The β Pictoris disk imaged by Herschel PACS and SPIRE

Published in:
Astronomy & Astrophysics

DOI:
10.1051/0004-6361/201014626

Link to publication

Citation for published version (APA):
The β Pictoris disk imaged by Herschel PACS and SPIRE* , ***

(Affiliations are available in the online edition)

Received 31 March 2010 / Accepted 18 May 2010

ABSTRACT

We obtained Herschel PACS and SPIRE images of the thermal emission of the debris disk around the A5V star β Pic. The disk is well resolved in the PACS filters at 70, 100, and 160 μm. The surface brightness profiles between 70 and 160 μm show no significant asymmetries along the disk, and are compatible with 90% of the emission between 70 and 160 μm originating in a region closer than 200 AU to the star. Although only marginally resolving the debris disk, the maps obtained in the SPIRE 250–500 μm filters provide full disk photometry, completing the SED over a few octaves in wavelength that had been previously inaccessible. The small far-infrared spectral index (β = 0.34) indicates that the grain size distribution in the inner disk (<200 AU) is inconsistent with a local collisional equilibrium. The size distribution is either modified by non-equilibrium effects, or exhibits a wavy pattern, caused by an under-abundance of impactors which have been removed by radiation pressure.

Key words. stars: early-type – planetary systems – circumstellar matter – stars: individual: β Pic

1. Introduction

The β Pic disk, discovered by IRAS (Aumann et al. 1984), was the first debris disk to be directly imaged in scattered light (Smith & Terrile 1984). It is seen close to edge-on and extends in the optical out to 95″, corresponding to 1800 AU (Larwood & Kalas 2001).

β Pic (A5V) is one of the closest (19.44 ± 0.05 pc, van Leeuwen 2007) and youngest debris disks. The estimated age (12 Myr, Zuckerman et al. 2001) significantly exceeds typical timescales for the survival of pristine circumstellar dust grains (e.g., Fedele et al. 2010), hence continuous replenishment of the dust, presumably through collisions of planetesimals, is needed. The closeness of the object ensures that it can also be spatially resolved at long wavelengths: Holland et al. (1998) resolved the disk at 850 μm and Liseau et al. (2003) at 1200 μm.

Optical and near-infrared observations of the inner part (<100 AU) of the disk yield evidence of asymmetries such as warps and density contrasts, which may relate to the presence of planetesimals (Kalas & Jewitt 1995; Pantin et al. 1997; Mouillet et al. 1997; Heap et al. 2000; Telesco et al. 2005). Lagrange et al. (2009) imaged a possible companion at a projected distance of 8 AU from the star.

* Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

** Figures 2, 6, Table 1 and Appendix are only available in electronic form at http://www.aanda.org
scan map, split into a scan and cross-scan on the sky. The sky scan speed was 10\,s\(^{-1}\). The homogeneously covered area of the deep map is 2.5\,\arcmin\,x\,2.5\,\arcmin. The observation at 100\,\um is much shallower, with a single scan direction at a rate of 20\,s\(^{-1}\), homogeneously covering an area of 2\,\arcmin\,x\,2\,\arcmin. The PACS beams at 70, 100, and 160\,\um are 5.6, 6.8, and 11.3\,FWHM. In the SPIRE observation, the three bands are observed simultaneously in a standard scan map. The map coverage is 8\,\arcmin\,x\,8\,\arcmin. The SPIRE FWHM beam sizes in the 250, 350, and 500\,\um channels are 18.1, 25.2, and 36.9\,\arcsec\,respectively.

The data processing is described in Appendix. The absolute flux calibration accuracy of the resulting PACS maps is better than 10% at 70 and 100\,\um, and 20% at 160\,\um (Poglitsch et al. 2010). The flux calibration accuracy of the resulting SPIRE maps is better than 15% (Swinyard et al. 2010). The 1\,\sigma noise levels of the maps are listed in Table 2.

3. Analysis

In Fig. 1, we show the maps obtained in the three PACS filters (70, 100, and 160\,\um) and the three SPIRE filters (250, 350, and 500\,\um). We also compare the point spread functions (PSFs) measured on the asteroid Vesta using the same satellite scan speed, processed as the \(\beta\) Pic maps and rotated to align with the telescope pupil orientation on the sky during the \(\beta\) Pic observations as listed in online Table 1.

