy showed improvement in their visual acuity. In addition, chronic onset was associated with a better visual prognosis after radiotherapy, but this was not statistically significant (p=0.11), nor was visual acuity at the time of presentation a prognostic factor (p=0.22).

Risk factors
Hypertension was diagnosed in six patients before treatment. In two patients, this was combined with diabetes mellitus, and one had atherosclerosis. The mean follow-up in this group was 51 months post-radiotherapy, and none of these patients showed any sign of cataract, dry eyes or retinopathy.

Complications
Early complications
Sixteen patients during 6 weeks of radiotherapy showed signs of temporary erythema around the area of irradiation. In 12 patients, this was associated with temporary hair loss. Six patients had headaches during radiotherapy; of these patients four were treated with dexamethasone with good response.

Late complications
Dry eyes were noticed in five patients: three with sectoral stippling and two with extended stippling of the cornea. Three patients showed signs of a ESC cataract 2 years after treatment. In two patients, no signs of cataract were present before treatment. One patient had a pre-existing nuclear cataract that was unchanged 3 years after treatment.

Retinopathy
All patients followed for longer than 4 years underwent fluorescein angiography. In six eyes, areas of hyperfluorescence consistent with window defects were noted in the posterior pole. One patient had a microaneurysm and one had cotton wool spots at the posterior pole of the retina 4 years after treatment. In another patient, haemorrhage and microaneurysm first appeared at the posterior pole 3 years after treatment. Both of these patients were treated using conformal conventional radiotherapy with 54 Gy in 1.8-Gy fractions. In all of the patients with retinal changes after radiotherapy, ONSM involved the full length of the optic nerve (table 3).

Pituitary function
During follow-up, no signs or symptoms attributable to impaired pituitary function were noted. Detailed endocrinological testing is beyond the scope of this report, which focuses on visual outcome.

DISCUSSION
In the past 30 years, there have been several reports on the treatment of ONSM with radiotherapy. However, none of these studies were randomised, controlled or prospective, and few had a follow-up time that was sufficiently long for the true efficacy of irradiation and the incidence of delayed visual improvement or loss to be noted. However, a controlled, randomised study that compares surgery or observation with radiotherapy is unlikely to be undertaken.

In a retrospective study, Turbin et al compared 18 patients who received primary radiotherapy for ONSM with two

Table 2 Visual outcome after radiotherapy on ONSM

<table>
<thead>
<tr>
<th>Treatment modality</th>
<th>VA TX</th>
<th>20/20–20/30</th>
<th>20/40–20/80</th>
<th>20/100–20/200</th>
<th>20/400–HM</th>
<th>Optic disc TX</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome of treatment (no. of cases)</td>
<td>Improvement</td>
<td>Stable/no significant change</td>
<td>Significant deterioration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA TX</td>
<td>14</td>
<td>17</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/20–20/30</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/40–20/80</td>
<td>14</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/100–20/200</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/400–HM</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oedema</td>
<td>21</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrophy</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>22 (33.3%)</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stereotactic</td>
<td>12 (12.5%)</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HM, hand movement; RT, radiotherapy; TX, treatment; VA, visual acuity.
Table 3 Complications of primary radiotherapy for progressive ONSM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number /total cases (%)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythema</td>
<td>16/34 (47)</td>
<td>Transient</td>
</tr>
<tr>
<td>Hair loss</td>
<td>12/34 (35)</td>
<td>Transient</td>
</tr>
<tr>
<td>Late complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry eye</td>
<td>5/34 (15)</td>
<td>Inferior sectoral stripping in 3 Extended stripping in 2 1 convincingly attributed to radiation 1 was in a 65-year-old patient 1 had nuclear cataract prior to treatment and developed a PSC</td>
</tr>
<tr>
<td>Cataract</td>
<td>3/34 (9)</td>
<td></td>
</tr>
<tr>
<td>Retinopathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window defect</td>
<td>6/34 (18)</td>
<td></td>
</tr>
<tr>
<td>Epiretinal membrane</td>
<td>3/34 (9)</td>
<td></td>
</tr>
<tr>
<td>Microaneurysm</td>
<td>2/34 (6)</td>
<td></td>
</tr>
</tbody>
</table>

ONSM, optic nerve sheath meningioma.

Complications Refinability developed in three eyes, all after follow-up for more than 5 years. Turbin et al. reported four cases of retinopathy in 18 patients, although the time span was not stated. Other studies using only fractionated stereotactic radiotherapy have also reported retinopathy that appeared between 2 and 4 years afterwards. Recent studies have shown that in orbital radiotherapy, diabetes mellitus (DM) and hypertension are risk factors for the development of retinopathy. Our two patients with retinopathy did not have DM or hypertension. Four patients with hypertension and one with hypertension and DM who received radiotherapy did not show any signs of retinopathy after a mean follow-up of 3.5 years.

Conventional versus stereotactic radiotherapy Twelve patients in our study received stereotactic radiotherapy and 22 received conformal radiotherapy. There was no statistically significant difference in the visual outcome between the groups. Of our patients with complications, two with post-radiation retinopathy, two with cataracts and two with dry eyes were treated using conformal conventional radiotherapy techniques. Note that the stereotactic radiotherapy group included smaller tumours at a greater distance from the globe. Retinopathy has also been reported in patients who have undergone stereotactic radiotherapy. However, one would expect greater precision with this technique and thus avoidance of damage to healthy tissue. Indeed, a primary concern of radiotherapy is its late effects on the adjacent brain parenchyma and other tissues. The risk of radionecrosis of the brain has a threshold of 50–54 Gy with standard fractions of 1.8–2 Gy per day. Combined data for irradiation of pituitary adenomas show an incidence of optic nerve or chiasm injury of 1.5% at a dose of 45–50 Gy in 1.8–2 Gy fractions. Late pituitary dysfunction has become a more recognised late effect of radiotherapy. However, with proper modern treatment planning, the pituitary gland can often be avoided in patients with ONSM. None of our patients showed any signs of radionecrosis of the brain or pituitary gland dysfunction.

Conclusion and recommendations Primary radiotherapy is associated with improvement or stabilisation of visual acuity in the majority of patients with progressive ONSM. Only a small proportion will progress despite radiation, and most adverse effects are transient or minor. Although we individualise the treatment strategy, we recommend radiotherapy in patients with progressive visual deterioration and/or visual field constriction. Fractionated stereotactic radiotherapy might be considered for treatment, particularly for well-defined lesions.

In our study, there was no significant correlation between visual acuity at the time of treatment and visual outcome after treatment. In general, imaging is done at 6- to 12-month intervals after disease activity has been assessed. Our strategy includes reassessment on a 6-month basis with serial neuro-ophthalmological and visual field examinations, unless progressive symptoms or unusual disease activity dictate more frequent evaluation.

Acknowledgements This study was supported financially by Rotterdamse Blinden Belang Foundation in Rotterdam. The authors also thank Dr Daniel Ross, radiation oncologist, Department of Radiation Oncology, Royal Adelaide Hospital, for his assistance with the data collection.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, see: http://www.textcheck.com/certificate/DzovnE

REFERENCES

Clinical science

Primary radiotherapy in progressive optic nerve sheath meningiomas: a long-term follow-up study

Peerooz Saeed, Leo Blank, Dinesh Selva, et al.

Br J Ophthalmol 2010 94: 564-568
doi: 10.1136/bjo.2009.166793

Updated information and services can be found at:
http://bjo.bmj.com/content/94/5/564.full.html

These include:

References
This article cites 20 articles, 2 of which can be accessed free at:
http://bjo.bmj.com/content/94/5/564.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/