These images show a clearly resolved disk from 70–160\,\um. Each map was fitted using a 2D Gaussian function. Within the 2\,\arcsec\,Herschel pointing accuracy, the Gaussian center matches the star’s optical position. The fitted position angles, listed in Table 2, agree with the optical disk position angle of 30.8\,\arcsec reported by Kalas & Jewitt (1995). Cross-sections orthogonal to the disk position angle in the NW to SE direction show no significant broadening compared to the PSF. The disk is not resolved in the vertical direction. The feature towards the NW, visible in the 70–160\,\um images, is produced by the three-lobed PACS PSF.

In Fig. 3, we present the surface brightness profiles along the disk position angle. We compare them with the cross-sections aligned in the same direction through the PSFs. At 250 and 350\,\um, the disk is marginally resolved. At 500\,\um, the \(\beta\) Pic profile shows no significant departure from the PSF profile, with the exception of a cold blob in the southwest. As can be seen in Fig. 1, the location of this feature in the 250–500\,\um maps coincides with the flux peaks seen at 850 and 870\,\um by Holland et al. (1998) and Nilsson et al. (2009), respectively. However, the 100 arcmin\(^2\) region around \(\beta\) Pic (depicted in online Fig. 2) shows more than 50 background sources comparable to this feature in the 250\,\um map. The feature is therefore probably a background source.

Table 2. Overview of measured quantities.

<table>
<thead>
<tr>
<th>(\lambda) (\um)</th>
<th>PA (\arcsec)</th>
<th>NE (\arcsec)</th>
<th>SW (\arcsec)</th>
<th>1,\sigma noise (mJy ,\arcsec(^{-2}))</th>
<th>beam (\arcsec)</th>
<th>(F_v) (Jy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70,\um</td>
<td>29.9</td>
<td>68</td>
<td>67</td>
<td>0.079</td>
<td>3.6</td>
<td>16.0 ± 0.8</td>
</tr>
<tr>
<td>100,\um</td>
<td>30.3</td>
<td>55</td>
<td>56</td>
<td>0.086</td>
<td>3.6</td>
<td>9.8 ± 0.5</td>
</tr>
<tr>
<td>160,\um</td>
<td>28.1</td>
<td>63</td>
<td>60</td>
<td>0.044</td>
<td>11.3</td>
<td>5.1 ± 0.5</td>
</tr>
<tr>
<td>250,\um</td>
<td>62</td>
<td>72</td>
<td>0.015</td>
<td>18.1</td>
<td>1.9</td>
<td>0.1</td>
</tr>
<tr>
<td>350,\um</td>
<td>42</td>
<td>83</td>
<td>0.007</td>
<td>25.2</td>
<td>0.72</td>
<td>0.05</td>
</tr>
<tr>
<td>500,\um</td>
<td>33</td>
<td>80</td>
<td>0.004</td>
<td>36.9</td>
<td>0.38</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Notes. Position angle PA, northeast (NE) and southwest (SW) extent (signal reaching the 1\,\sigma noise), map noise level, beam FWHM, and the flux density integrated over a 60\,\arcsec aperture.
Other asymmetries between the northeast and southwest profile are within the errors induced by the asymmetry of the PSF. No sharp disk edge is seen; in all filters, the surface brightness declines gradually to the detection limit of the maps. Table 2 lists the extent of the detected emission region in the NE-SW direction.

The comparison of the surface brightness profiles in the three PACS filters in Fig. 4 shows the same brightness profile along the 30.8° position angle in NE direction. The 70 and 100 μm profiles were convolved with a Gaussian to match the spatial resolution at 160 μm. The same convolution was applied to the 70 and 100 μm PSF profiles. The shape of these convolved PSF profiles defers significantly from that of the 160 μm PSF profile. The wiggles in the 160 μm profile differ up to a factor of 3 from the convolved 70 and 100 μm PSF profiles. Within these uncertainties, there is no evidence of a wavelength dependent surface brightness. This indicates that the grains producing the emission at 70, 100, and 160 μm are confined to the same locus in the disk. At 70 μm, the broadening of the profile with respect to the PSF indicates that 90% of the emission originates in a region within 11″ or 200 AU of the star.

4. The far-infrared SED and grain size

We integrated the surface brightness maps over a 60″ radius circular aperture. Background subtraction was based on a rectangular region, selected close enough to the object to be within the map region with the same coverage as the center of the map. For the background outlier rejection, the DAOphot algorithm in the HIPE aperture photometry task was used. The aperture photometry obtained provides a good measure of the flux density of the integrated disk. The contribution of the stellar photosphere at these wavelengths is negligible. The error is dominated by the present uncertainties in the absolute flux calibration of both instruments. The full disk flux densities are listed in Table 2.

Figure 5 shows the new PACS and SPIRE photometry, and selected infrared and (sub-)mm flux densities from the literature. Because the disk is optically thin at these wavelengths, the wavelength dependence of the emission directly probes the dust grains, and, in particular, their size distribution. We overplot two modified Rayleigh-Jeans laws ($F_\nu \propto \nu^{β}$), normalized to the 160 μm datum. The spectral index $β$ indicates the mean dust opacity $κ \propto \nu^{q}$. An index $β = 0$ corresponds to a black body with a $κ$ independent of wavelength $λ$, indicating grains that are much larger than $λ/2π$. Interstellar grains, which have a size distribution $F(\alpha) \propto \alpha^{-q}$, and an upper size limit of $d_{\text{max}} \sim 0.3$ μm, are characterized by $β = 1.8 \pm 0.2$ (Draine 2006). In protoplanetary disks, $β$-values from 1.5 down to 0 are found, depending on the disk geometry (Acke et al. 2004). An error-weighted least squares fit of a Rayleigh-Jeans law to the βPic photometry at wavelengths beyond 160 μm yields $β = 0.34 \pm 0.07$. Nilsson et al. (2009) obtained $β = 0.67$ from a β-corrected black-body fit to the full disk SED, including mid-infrared photometry. The difference between both results should not be over-interpreted since both approaches are sensitive in different ways to simplifying assumptions about the temperature and size distribution within the disk. In any case, both results consistently show a value below 0.7. Ricci et al. (2010) demonstrate that such a low value cannot be explained with a $q = 3.5$ power law. This is a surprise insofar as the latter value is the expected result for a population of bodies in a standard steady-state collisional cascade (Dohnanyi 1969).
Fig. 5. The infrared to mm SED of β Pic. The PACS (70–160 μm), and the SPIRE (250–500 μm) fluxes were integrated over a 60° radius aperture. IRAS flux densities are from the IRAS Point Source Catalog. The 850 μm SCUBA datum (Holland et al. 1998) and the 1200 μm SIMBA datum (Liseau et al. 2003) are integrated over a 40° aperture. Overplotted is a Rayleigh-Jeans extrapolation of the 160 μm flux density with a spectral index $q = 3.4$. The stellar photosphere is a Kurucz model for $T_{\text{eff}} = 9000$ K; log$(g) = 3.9$ scaled to the 2MASS photometry $K_s = 5.32$.

The grain size distribution in β Pic must be flatter than the $q = 3.5$ power law, meaning that the fraction of small particles must be lower. Radiation pressure can push the smallest grains (with $F_{\text{rad}}/F_{\text{grav}} > 0.5$) onto hyperbolic orbits, hence reduce the time these particles spend in the inner part of the disk, which can decrease their volume density by two orders of magnitude (Krivov et al. 2000). The disk cannot be fully cleared of small particles, since it has been seen in scattered light out to 1800 AU. The scattering grains are probably the (sub-)μm grains that are blown out of the inner disk, where the collisions take place. However, this effect only reduces the densities of grains size below a few micrometers, and even fully removing these grains would not change β to the observed value.

The small value of β can be interpreted in a number of ways. The grain size distribution can exhibit a wavy pattern, caused by the absence of impactors small enough to be efficiently blown out of the disk by radiation pressure. This causes an over-abundance of the grains that are just bound, which means there are more impactors for the next larger size population. The reduction of this population causes an over-abundance of a following size population and so on (Krivov et al. 2006). The wavy size distribution can lead to small values of β when measured in the FIR (Thébault & Augereau 2007). If the wavy structure were as strong as found in this paper for normal and weak material properties, it would be consistent with the small β value we have measured. However, the structure and phase of the wavy pattern in the size distribution depend on both the grain structure and the eccentricity of the dust orbits in the disk.

Alternative explanations of the small value of β cannot be excluded. There are indications that the grains produced in the deep impact experiment followed a flatter power law with $q \approx 3.1$ (Jorda et al. 2007). Laboratory experiments illustrate that fragments produced in collisions of porous aggregates can follow much flatter slopes ($q = 1.2$, Güttler et al. 2010), demonstrating that the porosity of the colliding grains should not be disregarded.

Additional dynamical models should be developed to quantify the possible contribution of these effects to the small β observed in β Pic.

5. Conclusions

We have presented images of the β Pic debris disk in six photometric bands between 70 and 500 μm using the PACS and SPIRE instruments. We resolve the disk at 70, 100, 160, and 250 μm. The images at 70–160 μm show no evidence of asymmetries in the far-infrared surface brightness along the disk of β Pic. The observed profiles are compatible with 90% of the emission originating in a region within a radius of 200 AU from the star. The disk-integrated photometry in the six Herschel filters provides a far infrared SED with small spectral index $\beta \approx 0.34$, which is indicative of a grain size distribution that is inconsistent with a local collisional equilibrium. The size distribution is modified by either non-equilibrium effects, or exhibits a wavy pattern, caused by the under-abundance of impactors that are small enough to be removed by radiation pressure.

Acknowledgements. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVI (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). BV acknowledges the Belgian Federal Science Policy Office via the ESA-PRODEX office. The authors thank the referee for several helpful comments.

References

Smith, B. A., & Terrile, R. J. 1984, Science, 226, 1421
Fig. 2. The 250 μm SPIRE map around the β Pic disk. The $10 \times 10'$ region delimited by the white square shows more than 50 background sources comparable to the cold blob seen in the southwest of the disk.

Fig. 6. The 250, 350 and 500 μm SPIRE PSFs, rotated to match the position angle at the time of the β Pic observations. The PSF images are scaled linearly, contour lines are in steps of 10% of the peak flux. The white circle shows the beam FWHM.
Table 1. Observation log.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Date</th>
<th>Pos angle</th>
<th>Duration</th>
<th>Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPIRE</td>
<td>1342187327</td>
<td>154.96°</td>
<td>3336 s</td>
<td>250,350,500</td>
</tr>
<tr>
<td>PACS</td>
<td>1342185457</td>
<td>106.54°</td>
<td>866 s</td>
<td>100,160</td>
</tr>
<tr>
<td>PACS</td>
<td>1342186613</td>
<td>130.98°</td>
<td>5506 s</td>
<td>70, 160</td>
</tr>
<tr>
<td>PACS</td>
<td>1342186612</td>
<td>130.98°</td>
<td>5506 s</td>
<td>70, 160</td>
</tr>
</tbody>
</table>

Appendix A: Data reduction

The PACS data were processed in the Herschel interactive analysis environment HIPE (v3.0), applying the standard pipeline steps. The flux conversion was done using version 5 of the response calibration. Signal glitches due to cosmic ray impacts were masked out in two steps. First the PACS photMMTDeglitching task in HIPE was applied on the detector timeline. Then a first coarse map was projected, which is then used as a reference for the second level deglitching HIPE task IIIndLevelDeglitch. In the detector time series we masked the region around the source prior to applying a high-pass filter to remove the low frequency drifts. The scale of the high pass filter was taken to be half the length of an individual scan leg on the sky, i.e. 3.7′. The detector time series signals were then summed up into a map using the PACS photProject task. The pixel scale for the 70 and 100 μm maps was set to 1′′, while the scale for the 160 μm map was 2′′. For the deep map in the 70 and 160 μm filter we combined the two detector time series and projected these together.

The SPIRE data were also reduced using HIPE and maps were obtained via the default naiveMapper task. The SPIRE observation consists of several repetitions of a map observation of the same area. As a result it was possible to project the data with a pixel size of 4, 6, and 9′′ while still maintaining complete sampling across the source.